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This brief note is to demonstrate the existence of a new class of 
(exceptional) Lie algebras of type D^ The construction stems from a 
cyclic sixth degree extension P /$ , together with an element y of 
norm 1 in the unique cubic subfield F/$ of P /$ , where y(£NPf!?(P*). 
Each such y will determine a non-Jordan (see [l] for definition) Lie 
algebra 8(7), of type D4111. Two algebras of this form, 8(7) and 8(p), 
will be isomorphic if and only if 7 differs from a conjugate of p by a 
norm in NP/F(P*). The possibility of obtaining new £Vs from such a 
construction was first conjectured in [2]. 

We shall make free use of the well-known theory of finite Galois 
descent for nonassociative algebras and all the results which we use 
may be found in ([5, Chapter 10]). 

0. Preliminaries. We assume without further mention that all 
fields which appear here have characteristic unequal to 2 or 3. 

Let 3 be a split exceptional central simple Jordan algebra over P, 
{*i, e*, ez} a set of supplementary orthogonal primitive idempotents 
and let £) = 35($/2P£t) be the subalgebra of the derivation algebra of 
3f annihilating SPe*. Then 2) is the split D4. If 8 is a ^-algebra form 
of 35 (PD$), then we let 8* be the 3>-subalgebra of Endp3 
generated by 8 (we view 8 as a $-subspace of 35 which contains a 
$-basis which is also a P-basis for 3D). It is known that (8*)p==Ps 
(&P8©p8. 8 is special (i.e., has the form 3($l, / ) where (21, J) is a cen­
tral simple associative algebra of degree 8 with involution) if and 
only if 8* has proper ideals. When 8* is simple, i.e. when 8 is excep­
tional, then 8 is of known type—a Jordan Di—if and only if 8* is a 
total matrix algebra over its center. 8 is of type Dmi (Dm) if the 
center of 8* is a cyclic (noncyclic) extension of $. 

If 8 is of type Dmi and F is the center of 8*-—the canonical D41-field 
extension of 8—then 8 is a non-Jordan Dan if and only if none of the 
simple components of (8*)/? is a total matrix algebra. 

We shall need some technical information about the structure of 
split Cayley algebra. For this we refer to [ó] and for convenience list 
the results below for reference. 

1 This research was done while the author was a NATO postdoctoral research 
fellow at the Mathematics Institute, University of Utrecht. 

1 On leave from Ohio State University. 
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Let E be the vector space of all 2 X2 matrices. 

where a, j3£P and a, bEP(Z)~PXPXP. S is equipped with a bi­
linear multiplication and an involution, which are defined by 

( a a\/y c\ / ay + a-d <xc + da — b A A 

b 0/\d 8/ \yb+pd + aAc pà + b-c ) 
and 

\b fjj W «/ 

where a-d and b/\d denote the usual dot and cross product in P(8). 
S is a split Cayley algebra over P. 

The mapping » - » ^ = w ( » ) G P C S is a nondegenerate quadratic 
form of maximal Witt index, the generic norm on Ê. If {ei, €2, €3} is 
the usual cartesian basis for P (3) and we define ^ G S by 

"' - G o) «• - C ")• 
then m, • • • , Us is a basis for S where w(wt-, Wy) = 8<+4,y, w(ff, ^) denot­
ing the norm bilinear form of n(x) with i + 4 taken modulo 8. 

The multiplication table for S, which is given in [6] for this basis, 
will be invaluable. (See p. 483.) 

The product ujiij is found in the ith-row, jth-column. 

1. LEMMA 1. Let S be the split Cayley algebra over P and let 71, 72, 
73£P* with 717273 G (P*)2. Then there exists a related triple (Tu T*t Tz) 
of proper similarities in S where each Ti is self adjoint with ratio yt. In 
particular, (Ti)2 = (yh y2> 73). 

PROOF. (See [4] for the definition of related triples.) We take S as 
in the preceding section and assume without loss of generality that 
717273= 1. Let Tit i = l , 2, 3, be the linear transformation whose 
matrix Tit with respect to Uit • • • , u%, is given on the following page. 
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Using the fact that {ui, • • • , u*}, {u$, • • • , UB} span supplementary 
totally isotropic subspaces, it is easy to see that n(ui, ujT^ — O if 
i?*j. This implies that each 7\- is self ad joint. We have 

n(uiTk, UjTk) = 0 = n(ui, u}) if j 9e i + 4 (mod 8) 

n(uiTk9 Ui+iTh) = ywiui, ui+A) 1 û i S 3 

n(u*Tk, u*Tk) « 72+*77+A,̂ (W4, m) = ykn(uh u%) where the 

subscripts on the Y'S are taken modulo 3. 
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This shows that P* is a similarity of ratio 7*. To complete the proof 
we must show that 

UiUjTi = yi(uiT2)(ujTz) for all i,j. 

By examining the multiplication table for the w's, we see that 
UiUj = 0 implies (UiT2)(ujTz) = 0. The remaining 32 cases are verified 
by straightforward computations. q.e.d. 

The construction. Let P/<£ be a cyclic sixth degree Galois extension 
with P/<3> the cubic subfield of P/4>, and let 5 be a generator for 
gal (P/$). Choose y&F* with 1 = NF/$(y) =77V2-

Take So as the split Cayley algebra over * with basis {uu • • • tu*} 
as described in §0 and let (£ = ©0p be the split Cayley algebra over P 
with basis {ui> • • • , ^s}. We let P = (Pi, P2, P3) be the related triple 
of similarities in S constructed in Lemma 1 with the ingredients 
7» 7*2> 78' Finally let 5 be the s-linear automorphism of (£ which fixes 
(So. Let ^ — ^(Ss) and let [(123), S] and [l, P] be the transformations 
in rZ*(3?/2Pet-) as defined in [l, Equations 9 and 5]. 

LEMMA 2. [(123),5][l, T] - [l,P][(123),S]. 

PROOF. We must show that SPi= P2S, ST2=TZS and SP3 = PiS. If 
we define («,-ƒ)• = («#) in P8, and if 7* denotes the matrix of P* with 
respect to {ui, • • • , w8}, then our conditions reduce to 7i=T2, 
72= ^3 and T3= TJ. But this is immediate from the form of 7\ given 
in Lemma 1. q.e.d. 

Assume now that y^.NP/F(P*) (this assumption is nonvacuous 
over finite algebraic number fields) and let C(y) be the transformation 
[(123), S] [IT] in $(<S8). C{y) is s-linear and C(Y) 6 = (ah a2, az) where 
o;i=78, a2= (7*2)8 and 0:3= (7*)8* It follows from this that conjugation 
by C(y) induces a pre-cocycle of gal(P/$) in Aut*SD, £> = £)(3/2P^), 
and hence fixes a <£-form, say 8(7). £(7) is clearly of type J94III with 
P/<ï> as its canonical P>4i-field extension. Since the division algebra 
parts of the simple ideals of %*(y)F are the cyclic algebras (P/P, 78), 
(P/F9 ( 7«» , (P/Ff (7*)8) and y*QNP/F(P*)f we see that 8(7) is a 
non-Jordan J94m. Observe that the algebra 8(7) is a twist of a Stein­
berg Dmi and that this is precisely the situation conjectured at the 
end of [2]. 

Isomorphism conditions. Let P/<3> be as above. For any 7GP* with 
7<y«7*2= 1, we can define the algebra 8(7) as in the preceding. Writing 
down explicitly the condition for isomorphism between 8(7) and 8(p) 
we obtain (in terms of descent) 
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A-*C(y)Afal9 M2, Ma) - C(p) A G GL(3/2Ped, m G P*. 

In particular we see that [(123), 1 ]C(Y)[(132) , l ] = C(7*) so 8(7) 
—8(7*) = 8 (7**). More generally we have 

THEOREM. Let P/3> be cyclic sixth degree with F/$ the cubic sub-
extension. If 7, p are elements of F of norm 1, /Aew 8(7)=8(p) if and 
only if 8(7)|==S(p)jF (as algebras without involution). 

PROOF. One direction is clear. For the other, the condition 8(7)* 
~8(p)j? is equivalent to a relation of the form p=78*XX«8 for some i, 
0 ^ i ^ 2 . The preceding discussion enables us to assume that i = 0, i.e. 
that p = 7\X*\ Observe that iVp/*(X) = l (take JV>/# of both sides) 
and set e=7(\8V5)~1. Then €€8V4 = 1 and we let E be the related triple 
described by Lemma 1 for e, €**, e*\ A straightforward calculation 
shows that 

[1, E]-*C(7)[1, £]((X'X'2)-i, (XV)~S (XX'V*) - C(p) 

so 8 ( Y ) S 8 ( P ) . q.e.d. 

2. Special fields. As remarked above, our construction may be 
carried out over finite algebraic number fields. The results of [2] 
show that any Dmi over such a field is split by a cyclic sixth degree 
extension P / $ and by a slight modification of the proof of Proposition 
3 of [2] we may assume that P has no real primes. Let 8 be a non-
Jordan D4111 over <3>. Let 2F (F as before) be the canonical Da exten­
sion of 8. In the indicated reference it is also shown that 2F is fixed 
under conjugation by a semilinear transformation [l, (Ci)] where 
[1, (C t)]2=(78, (7**)8, ( r 3 ) , yEF, Nm(y) = l, Since 8 is a non-
Jordan Dmi, y&NP/P(P*). 

Let A= (P, t, 73), t — sz. Then 8 F has a realization as S (A4, J) which 
we can describe explicitly as follows: 

Write A = P + CP, C2=78, aC=Ca\ define a A-module structure 
on (S by setting x- (a+Cj3) = xa+(xCi)f3, and let — denote the invo­
lution a+C(i—>a + Cfi' in A. It follows from [3] that 8F is isomorphic 
to the Lie algebra of all A-linear transformations in (£ which are skew 
with respect to the nondegenerate-hermitian form 

f{x} y) « n(x} y) + Cn(x9 yCîlY 

on E/A. In case 8 = 8(7), then {u\, u%, w8, #*} is an orthogonal basis 
for S/A and we compute 

f(ui, Ui) = C | l â i ^ 3 
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In a forthcoming paper, the first author has shown that ƒ cannot 
have maximal Witt index. However, using the Hasse principle for 
hermitian forms of type D we conclude that ƒ has Witt index 0 if and 
only if there is a real prime p on F with %Fp the compact real Dé. 
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