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Let F be a field of characteristic p?*0 and let K be an algebraic 
field extension of F. Let Ki denote the subfield of K of elements purely 
inseparable over F, K8 the subfield of separable elements, and Kn the 
normal closure of K/F. We say that K/F splits if K~KiK8 and fol­
lowing Reid's terminology in [2], X is called an exceptional extension 
of F provided Ki^F and K8^K. 

LEMMA 1. K/F splits if and only if Ki~(Kn)i. 

PROOF. If K/F splits it follows easily that Ki~ (Kn)i. Conversely 
assume that Ki = (Kn){. Then Kn/K is separable normal and hence a 
Galois extension. Since a normal extension splits we have Kn 

=*(Kn)i(Kn)8 and if a(EK, a=^2aaea with aaE.(Kn)8 and {ea} a 
linearly independent set of elements of (Kn)i=*Ki over F. If a is an 
automorphism of Kn/K then<r(a) =aimplies that ^2((r(aa) —aa)ea~0. 
But Ki and (Kn)8 are linearly disjoint over F so that {ea} is linearly 
independent over (Kn)8. Hence <r(aa)=a« and we have aaGK 
n(K»),~K8. Thus K~K8K4. 

THEOREM 2. If K/F is a simple extension then K/F splits if and only 
if Kn/F is simple. 

PROOF. If K/F splits then by Lemma 1, Ki~ (Kn)i and it is clear 
that Kn/F is also simple. 

If Kn/F is simple then K/F and (Kn)i/F are simple. Let f(X) be the 
minimum polynomial of t over F, where / is chosen such that K = F(t). 
Then Kn is the splitting field oîf(X) and we have 

1(a) e x p / ( Z ) = e x p ( ^ ) „ 
|(b) p**'<*>-[KiK9]. 

Since (Kn)i/F is simple it follows that £«*P<*W><= [(J8>)<: F] [3, pp. 
120-123]. Hence [K: K8]~[(K»)iK8: K8] and since KÇ(K»)iK, we 
have (Kn)iK8 = K and (2i>)<«=£<. By Lemma 1, K/F splits. 

Our next lemma gives a method for constructing exceptional field 
extensions. 

1 The first author received partial support from the National Science Foundation 
while this research was being done. 
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LEMMA 3. Let a, b, and s be elements of an algebraic extension field of 
F with a and b purely inseparable over F, s separable over F and not 
in F. Let t=*a+bs and K=*F(t). Then F(a, b)*=(Kn)i and F(a, b)/F 
is generated by the coefficients of the minimum polynomial for t over 
F(at b). 

PROOF.2 Let s = $i, s2, • • - , sn be a complete set of conjugates of s 
over F and let /<•»a+bS{. If e is a nonnegative integer such that 
ap\ b»9eF, then F(tf) =*F(s?)~F(si). Hence * • ( * , • • • , sn) 
QF(h, • • • , tn). Also 6 = (h—h)(si—s2)~

x so that b, and hence a, are 
in F(h, • • • , tn). It follows that F(h, • • •, O « F(a, b) ® F(su • • • , *»). 
And since the /»• are con'ugates over F, we have ^( / I , • • • , / * ) ~Kn 

and -F(ö, b) = (Kn)i [l, p. SO]. The minimum polynomial for t over 
^(a, 6) is g= I I?„ i (X-^) . If ^0 is the subfield of F(a, b) obtained by 
adjoining the coefficients of g to F, then F0/F is purely inseparable 
and Kn/F0 is separable. Therefore, F0~(Kn)i~F(a, b). 

REMARK 4. Reid calls a separable field extension E/F realizable if 
there exists an exceptional extension K/F with E — K8 [2]. Using 
Lemma 3 we can show that when F/Fp is not simple then any proper 
separable extension of F is realizable. 

THEOREM 5. Let K/F be normal and inseparable, but not purely 
inseparable. Then K/F is simple if and only if every subextension of 
K/F splits. 

PROOF. If K/F is simple and E is an intermediate field then we can 
take EnQK. Hence En/F is simple and by Theorem 2, E/F splits. 
Conversely if K/F is not simple then Ki/F is not simple. Hence there 
exist a, b £2£t- such that F(a} b)/F is not simple. We choose sÇ:K8 — F 
and set t^a+bs. If E = F(t) then by Lemma 3, F(a, b)QEn so that 
En/F is not simple. Hence by Theorem 2, E/Fdoes not split. 

Our next result gives necessary and sufficient conditions that a 
given normal inseparable extension K/F contain intermediate fields 
which are exceptional over F. 

THEOREM 6. Let K/F be normal and inseparable but not purely 
inseparable. Let E be the maximal purely inseparable subfield of K/F of 
exponent one. Then E/F is simple if and only if K/F contains no excep­
tional subextensions. 

PROOF. If K/F contains an exceptional subextension then K con­
tains an element t such that F(t)/F is exceptional of exponent one. 

8 The proof of Lemma 3 indicated here is that of H. F. Kreimer; it simplifies an 
earlier proof due to the authors. 
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Thus F(t)/F does not split and F(t)n is not simple by Theorem 2. 
Hence (F(t)n)i is purely inseparable of exponent one and not simple. 
Thus E/F is not simple. 

To prove the converse we assume that E/F is not simple and choose 
ay bÇzE such that F(at b)/F is not simple. Let sE:K9 — F and, as in 
Lemma 3, set t — a+bs. Then F(t)/F does not split and F(a, b) 
= (F(t)n)i. Moreover, F(t^) = F(s) is separable over F. Thus if 
F{t)r\F{a} b) properly contained F then F{t)/F would necessarily 
split. Hence F(t)i = F and F(t)/F is exceptional. 

COROLLARY 7. If F(t)/Fis inseparable but not purely inseparable and 
if /=]Cï=oö^*p* w the minimum polynomial for t over F, where 
e = expf, then F{t)/F is exceptional if and only if F(\a\/V}l)/F is not 
simple. 

PROOF. Sufficiency follows as in Theorem 2. Necessity follows from 
Theorem 6 and the fact that F({al/P}l) is the maximal purely in­
separable subfield of exponent one of F(t)n/F. 

In view of Theorem 6, if there exists a purely inseparable extension 
Lol F such that L/F is not simple and such that E/F is simple where 
E is the maximal subfield of L/F of exponent one, then there exists a 
normal extension K of F such that K/F is not simple, but there are 
no intermediate exceptional extensions. If we take F — P(X^ F, Z) 
where P is a perfect field and where {X, F, Z) is algebraically inde­
pendent over P, and if L = F(Xln>, Xl^2+ F1^, X^'Z1'*), then it can 
be shown that E = F(Xllp), providing the desired example. 
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