INTERIORITY OF A HOLOMORPHIC MAPPING ON THE SET OF ITS EXCEPTIONAL POINTS¹

BY GIACOMO DELLA RICCIA

Communicated by Felix Browder, December 26, 1967

I. Introduction. A mapping $f: A \rightarrow B$ is said to be *interior* (or *open*) if for every open subset $U \subset A$, f(U) is an open subset of B; it is said to be interior at a point $a \in A$ (or *locally interior* at $a \in A$) if for every open subset $U \subset A$ containing a, f(a) is an interior point of f(U). Clearly a mapping is interior if and only if it is locally interior everywhere on its domain of definition.

The result contained in this note is about the local interiority property of a holomorphic mapping on the set of its exceptional points. We shall restrict our attention to holomorphic mappings $f = (f_1(x), \dots, f_n(x)) \colon D \to \mathbb{C}^n$ where D is a domain (open connected set) in $\overline{\mathbb{C}}^n$. $\overline{\mathbb{C}}^n = \overline{\mathbb{C}}^1 \times \dots \times \overline{\mathbb{C}}^1$ where $\overline{\mathbb{C}}^1$ is the extended plane of each one of the complex variables x_i . f is said to be holomorphic when each one of the functions f_i is holomorphic on D. Let J(x) be the value of the Jacobian of f at $x \in D$.

The set E of exceptional points of f is by definition $E = \{a \in D \mid a \text{ is not an isolated point of } f^{-1}f(a)\}.$

II. **Result.** We recall that if $a \notin E$, f is interior at a. In fact, if $a \notin E$ and $J(a) \neq 0$, the property follows immediately from the inverse function theorem (f is a local homeomorphism); if $a \notin E$ and J(a) = 0, it follows from a theorem of Osgood [1] (f maps finitely-to-one sufficiently small neighborhoods of a onto neighborhoods of b = f(a)). Our result pertains to the case $a \in E$:

THEOREM. Let $f: D \rightarrow C^n$, $D \subset \overline{C}^n$, be a holomorphic mapping and let E be the set of exceptional points of f, then the subset E_0 in E such that $E_0 = \{x \in E | f \text{ is interior at } x\}$ is either the empty set or a set of isolated points.

PROOF. If E is empty, f is everywhere interior in D as shown above. If f is degenerate, i.e., $J(x) \equiv 0$, it is not difficult to show that E = D and $E_0 = \{\emptyset\}$.

Let then f be not degenerate and E not empty. H. Cartan [2] proved that E is an analytic set and $E \subseteq W = \{x \in D \mid J(x) = 0\}$. Com-

¹ This research was partially supported by the Office of Naval Research under grant ONR 908 (18).

plex-dimension (W) = n-1 and complex-dim $(W' = f(W)) \le n-1$. Let $S = \{S_1, \dots, S_r\} \subset E$ be the set (finite) of irreducible local analytic varieties passing through a given arbitrary point $a \in E$ and let $V = \{V_1, \dots, V_s\}$ be the set (finite) of irreducible subvarieties in S which are associated with a, meaning that $f(V) = f(a) = b = (b_1, \dots, b_n)$. Now we consider any one-complex-dimensional analytic plane Π passing through b and not contained in W'. Let

$$\Pi = \left\{ y \in C^n \middle| (y_1 - b_1)/\alpha_1 = \cdots = (y_n - b_n)/\alpha_n \right\}$$

where $\alpha_1, \dots, \alpha_n$ are complex constants, be that plane. Obviously

$$f^{-1}(\Pi) = \{x \in D \mid (f_1(x) - b_1)/\alpha_1 = \cdots = (f_n(x) - b_n)/\alpha_n\}.$$

This is an analytic set, consequently, [3], locally at the given point $a \in E$ it consists of a finite set of irreducible analytic varieties which will be called θ . Clearly, $\theta \supseteq V$ since f(V) = b and $b \in \Pi$.

Case 1. $\theta = V$, then f is not locally interior at a. Indeed, if $N_a \subset D$ is a sufficiently small neighborhood of a, b will be the only point in Π contained in $f(N_a)$; this proves that b = f(a) is on the boundary of (N_a) .

Case 2. $\theta \supset V$. This means that $\theta = \{V, \theta_1, \dots, \theta_p\}$ where $\theta_1, \dots, \theta_p$ are the irreducible analytic varieties in the local decomposition of $f^{-1}(\Pi)$ which are not contained in V. Since Π is not contained in W', none of the θ_i is contained in W. Hence, each one of the θ_i being mapped under f into Π is itself of complex-dimension 1. This proves that the intersection of the θ_i with E is a set $E^* \subset E$ which consists of isolated points. In order for f to be locally interior at g it is necessary that for every g defined as above there exist varieties g. Hence, the set g of points where g is locally interior certainly satisfies g contains at most isolated points. Q.E.D.

As an immediate corollary we obtain a result proved by R. Remmert [4].

COROLLARY. A holomorphic mapping $f: D \rightarrow C^n$, $D \subset \overline{C}^n$, is interior if and only if E is the empty set.

III. Examples. In order to show that the two possibilities for E_0 which were mentioned in the Theorem can actually occur, we give the two following examples.

EXAMPLE 1. $f = (y_1 = x_1x_2, y_2 = x_2)$: $C^2 \rightarrow C^2$. Here $J(x) = x_2$, $E = W = \{x \in C^2 | x_2 = 0, x_1 \text{ arbitrary}\}$, $W' = f(E) = \{0' = (y_1 = y_2 = 0)\}$. It is clear that the set $\Pi - \{0'\}$, where $\Pi = \{y \in C^2 | y_2 = 0, y_1 \text{ arbitrary}\}$, is not in the range of f. Thus, $\forall a \in E$ and any open set $N_a \subset C^2 \ni a \in N_a$,

0' = f(a) is on the boundary of $f(N_a)$. This proves that $E_0 = \{\emptyset\}$.

EXAMPLE 2. $f = (y_1 = x_1(x_3 - x_1), y_2 = x_1(x_2 + x_3), y_3 = x_1x_2x_3)$: $C^3 \rightarrow C^3$. Here $E = \{x \in C^3 | x_1 = 0, x_2 \text{ and } x_3 \text{ arbitrary}\}$. We shall show that f is locally interior at $0 \in E$, $0 = (x_1 = x_2 = x_3 = 0)$, by proving that for arbitrarily small $\epsilon_1 > 0$, $\exists \delta_1(\epsilon_1) > 0 \ni \forall y \in \text{boundary}(\Sigma')$ and $0 < \delta < \delta_1$, $\exists x \in \Sigma \ni f(x) = y$, where Σ and Σ' are open hyperspheres, respectively, centered at 0 and 0' with radius ϵ_1 and δ .

From the equations defining f we can derive:

(1)
$$x_1^4 - x_1^2(y_2 - 2y_1) + x_1y_3 + y_1(y_1 - y_2) = 0,$$

$$(2) x_2 = (y_2 - y_1)/x_1 - x_1,$$

$$(3) x_3 = y_1/x_1 + x_1.$$

Let us consider a surface $\sigma = \{y \mid |y_1|^2 + |y_2|^2 + |y_3|^2 = \epsilon^6\}$ where $0 < \epsilon \ll 1$. Our first step is to find a common upper bound for the roots x_1^{ν} , $\nu = 1, \dots, 4$, of equation (1) when $y \in \sigma$. We can write (1) as

(1')
$$x_1^2 = (y_2 - 2y_1)/2 \pm (y_2^2/4 - x_1y_3)^{1/2}.$$

 $\forall y \in \sigma$, we obtain from (1')

$$|x_1|^2 < \frac{3\epsilon^3}{2} + \left(\frac{\epsilon^6}{4} + |x_1|\epsilon^3\right)^{1/2} < \frac{3\epsilon^3}{2} + \left(\frac{\epsilon^6}{4}\right)^{1/2} + (|x_1|\epsilon^3)^{1/2}$$

$$= 2\epsilon^3 + (|x_1|\epsilon^3)^{1/2}.$$

Since $\epsilon \ll 1$, it is not difficult to see that this inequality holds for

(4)
$$|x_1| < \epsilon + o(\epsilon^2)$$
 where $o(\epsilon^2)$ is of the order of ϵ^2 when $\epsilon \to 0$.

Now let x_1^m be one of the four roots x_1^r whose absolute value is larger or equal to the absolute value of all the others. We want to find a lower bound for x_1^m . To that purpose we introduced the following symmetric functions of the x_1^r , obtained from (1):

$$s_4 = x_1^1 x_1^2 x_1^3 x_1^4 = y_1 (y_1 - y_2),$$

$$s_3 = x_1^1 x_1^2 x_1^3 + \dots + x_1^2 x_1^3 x_1^4 = (\text{total of 4 terms}) = -y_3,$$

$$s_2 = x_1^1 x_1^2 + \dots + x_1^3 x_1^4 = (\text{total of 6 terms}) = y_2 - 2y_1.$$

Clearly:

Therefore

$$\left| x_{1}^{m} \right| \ge \frac{\left| y_{1} \right|^{1/4} \left| \left| y_{1} \right| - \left| y_{2} \right| \right|^{1/4} + \left| y_{3}/4 \right|^{1/3} + \left| \left(\left| y_{2} \right| - 2 \left| y_{1} \right| \right) / 6 \right|^{1/2}}{3}.$$

 $\forall y \in \sigma$, it follows from this last inequality that $|x_1^m| > \epsilon^{8/2}/9$. Hence, recalling (4), we have

(5)
$$\epsilon^{3/2}/9 < |x_1^m| < \epsilon + o(\epsilon^2).$$

Finally from (2), (3) and using (5) we obtain:

$$\left| \begin{array}{c|c} x_2^m \end{array} \right| \leq \frac{\left| \begin{array}{c|c} y_2 \right| + \left| \begin{array}{c|c} y_1 \right| + \left| \begin{array}{c} x_1^m \end{array} \right|^2}{\left| \begin{array}{c|c} x_1^m \end{array} \right|} < \frac{2\epsilon^8 + \epsilon^2 + o(\epsilon^3)}{\epsilon^{3/2}/9} = 9\epsilon^{1/2} + o(\epsilon^{3/2}),$$

$$\left| x_3^m \right| \le \frac{\left| y_1 \right| + \left| x_1^m \right|^2}{\left| x_2^m \right|} < \frac{\epsilon^3 + \epsilon^2 + o(\epsilon^3)}{\epsilon^{3/2/9}} = 9\epsilon^{1/2} + o(\epsilon^{3/2}).$$

If ϵ is taken to be sufficiently small, then certainly

$$|x_1^m| < \epsilon + o(\epsilon^2) < 10\epsilon^{1/2}, |x_2^m| < 9\epsilon^{1/2} + o(\epsilon^{3/2}) < 10\epsilon^{1/2}, |x_3^m| < 9\epsilon^{1/2} + o(\epsilon^{3/2}) < 10\epsilon^{1/2}.$$

In order to complete the required proof it is enough to put

$$\epsilon_1 = 10\epsilon^{1/2}$$
 and $\delta_1 = \epsilon^3 = 10^{-6} \times \epsilon_1$.

By using arguments similar to those given in the proof of the Theorem, it is possible to show that $\forall a \in E$ and $a \neq 0$, f is not interior at a. Thus $E_0 = \{0\} \neq \{\emptyset\}$.

REFERENCES

- 1. B. A. Fuks, Analytic functions of several complex variables, Transl. Math. Monographs, Vol. 8, Amer. Math. Soc., Providence, R. I., 1963, p. 105 and p. 149.
- 2. H. Cartan, Détermination des points exceptionnels d'un systeme de p fonctions analytiques de n variables complexes, Bull. Sci. Math. 57 (1933), 334-344.
- 3. S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press, Princeton, N. J., 1948; Chapter X.
- 4. R. Remmert Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328-370.

INDIANA UNIVERSITY