ANALOGUES OF ARTIN'S CONJECTURE1

BY LARRY JOEL GOLDSTEIN

Communicated by W. Feit, November 17, 1967

Artin's celebrated conjecture on primitive roots (Artin [1, p. viii], Hasse [2], Hooley [3]) suggests the following

Conjecture. Let S' be a set of rational primes. For each $q \in S$, let L_q be an algebraic number field of degree n(q). For every square-free integer k, divisible only by primes of S, define L_k to be the composite of all L_q , $q \mid k$, and denote $n(k) = \deg(L_k/Q)$. Assume that $\sum_k 1/n(k)$ converges, where the sum is over those k for which L_k is defined. Then the natural density of the set P of all primes p which do not split completely in each L_q exists and has the value $\sum_k \mu(k)/n(k)$, where μ is the Möbius function and the term k=1 has been included with n(1)=1.

If $S = \{\text{all rational primes}\}$, $L_q = Q(\zeta_q, a^{1/q})$, $a \in \mathbb{Z}$, $\zeta_q = \text{a primitive } q$ th root of 1, then the conjecture is equivalent to Artin's conjecture. If S is a finite set, then the conjecture is easily verifiable using the prime ideal theorem. For $S = \{\text{all rational primes}\}$, $L_q = Q(\zeta_q)$, the conjecture has been proved by Knobloch [4] (for r = 2 and only for Dirichlet densities) and by Mirsky [5].

We have proved the following theorems, whose proofs will appear elsewhere.

THEOREM 1. Let there exist a finite set $S_0 \subset S$ such that $L_q \supset Q(\zeta_q^2)$ for $q \in S - S_0$, and L_q/Q is normal for all $q \in S$. Then the conjecture is true.

THEOREM 2. Suppose that for each finite subset $S_0 \subset S$ there exists a family of algebraic number fields $\{L'_q\}_{q \in S}$ such that

- (1) $L_q = L'_q$ for $q \in S_0$,
- (2) $L_q' \subset L_q$ for all $q \in S$,
- (3) $L_q \neq Q$ for all $q \in S$,
- (4) the conjecture is true for $\{L_q'\}_{q\in S}$. Then the conjecture is true for $\{L_q\}_{q\in S}$.

THEOREM 3. If the density d(P) of P exists, then

$$d(P) \leq \sum_{k} \mu(k)/n(k).$$

¹ Research partially supported by Air Force Office of Scientific Research Grant No. SAR/F-44620-67.

Theorem 1 is the main result. Theorems 2 and 3 are elementary in character. The proof of Theorem 1 is divided into two parts: First, it is shown that one may compute the number of primes $p \leq x$ in P by computing the number of primes $p \leq x$ which do not split completely in L_q for all "sufficiently small q" where the upper bound for q is a function of x. Computing this latter quantity is reduced to computing the number of prime ideals of L_k which have norm $\leq x$, for all "sufficiently small k." The prime ideal theorem asserts that this latter quantity is asymptotically equal to $x/\log x$. But the error term will, in general, depend on L_k . The second part of the proof consists in showing that by restricting k to be "sufficiently small" one can choose the error term to be independent of k. This result constitutes a generalization of the uniform prime number theorem of Siegel and Walfisz (Prachar [6, p. 144]) for primes in arithmetic progressions. In fact, we can prove our theorem in a very general setting, which, although not required for the proofs of Theorems 1-3, seems interesting for its own sake.

Let K be a normal algebraic number field of degree n and discriminant d. Let $\alpha \rightarrow \alpha^{(j)}$ $(1 \le j \le n)$ be the embeddings of K in the complex numbers C, ordered so that the first r_1 are real and the jth and $(j+r_2)$ th $(r_1+1 \le j \le r_1+r_2)$ constitute a pair of complex-conjugate embeddings. Let

$$n_j = 1, \quad 1 \le j \le r_1$$

= 2, $r_1 + 1 \le r_1 + r_2$.

For $\alpha \in K^* = K - \{0\}$, let $\alpha \equiv 1 \pmod{\alpha}$ mean that α is multiplicatively congruent to 1 modulo the K-ideal α . For $\alpha \in K^*$, denote by (α) the K-ideal generated by α . Let χ be a grossencharacter of K having conductor β . For $\alpha \equiv 1 \pmod{\beta}$, let

$$\chi((\alpha)) \,=\, \prod_{j=1}^{r_1+r_2} \left(\frac{\alpha^{(j)}}{\left|\,\alpha^{(j)}\,\right|}\right)^{m_j} \left|\,\alpha^{(j)}\,\right|^{in_j\phi_j}$$

where $m_j = 0$, 1 and $\phi_j \in \mathbb{R}$ are normalized so that $\sum_{j=1}^{r_1+r_2} n_j \phi_j = 0$. Let

$$\pi(x, K, \chi) = \sum_{N^{\mathfrak{p}} \leq x; \, (\mathfrak{p}, \mathfrak{f}) = 1} \chi(\mathfrak{p})$$

where the sum is over primes \mathfrak{p} of K. For A > 0, define $B(A) = \{\chi \text{ a grossencharacter of } K | |\phi_j| \leq A, 1 \leq j \leq r_1 + r_2 \}$. Then we have the following generalization of the Siegel-Walfisz theorem:

THEOREM 4. Let A>0, $\epsilon>0$ be given. Then there exists a positive constant $c=c(A, \epsilon)$, not depending on K, n, d, or χ such that for $\chi\in B(A)$,

$$\pi(x, K, \chi) = E(\chi) \text{ li } x + O(Dx \log^2 x \exp\{-cn(\log x)^{1/2}/D\}), \quad x \to \infty$$
where the 0-term constant does not depend on K, χ, n or d and

$$E(\chi) = 0, \quad \chi \neq \text{the trivial grossencharacter}$$

$$= 1, \quad \chi = \text{the trivial grossencharacter,}$$

$$\text{li } x = \int_{2}^{x} \frac{dy}{\log y},$$

$$D = n^{4} [\mid d \mid N(\mathfrak{f})]^{4} c^{-n}.$$

BIBLIOGRAPHY

- 1. E. Artin, The collected works of Emil Artin, Addison-Wesley, Reading, Mass., 1965.
- 2. H. Hasse, Über die artinsche Vermutung und verwandte Dichtefragen, Ann. Acad. Sci. Fenn., Ser. A. I 116 (1952).
 - 3. C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209-220.
- 4. W. Knobloch, Über Primzahlreihen nebst Anwendung auf ein elementares Dichteproblem, Abh. Math. Sem. Univ. Hamburg 19 (1953), 1-13.
- 5. L. Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, Amer. Math. Monthly 56 (1949), 17-19.
- 6. K. Prachar, *Primzahlverteilung*, Die Grundlehren der mathematischen Wissenschaften, Band 91, Springer-Verlag, Berlin, 1957.

YALE UNIVERSITY