CHARACTERIZATIONS OF C*-ALGEBRAS

BY T. W. PALMER¹

Communicated by R. C. Buck, December 26, 1967

This note presents two related characterizations of those Banach algebras which are isometrically isomorphic to C^* -algebras, i.e., to operator-norm closed, self-adjoint algebras of operators on a Hilbert space. The first characterization has evolved from a theorem of I. Vidav [7] and its extension by E. Berkson [1] and B. W. Glickfeld [2] (cf. [5]). The proof given below is considerably simpler than the proofs given in [1] and [2] for closely related, but weaker, results. It is based on Lemma 1 which refines a result of B. Russo and H. A. Dye [6].

All algebras considered here have complex scalars and an identity element *I* of norm one.

In [6] it is shown that the closed unit ball \mathfrak{A}_1 of a C^* -algebra \mathfrak{A} is the norm closed convex hull cloo $U(\mathfrak{A})$ of the set $U(\mathfrak{A})$ of all unitary elements in \mathfrak{A} . The set $\mathfrak{A}_e = \{e^{iR} \colon R \in \mathfrak{A}, R = R^*\}$, which can be defined in any Banach algebra with an involution, is a subset of $U(\mathfrak{A})$ in any C^* -algebra. In a von Neumann algebra $\mathfrak{A}_e = U(\mathfrak{A})$, but in certain C^* -algebras \mathfrak{A}_e is a proper subset of $U(\mathfrak{A})$. For instance if \mathfrak{A} is the usual Banach algebra of continuous functions on the unit circle in the complex plane, then multiplication by the complex variable belongs to $U(\mathfrak{A})$ but not to \mathfrak{A}_e . Thus the following lemma strengthens Theorem 1 of [6].

Lemma 1. If $\mathfrak A$ is a C^* -algebra, clco $\mathfrak A_e = \mathfrak A_1$.

PROOF. A unitary element in a C^* -algebra belongs to \mathfrak{A}_o if its spectrum does not include the whole unit circle. Thus the proof of Theorem 2 in [3] gives as a special case: If \mathfrak{A} is a C^* -algebra and (*) represents closure in the strong operator topology, then $(\mathfrak{A}_o)^*\supseteq U(\mathfrak{A}^*)$. Using this statement, the proof of Theorem 1 in [6] now proves this lemma.

DEFINITION. (Cf. [4], [5], [7].) For any Banach algebra \mathfrak{A} , let $\mathfrak{A}_s = \{ R \in \mathfrak{A} : ||e^{itR}|| = 1 \text{ for all real } t \}.$

Alternatively \mathfrak{A}_{\bullet} could be described as the set of elements in \mathfrak{A} with real numerical range ([4], [5]) in some (hence any) isometric repre-

¹ Partially supported by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-462.

sentation of $\mathfrak A$ on a Banach space, or as the set of elements R in $\mathfrak A$ for which

$$\lim_{t\to 0}\frac{||I+itR||-1}{t}=0, \quad t \text{ real.}$$

Clearly if $\mathfrak A$ is isometrically isomorphic to a C^* -algebra, then $\mathfrak A$, corresponds to the set of self-adjoint elements.

THEOREM. A Banach algebra A is isometrically isomorphic to a C*-algebra if and only if one (hence both) of the following conditions hold:

- (1) For each $S \in \mathbb{X}$ there is at least one pair R, $J \in \mathbb{X}$, with S = R + iJ. In this case R and J are uniquely determined by S and $\pi(R-iJ) = \pi(R+iJ)^*$ where π is any isometric representation of \mathbb{X} as a C^* -algebra.
- (2) There is a real linear subspace \mathfrak{A}_r of \mathfrak{A} such that $R^2 \in \mathfrak{A}_r$ if $R \in \mathfrak{A}_r$ and $\mathfrak{A}_1 = \operatorname{clco} \{e^{iR} : R \in \mathfrak{A}_r\}$.

In this case the norm closure of the real linear span of $\mathfrak{A}_r \cup \{I\}$ is \mathfrak{A}_{\bullet} and (1) holds.

The first condition can be informally stated: A Banach algebra \mathfrak{A} is a C^* -algebra iff $\mathfrak{A} = \mathfrak{A}_s + i\mathfrak{A}_s$. It differs from Corollary 4.4 of [1] in the omission of a hypothesis.

PROOF. Condition (1) is necessary since e^{iR} is unitary if R is self-adjoint. Lemma 1 shows the necessity of (2) when the set of self-adjoint elements is chosen as \mathfrak{A}_r .

Assume next that condition (1) is satisfied. Then the decomposition S = R + iJ is unique [7, Hilfssatz 2c]. For $S \in \mathfrak{A}_s$ let $S^2 = R + iJ$ with R, $J \in \mathfrak{A}_s$. Then (R+iJ)S = S(R+iJ) so (RS-SR) = i(SJ-JS). However both i(RS-SR) and i(SJ-JS) belong to \mathfrak{A}_s [7, Hilfssatz 2b], so they are both zero, and R commutes with S, S^2 and hence with S. Therefore S satisfies the hypotheses of Vidav's theorem [7] and the proof of the sufficiency of (1) could be concluded by citing results in [1]. However the proof can also be completed without reference to the arguments of §§2 and 3 of [1].

Vidav's theorem exhibits a norm $\|\cdot\|_0$ on $\mathfrak A$ equivalent to the given norm $\|\cdot\|$ on $\mathfrak A$ and equal to it on $\mathfrak A_*$, and shows that the map $R+iJ\to R-iJ$ is an involution on $\mathfrak A$, relative to which $\mathfrak A$, normed by $\|\cdot\|_0$, is isometrically *-isomorphic to a C^* -algebra. Thus Lemma 1 shows that the closed unit ball of $\mathfrak A$ relative to $\|\cdot\|_0$ is clos $\mathfrak A_*$ which is certainly a subset of the closed unit ball of $\mathfrak A$ relative to $\|\cdot\|$. Therefore $\|S\| \leq \|S\|_0$ for all $S \subset \mathfrak A$. However if $\|S\| < \|S\|_0$ then

$$||S^*S|| \le ||S^*|| \, ||S|| < ||S^*||_0 ||S||_0 = ||S^*S||_0 = ||S^*S||.$$

This contradiction proves that $\mathfrak A$ is already isometrically isomorphic to a C^* -algebra under its original norm. Furthermore if π is any isometric representation, then the inverse image of the set of self-adjoint elements is a subset of $\mathfrak A$. Thus the uniqueness of the decomposition S=R+iJ proves that $\pi(R-iJ)=\pi(R+iJ)^*$.

Finally if (2) holds, we may assume \mathfrak{A}_r contains I and is closed in the norm topology since the norm closure of the real linear span of $\mathfrak{A}_r \cup \{I\}$ shares the defining properties of \mathfrak{A}_r . Furthermore if $R \in \mathfrak{A}_r$, then by induction \mathfrak{A}_r contains any positive power of R since

$$R^{m+2n} = (1/2)[(R^m + R^{2n})^2 - (R^m)^2 - R^{2n+1}].$$

Thus \mathfrak{A}_r contains $\cos(R)$ and $\sin(R)$ and the norm limit of a convex combination of such elements. Since $\mathfrak{A}_r \subseteq \mathfrak{A}_s$, condition (2) implies condition (1). The uniqueness of the decomposition S = R + iJ shows that \mathfrak{A}_r (as expanded above) is \mathfrak{A}_s .

REFERENCES

- 1. E. Berkson, Some characterizations of C*-algebras, Illinois J. Math. 10 (1966), 1-8.
- 2. B. W. Glickfeld, A metric characterization of C(X) and its generalization to C^* -algebras, Illinois J. Math. 10 (1966), 547-556.
- 3. J. G. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math. 10 (1960), 547-556.
- 4. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
- 5. T. W. Palmer, Unbounded normal operators on Banach spaces, Trans. Amer. Math. Soc. (to appear). Also MRC Technical Summary Report No. 785.
- 6. B. Russo and H. A. Dye, A note on unitary operations in C*-algebras, Duke Math. J. 33 (1966), 413-416.
- 7. I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128.

MATHEMATICS RESEARCH CENTER, MADISON, WISCONSIN, AND UNIVERSITY OF KANSAS