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Introduction. Farkas' theorem [9], basic to the theory of linear 
inequalities (e.g. [IS], [7]) and its applications (e.g. [ó]), was ex­
tended to linear topological spaces in [ l l ] , [8], [3], [4], using the 
separation of closed convex cones and points outside them. In this 
note a separation argument is used to prove a theorem on the inter­
sections of cones and subspaces in locally convex spaces, which in the 
finite dimensional case reduces to Farkas' theorem. This approach is 
similar to that in [ l] , [13] and [14]. 

Notations. Let £ be a locally convex real linear topological space, 
E* the space of continuous linear functional on E. For any subset 
5 of E let 

cl(5) denote the closure of S, S* = {x*: x* G E*, x*(x) £ 0, x G S}. 

Similarly for a subset S* of E* let 

*(S*) =* {x:xE E, **(*) £ 0, x* G S*}. 

If LQE is a subspace 

L* - L° - {x*: x* G E*9 x*(x) - 0, x G L} 

and for a subspace L* of E* 

*(Z*) - °(L*) = {*: x G E, x*(x) - 0, x* G £*}. 

THEOREM. Ze/ E be a locally convex real linear topological space, L a 
closed linear subspace in Ef C a closed convex cone in E. Then 

(1) *(L<>nC*) = cl(L + C). 

PROOF. Clearly cl(L+C)C*(£°nC*). 
Conversely suppose there is an x0 such that x0Çz*(L°r\C*), 

#o£l:cl(L+C). The last fact implies that the convex compact set {XQ} 
can be strictly separated from the closed convex set cl(L + C), e.g. 
[5, p. 73]. Thus there is a y*EE* such that y*(d(£ + Q ) £ 0 f 
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y*(xo) <0. From y*(cl(L + C)) è 0 it follows that y*GL° and therefore 
y*GC*. Therefore y*GL°r\C* and y*(x0)<0 contradicts x0 

G*(i°nC*). Q.E.D. 

COROLLARY 1. Let E, F be real normed linear spaces, T: E-*F, 
a continuous linear operator such that its conjugate Tf: F*—>E* satisfies 

(2) (°d(S(r)))0 - d(R(T')). 

Let C be a closed convex cone in E andfÇzF be such that the equation 

(3) Tx = ƒ is solvable. 

Then there is a sequence {#*} in C such that 

(4) lim Txk = ƒ 

if and only if for any solution xo of (3) and any point x* in cl (R(T')) : 

(5) x* G C* implies x*(x0) è 0. 

PROOF. A sequence {x*} in C for which (4) holds exists if and only 
if for any solution x0 of (3) 

(6) x0 G cl(iV(T) + C) or xQ G *(tf(20° H C*) by (1). 

From (2) it follows that N(T)° = cl(R(T')), e.g. [17, p. 226] so that 
(6) gives: x0G*(cl(i?(r))nC*) which is (5). Q.E.D. 

REMARK. (2) holds if E is norm reflexive or if R(T') is finite dimen­
sional, e.g. [17, p. 227]. 

COROLLARY 2. Let E, F be real Hubert spaces, T: E-+F a continuous 
linear operator, T* : F~-*E its adjoint. 

Let C be a closed convex cone in E andfÇ-F be such that the equation 

(3) Tx = ƒ is solvable. 

Then there is a sequence {#*} in C such that 

(4) lim Txh = ƒ 

if and only if f or any point x* in cl (R(T*)) #* = limA ,̂» T*yjF 

(7) xEC* implies lim (y*n,f) ^ 0. 
ti~*oo 

PROOF. Follows from Corollary 1 by choosing x0 = T4/, where T+ 
is the generalized inverse of T, e.g. [16], [2]. Indeed the conclusion 
X*(XQ)*Z0 of (5) is rewritten as: 
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0 g **(*„) - Hm T*y*n(T+f), 
n 

- Km ( j ^ T T ^ - l i m (*,ƒ), 
n n 

since rr*«PoicB<r», e.g. [2] andfER(T). Q.E.D. 
REMARKS, (a) If E, F are real finite dimensional spaces and C—C* 

is the nonnegative orthant in E, then Corollary 2 reduces to Farkas' 
theorem, e.g. [18], [10]: 

(8) Tx = ƒ, # ^ 0 fo solvable if and only if: 

(9) T^y è 0 implies (y9 ƒ) è 0. 

(b) The finite dimensional statement of Corollary 1 is: 
Let C be any closed convex cone in Rn

t A be an mXn matrix and 
bÇzR(A). Then there is a sequence {#&} in C such that 

(10) lim Axk = b 
* 

if and only if 

(11) ATy G C* implies (b, y) £ 0. 

(c) In particular if C is a polyhedral convex cone in Rn then N(A) 
+ C is closed and (11) is equivalent to 

(12) Ax » i, « S C , 

being solvable. 
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