ON THE INTERSECTIONS OF CONES AND SUBSPACES¹

BY A. BEN-ISRAEL AND A. CHARNES

Communicated by L. Cesari, January 2, 1968

Introduction. Farkas' theorem [9], basic to the theory of linear inequalities (e.g. [15], [7]) and its applications (e.g. [6]), was extended to linear topological spaces in [11], [8], [3], [4], using the separation of closed convex cones and points outside them. In this note a separation argument is used to prove a theorem on the intersections of cones and subspaces in locally convex spaces, which in the finite dimensional case reduces to Farkas' theorem. This approach is similar to that in [1], [13] and [14].

Notations. Let E be a locally convex real linear topological space, E^* the space of continuous linear functionals on E. For any subset S of E let

cl(S) denote the closure of S, $S^* = \{x^* : x^* \in E^*, x^*(x) \ge 0, x \in S\}.$

Similarly for a subset S^* of E^* let

$$*(S^*) = \{x: x \in E, x^*(x) \ge 0, x^* \in S^*\}.$$

If $L \subset E$ is a subspace

$$L^* = L^0 = \{x^* : x^* \in E^*, x^*(x) = 0, x \in L\}$$

and for a subspace L^* of E^*

*
$$(L^*) = {}^{0}(L^*) = \{x: x \in E, x^*(x) = 0, x^* \in L^*\}.$$

Theorem. Let E be a locally convex real linear topological space, L a closed linear subspace in E, C a closed convex cone in E. Then

(1)
$$*(L^0 \cap C^*) = cl(L+C).$$

Proof. Clearly $\operatorname{cl}(L+C) \subset *(L^0 \cap C^*)$.

Conversely suppose there is an x_0 such that $x_0 \in {}^*(L^0 \cap C^*)$, $x_0 \in {} \operatorname{cl}(L+C)$. The last fact implies that the convex compact set $\{x_0\}$ can be strictly separated from the closed convex set $\operatorname{cl}(L+C)$, e.g. [5, p. 73]. Thus there is a $y^* \in E^*$ such that $y^*(\operatorname{cl}(L+C)) \ge 0$,

¹ This research was partly supported by the National Science Foundation, Project GP 7550, and by the Office of Naval Research, Contract Nonr-1228(10), Project NR 047-021, and by the U. S. Army Research Office—Durham, Contract No. DA-31-124-ARO-D-322, at Northwestern University. Reproduction of this paper in whole or in part is permitted for any purpose of the United States Government.

 $y^*(x_0) < 0$. From $y^*(\operatorname{cl}(L+C)) \ge 0$ it follows that $y^* \in L^0$ and therefore $y^* \in C^*$. Therefore $y^* \in L^0 \cap C^*$ and $y^*(x_0) < 0$ contradicts $x_0 \in (L^0 \cap C^*)$. Q.E.D.

COROLLARY 1. Let E, F be real normed linear spaces, $T: E \rightarrow F$, a continuous linear operator such that its conjugate $T': F^* \rightarrow E^*$ satisfies

(2)
$$({}^{0}\operatorname{cl}(R(T')))^{0} = \operatorname{cl}(R(T')).$$

Let C be a closed convex cone in E and $f \in F$ be such that the equation

(3)
$$Tx = f$$
 is solvable.

Then there is a sequence $\{x_k\}$ in C such that

$$\lim_{k\to\infty} Tx_k = f$$

if and only if for any solution x_0 of (3) and any point x^* in cl(R(T')):

(5)
$$x^* \in C^* \quad implies \quad x^*(x_0) \ge 0.$$

PROOF. A sequence $\{x_k\}$ in C for which (4) holds exists if and only if for any solution x_0 of (3)

(6)
$$x_0 \in cl(N(T) + C)$$
 or $x_0 \in {}^*(N(T)^0 \cap C^*)$ by (1).

From (2) it follows that $N(T)^0 = \operatorname{cl}(R(T'))$, e.g. [17, p. 226] so that (6) gives: $x_0 \in *(\operatorname{cl}(R(T')) \cap C^*)$ which is (5). Q.E.D.

REMARK. (2) holds if E is norm reflexive or if R(T') is finite dimensional, e.g. [17, p. 227].

COROLLARY 2. Let E, F be real Hilbert spaces, $T: E \rightarrow F$ a continuous linear operator, $T^*: F \rightarrow E$ its adjoint.

Let C be a closed convex cone in E and $f \in F$ be such that the equation

$$(3) Tx = f is solvable.$$

Then there is a sequence $\{x_k\}$ in C such that

$$\lim_{k\to\infty} Tx_k = f$$

if and only if for any point x^* in $cl(R(T^*))$ $x^* = \lim_{k \to \infty} T^* y_k^*$

(7)
$$x \in C^*$$
 implies $\lim_{n \to \infty} (y_n, f) \ge 0$.

PROOF. Follows from Corollary 1 by choosing $x_0 = T^+f$, where T^+ is the generalized inverse of T, e.g. [16], [2]. Indeed the conclusion $x^*(x_0) \ge 0$ of (5) is rewritten as:

$$0 \leq x^{*}(x_{0}) = \lim_{n} T^{*}y_{n}^{*}(T^{+}f),$$

$$= \lim_{n} (y_{n}^{*}, TT^{+}f) = \lim_{n} (y_{n}^{*}, f),$$

since $TT^+=P_{\operatorname{cl}(R(T))}$, e.g. [2] and $f\in R(T)$. Q.E.D.

REMARKS. (a) If E, F are real finite dimensional spaces and $C = C^*$ is the nonnegative orthant in E, then Corollary 2 reduces to Farkas' theorem, e.g. [18], [10]:

(8)
$$Tx = f, x \ge 0$$
 is solvable if and only if:

(9)
$$T^T y \ge 0 \quad implies \quad (y, f) \ge 0.$$

(b) The finite dimensional statement of Corollary 1 is:

Let C be any closed convex cone in R^n , A be an $m \times n$ matrix and $b \in R(A)$. Then there is a sequence $\{x_k\}$ in C such that

$$\lim_{k} Ax_{k} = b$$

if and only if

(11)
$$A^{T}y \in C^{*} \text{ implies } (b, y) \geq 0.$$

(c) In particular if C is a polyhedral convex cone in \mathbb{R}^n then N(A) + C is closed and (11) is equivalent to

$$(12) Ax = b, x \in C,$$

being solvable.

REFERENCES

- 1. A. Ben-Israel, Notes on linear inequalities. I, J. Math. Anal. Appl. 9 (1964), 303-314.
- 2. A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. 11 (1963), 667-699.
- 3. C. C. Braunschweiger and H. E. Clark, An extension of the Farkas theorem, Amer. Math Monthly 69 (1962), 272-276.
- 4. C. C. Braunschweiger, An extension of the nonhomogeneous Farkas theorem, Amer. Math. Monthly 69 (1962), 969-975.
- 5. N. Bourbaki, Espaces vectoriels topologiques, Chapter I, II, Hermann, Paris, 1953.
- 6. A. Charnes and W. W. Cooper, Management models and industrial applications of linear programming, Vols. I, II, Wiley, New York, 1961.
 - 7. K. Fan, "On systems of linear inequalities," pp. 99-156 in [12].
- 8. ——, Convex sets and their applications, Argonne National Laboratory Lecture notes, Argonne, Ill., summer 1959.
- 9. J. Farkas, Über die Theorie der einfachen Ungleichungen, J. Reine Angew. Math. 124 (1902), 1-24.

- 10. A. J. Goldman and A. W. Tucker, "Polyhedral convex cones," pp. 19-40 in [12].
- 11. L. Hurwicz, "Programming in linear spaces," Chapter 4 in: K. J. Arrow, L. Hurwicz and J. Uzawa, Studies in linear and nonlinear programming, Stanford Univ. Press, Stanford, Calif., 1958.
- 12. H. W. Kuhn and A. W. Tucker (Editors), Linear inequalities and related systems, Princeton Univ. Press, Princeton, N. J., 1956.
- 13. N. Levinson, Linear programming in complex space, J. Math. Anal. Appl. 14 (1966), 44-62.
- 14. N. Levinson and T. O. Sherman, The sum of the intersections of a cone with a linear subspace and of dual cone with orthogonal complementary subspace, J. Combinatorial Theor. 1 (1966), 338-349.
- 15. T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen (Dissertation, Basel, 1933) Azriel, Jerusalem, 1936.
- 16. R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
 - 17. A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958.
- 18. A. W. Tucker, "Dual systems of homogeneous linear relations," pp. 3-18 in [12].

NORTHWESTERN UNIVERSITY