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In this note we show that the Chebyshev operator T is continuous 
at all functions whose best approximations are of maximum degree. 
Let F be an approximating function unisolvent of variable degree on 
an interval [a, j8] and let the maximum degree of F be w. Let P be 
the parameter space of F. All functions considered will be continuous 
and for such functions we define the norm 

||g|| = max{ \g(x)\:a£x£ #}. 

The Chebyshev problem is, for a given continuous function ƒ, to find 
an element T(J) ~F(A*t •), A*&P, for which 

p(/)=mf{||/~/^0|MeP} 
is attained. Such an element T(f) is called a best Chebyshev approxi­
mation to ƒ on [at j3], T(f) can fail to exist, but is unique and charac­
terized by alternation if it exists. Definitions and theory are given 
in [I]. 

LEMMA 1. Let F {A, • ) be the best approximation tof and F have degree 
n at A. Let Xo, • • • , xn be an ordered set of points on whichf—F(Ai •) 
alternates n times. If ||jf—g\\ <8 and ||g — F(B, -)|| ^îp(g)+ô then 

(1) (~iy[F(B, Xi) - F(A, xd] sgn(/(*o) - F(A, x0)) ^ - 3d, 

i — 0, • • • , n. 

The lemma can be obtained using arguments similar to those of 
Rice [2, p. 63J. 

LEMMA 2. Let F be of degree n {maximal) at A then f or given ô>0 
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there exists i)(ô) such that \\F(A, -)-F(B, -)\\<v(à) if (1) holds and 
rç(ô)~>0 as ô~»0. 

The lemma is proven by arguments analogous to those of Tornheim 
cited after the next lemma. 

LEMMA 3. Let F be unisolvent of degree mat Ah* k = 0, 1, • • • and let 
lF(Ak, •)} converge pointwise to F(Ao, •) on m distinct points then 
\F(Akt •)} converges uniformly to F(Ao, •)• 

This result is a generalization of a result of Tornheim [2, pp. 
72-73], [3, pp. 460-462] and is proven in the same way. 

THEOREM. Let F be unisolvent of variable degree. Let ƒ have a best 
approximation F(A, •) and F be of degree n {maximal) at A. There exists 
ô>0 such that ||/—g|| <S implies that g has a best approximation. If 
{fk} converges uniformly tof then {T(Jh)} converges uniformly to T(f). 

PROOF. Let be as in Lemma 1. By definition of solvency 
of degree n at A there exists 7 > 0 such that if \yk — F(A9 Xk)\ <7, 
& = 1, • • • , n, then there exists a parameter B satisfying 

(2) F(B, xk) = yk, A « 1, . . . , n. 

Using property Z and maximality of n, it is easily seen that F is 
unisolvent of degree n at any such B, and hence B is completely deter­
mined by (2). Choose 8 such that rj(8) < Y / 2 then by Lemmas 1 and 2, 
if \\f-g\\ <5 and llg-F(B, -)|| <p(g)+ô, we have \\F(A, -)-F(B, -)|| 
<7/2. Now let }\g — F(Bk, -)|| be a decreasing sequence with limit 

p(g), then for all k sufficiently large, | | ^ (^ , -)-F(Bk, -)|| <7/2. The 
w-tuples of values at the points xu ' • • , xn of the approximants 
F(Bk, - ) form therefore a bounded sequence with subsequence con­
verging to an accumulation point (yi, • • • , yn), which determines a 
parameter B at which F is unisolvent of degree n. Using Lemma 3 we 
can show that for all xG [ce, j8], \f(x) — 7^(5, x) | ^p(g) and so F(£, • ) 
is a best approximation to g. The first part of the theorem is proven. 
Now let {fk} converge uniformly to/ , then for all fe sufficiently large, 
T(fk) exists. From Lemmas 1 and 2 it follows immediately that 
||r(f) — T(fk)\\ converges to zero. The theorem is proven. From the 
arguments involving n-tuples we obtain 

COROLLARY. Let F be unisolvent of variable degree, then the set of 
approximants of maximum degree is locally compact. 

In developing the paper, no assumptions were made concerning the 
existence of T(J). In case a unique best approximation exists to every 
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continuous function, it is easily shown that if ƒ is an approximant, 
{fk} converging uniformly to ƒ implies that {T(fk)} converges uni­
formly to ƒ, and the operator T is continuous at every continuous 
function which is an approximant or has a best approximation of 
maximum degree. In the case of approximation by generalized ra­
tional functions it has been shown by Cheney and Loeb [4] that T 
is continuous at no other continuous functions. 
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