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stA Subject of recent investigation in homotopy theory has been the
Udy of generalized higher order Whitehead products, cf. [1] and [3].

“t Us say that a space, X, has property P, if for any fi, = - -, fa,
BESA‘.__)X, we have 0E [fy, * + + , fa], where [fi, * + +, f»] denotes the
t of all nth order Whitehead products of fi, - - -, fa, as defined in

e}g Thuys 0os [f,, e, f,.] means that fi\VV -« -« Vfa: S4V - - -

nOt;‘ln'—)X can be extended to some F: S41X - - - XS4,—X. (We
at this point that it is an unresolved conjecture as to whether X
Naj pf'Operty P, implies that 0 is the only element of [fl, - ,f,.].)
Wif X is an H-space, then X possesses property P, for all n, [3].
U8 multiplicative properties of X itself are too strong to distinguish
r%:ltg the various properties P,. On the other hand, it follows from
100p . of [1] and [4] that a space has property P; if and only if its
Xten, é’ac‘? is homotopy-commutative. In Theorem 1 below, we shall
P, n this result to characterize those spaces which have property
1 terms of higher homotopy-commutativity properties of their
1 P Spaces, Since we shall wish to be able on occasion to replace a
tio: :pace by an equivalent CW-monoid, we shall restrict our atten-
0 ﬂ}e category of countable CW-complexes.
desc; hlgher homotopy-commutativity properties we need are
Eerd in the following definition which was introduced in [7].
Vide t:ITION' An -associative H-space, Y, is called a Cr-space pro-
) fot there exist maps Qi: C(4—1) X Yi— ¥, 1 £4=<n, such that:
@) QL C(0) X Y=Y is the identity;
‘Qqs ‘( 4 ”] Odr(r» S), Y =y yi)=Qp(r, Yuay * y#(P))
reer 3:0), *ty Yw), for (p, q)-shuffles (u, v), where p+g=1,
®) i 1), and s€C(i—p); and
€ denotes the identity of ¥, and if y,=e, then
Ty, 90 = QuaDAT), 30+ 2 95+ -+ 1 9.

€re o .
hy)y C@) is the convex linear cell described in [2], namely the convex

e Ol.'bit of the point (1, - - -, #+1) under permutation of the
tes in Rn+1, The map d,: C(p —1) X C(i —p)—C(1) is given by

d (rdina
sy, L
Xn Y e Yip) = (%1, ¢ XD, Vg D),
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the map D;: C(5)—C(i—1) is as defined in [2], and [u, »]: C(i)——)C(i)
is induced by the actions of the shuffle (u, ») on R**+! by permutati‘)n
of coordinates.

Note that a Ci-space is just a homotopy-commutative monOi‘?‘
Furthermore, the usual proof that the loop space of an H-spac€ 18
homotopy-commutative extends to yield the fact that such a 100,9
space is a Ca-space for every n. (It is known that the converse of ths
fact is false.) We recall from [7] the main theorem on Ca-spaces
which will be used in the proof of Theorem 1.

THEOREM 0. An associative H-space, Y, is a Cq-space if and only i
the Hopf fibration for Y, p1: ¥V * Y—SY, extends to a fibration P»* it

—(SY)a, where (SY), denotes the n-fold reduced product space of
suspension of Y.

The idea of C,-commutativity is somewhat analogous to St«?l-"heff °
theory of A,-associativity, [5]. Thus the reduced product SP2° e
(SY), stand in relation to commutativity much as the project!
spaces X P(n) relate to associativity. The proof of the “only if” para
of Theorem 0 is inspired by Stasheff’s work, and is accomplished "
direct construction in the Dold-Lashof vein. The reverse implicatlo
uses the connecting map r: @(SY),—Y together with the fact "%‘athe
is Cp in Q(SY),. Here Y is regarded as a subspace of (S V), Vid the
composition Y.4,QSYCQ(SY),, where j is the usual inclusio™
notion of a subspace being C, in a containing space is a natural exte .
sion of the well-known concept of a subspace being homotopy-°
mutative in a larger space.

The definition of C,-space permits us to state the main the
this note.

orem of

s )
THEOREM 1. A space possesses property P, if and only if
space is a Cp-space.

The proof of this theorem, which will be outlined belows is b
on the following theorem.

. usio?
THEOREM 2. A monoid, ¥, is a C,-space if and only if th ind¥

1: SY—By extends to a map a: (SY),— By. ¢

The main theorem follows readily from Theorem 2 as followzng[y
X be a space and Y a monoid for which there exists 2 Stfn [6]
homotopy-multiplicative homotopy equivalence f: y—0X, 2° leval“’
Then f induces a homotopy equivalence g: By—X. Let¢ be the of the
ation map ¢: SQX—X. Then (Sf, g) is a homotopy equiValence 5 sh
map 4 with the map ¢. Now any map kh: SA—X factors
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Vhere £ is the adjoint of %, and hence % factors up to homotopy
"ough 4, Now if QX is a Cn-space, then so is Y, and hence
?E[i’ *+ +,1] (nfactors), by Theorem 2. Consequently if f,: S4,—X,
v§’§n, then 0E[fy, - - - ,f,.]. and thus X satisfies property P,. Con-
terse!y' it follows from Theorem 2.8 of [3] that 0&[4, - - -, 4] implies
A1 extends to all of (SY),—By.
.- "€ proof of Theorem 2 goes as follows. The “if” part is easily ob-
it::i"ed from Theorem 0 by taking pa: E.—(SX). to be the fibration
uced by g: (SY),— By from 7: &,—By, the Dold-Lashof universal
ac’ation for V. The converse is the nontrivial implication and is
0fctomp“Shed by using the maps Q; to map E, to &,41, tht? total space
fash’e (n+1)th stage of the Dold-Lashof construction, in fiber-wise
'on, thys inducing a map in the base spaces (SY),— YP(n) CBy.
¢ details are rather lengthy and will appear elsewhere.
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