NEW SIMPLE LIE ALGEBRAS OF TYPE D,
BY H. P. ALLEN! AND J. C. FERRAR?
Communicated by G. D. Mostow, November 27, 1967

This brief note is to demonstrate the existence of a new class of
(exceptional) Lie algebras of type D,. The construction stems from a
cyclic sixth degree extension P/®, together with an element v of
norm 1 in the unique cubic subfield F/® of P/®, where y&ENp r(P*).
Each such v will determine a non-Jordan (see [1] for definition) Lie
algebra (), of type Dym. Two algebras of this form, (y) and (p),
will be isomorphic if and only if v differs from a conjugate of p by a
norm in Np;p(P*). The possibility of obtaining new D,’s from such a
construction was first conjectured in [2].

We shall make free use of the well-known theory of finite Galois
descent for nonassociative algebras and all the results which we use
may be found in ([5, Chapter 10]).

0. Preliminaries. We assume without further mention that all
fields which appear here have characteristic unequal to 2 or 3.

Let & be a split exceptional central simple Jordan algebra over P,
{el, e, ea} a set of supplementary orthogonal primitive idempotents
and let D =D(J/ZPe;) be the subalgebra of the derivation algebra of
& annihilating ZPe;. Then D is the split D, If 8 is a $-algebra form
of D (PD®), then we let 2* be the P-subalgebra of EndrJ
generated by & (we view € as a ®-subspace of D which contains a
®-basis which is also a P-basis for D). It is known that (8*)p=2Ps
@ Ps® P L is special (i.e., has the form 8(, J) where (¥, J) is a cen-
tral simple associative algebra of degree 8 with involution) if and
only if 8* has proper ideals. When £* is simple, i.e. when 8 is excep-
tional, then g is of known type—a Jordan D —if and only if €* is a
total matrix algebra over its center. 2 is of type D (Davi) if the
center of 2* is a cyclic (noncyclic) extension of &.

If Qis of type Dyrr and Fis the center of @*—the canonical D 4-field
extension of £—then  is a non-Jordan D gy if and only if none of the
simple components of (£*)r is a total matrix algebra.

We shall need some technical information about the structure of
split Cayley algebra. For this we refer to [6] and for convenience list
the results below for reference.

1 This research was done while the author was a NATO postdoctoral research
fellow at the Mathematics Institute, University of Utrecht.
1 On leave from Ohio State University.
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Let € be the vector space of all 2 X2 matrices.
(a a
b B
where ¢, BEP and a, bEP® =P XPXP. € is equipped with a bi-
linear multiplication and an involution, which are defined by

(a a)('y c) < ay+ a-d ac+8a — b N
b B/\d o vb+pBd+aANc B+ bc
G a)-( )
b B T\«
where a-d and bAd denote the usual dot and cross product in P®,
€ is a split Cayley algebra over P.
The mapping x—x&2=n(x) EPCC is a nondegenerate quadratic

form of maximal Witt index, the generic norm on G. If {e, &, &} is
the usual cartesian basis for P® and we define #;E¢€ by

(0 0) 2(0 “) 15is3
Uy = % == — b
=\4 0 bt 0 0 i

(10> (00>
Uy = Ug =
"\ o *~\o 2/’

then uy, - - -, ugis a basis for € where #(u;, #;) = 0;:14,5, #(%, ¥) denot-
ing the norm bilinear form of #(x) with ¢+4 taken modulo 8.

The multiplication table for €, which is given in [6] for this basis,
will be invaluable. (See p. 483.)

and

The produ'ct uu; is found in the sth-row, jth-column.

1. LemMMA 1. Let € be the split Cayley algebra over P and let 1, s,
Vs EP* with yryryvs & (P*)2. Then there exists a related triple (T, Ta, T3)
of proper similarities in € where each T ; is selfadjoint with ratio v, In
particular, (T;)%=(y1, va 73).

PRroOF. (See [4] for the definition of related triples.) We take € as
in the preceding section and assume without loss of generality that
yrysys=1. Let T, i=1, 2, 3, be the linear transformation whose
matrix Ty, with respect to uy, « « +, %s, is given on the following page.
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<Y us} span supplementary

totally isotropic subspaces, it is easy to see that n(u;, %;T%)=0 if
154, This implies that each T is selfadjoint. We have

(T, #;Tx) = 0 = n(uy, u;)

n(u;Tk, u¢+4T;,) = 'y;,n(ug, u;+4) 1=:53

if 75 i+ 4 (mod 8)

-1 -1
n(uaTx, sTr) = Vorxy116m (%, #s) = vin(us, us) where the

subscripts on the v's are taken modulo 3.
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This shows that T} is a similarity of ratio v;. To complete the proof
we must show that

uiyTy = yi(wiTo)(u;Ts) for all 4, 7.

By examining the multiplication table for the #'s, we see that
uu;=0 implies (#;Ts) (4;T3) =0. The remaining 32 cases are verified
by straightforward computations. q.e.d.

The construction. Let P/® be a cyclic sixth degree Galois extension
with F/® the cubic subfield of P/®, and let s be a generator for
gal (P/®). Choose vy & F* with 1= Nga(y) =yy*y*.

Take G, as the split Cayley algebra over ® with basis {us, « + - , us}
as described in §0 and let € =@y, be the split Cayley algebra over P
with basis {u, - -+, us}. We let T'= (T3, Ty, Ts) be the related triple
of similarities in € constructed in Lemma 1 with the ingredients
v, v*, v*. Finally let S be the s-linear automorphism of € which fixes
€. Let 3 =5(G;) and let [(123), S] and [1, T] be the transformations
in T'Ly(3/Z Pe;) as defined in [1, Equations 9 and 5].

Lemma 2. [(123), S][1, 7] = [1,7][(123), S].

Proor. We must show that ST1= T3S, ST.= T3S and ST;= T1S. If
we define (o;;)*= (o) in Ps, and if T; denotes the matrix of T with
respect to { %y, -+ +, Usj, then our conditions reduce to Ti= T3,
T:=T% and T3= T3. But this is immediate from the form of T given
in Lemma 1. q.e.d.

Assume now that y& Np,r(P*) (this assumption is nonvacuous
over finite algebraic number fields) and let C(y) be the transformation
[(123), S][1T] in H(Gs). C(y) is s-linear and C(y)®= (cu, oz, s) where
ar=73, ap=(v*")% and az= (y*)%. It follows from this that conjugation
by C(v) induces a pre-cocycle of gal(P/®) in Aute®D, D=D(J/ZPe;),
and hence fixes a ®-form, say 2(y). (y) is clearly of type Dgn with
F/® as its canonical Dg-field extension. Since the division algebra
parts of the simple ideals of £*(y)r are the cyclic algebras (P/F, ¥%),
(P/F, (v*"?), (P/F, (v*)%) and y*& Np,»(P*), we see that (y) is a
non-Jordan Dy, Observe that the algebra £(y) is a twist of a Stein-
berg D i and that this is precisely the situation conjectured at the
end of [2].

Isomorphism conditions. Let P/® be as above. For any y & F* with
Yy*y**=1, we can define the algebra £(y) as in the preceding. Writing
down explicitly the condition for isomorphism between 2(y) and (p)
we obtain (in terms of descent)
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A7C(y) A(ua, pa, n3) = C(p) A € GL(3/ZPey), piE P~

In particular we see that [(123), 1]C(y)[(132), 1]=C(y*) so 2(v)
>Q(y*)=2(y*"). More generally we have

THEOREM. Let P/® be cyclic sixth degree with F/® the cubic sub-
extension. If v, p are elements of F of norm 1, then 2(v)=28(p) if and
only if v)F=8(p)7 (as algebras without involution).

Proor. One direction is clear. For the other, the condition ()%
=Q(p)} is equivalent to a relation of the form p=v*A\* for some 4,
0 =<17=2. The preceding discussion enables us to assume that ¢=0, i.e.
that p=A\*". Observe that Nps(\)=1 (take Ng of both sides)
and set e=y(\*A*)~L Then ee’e* =1 and we let E be the related triple
described by Lemma 1 for ¢, €, ¢'. A straightforward calculation
shows that

[1, E]Fc(n [1, EJQAT), A1, Q)1 = C(p)
so L(v)=8(p). q.e.d.

2. Special fields. As remarked above, our construction may be
carried out over finite algebraic number fields. The results of [2]
show that any Dgmn over such a field is split by a cyclic sixth degree
extension P/® and by a slight modification of the proof of Proposition
3 of [2] we may assume that P has no real primes. Let £ be a non-
Jordan Dy over ®. Let &7 (F as before) be the canonical Dy exten-
sion of €. In the indicated reference it is also shown that R is fixed
under conjugation by a semilinear transformation [1, (C;)] where
[1, (€)]2=(r%, ()% (v**), YEF, Nps(y)=1. Since 2 is a non-
Jordan D41n, "Y@Np/p'(P*).

Let A= (P, t, v?), t=s% Then L has a realization as 8(A4, J) which
we can describe explicitly as follows:

Write A=P+CP, C*=+3, aC=_Cot, define a A-module structure
on € by setting x- (a¢+ CB) =xa+ (xC1)B, and let — denote the invo-
lution e+ CB—a+ CB* in A, It follows from [3] that 27 is isomorphic
to the Lie algebra of all A-linear transformations in € which are skew
with respect to the nondegenerate-hermitian form

f(x, 3) = n(x, ) + Cn(x, yCi')*

on C/A. In case 2=2(y), then {u;, U, Us, m} is an orthogonal basis
for €/A and we compute

fluiyu) =Cy 1=i=3
S(ugy ug) = C%'y'z.
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In a forthcoming paper, the first author has shown that f cannot
have maximal Witt index. However, using the Hasse principle for
hermitian forms of type D we conclude that f has Witt index 0 if and
only if there is a real prime p on F with ¢, the compact real D,.

Uy Uy U3 Us U Ug U Usg

Uy - %m 0 %%5 Uy 0 —Us 0 0

us3 jus —%us O us 0 0 —us 0

Uy 0 0 0 Uy Uy Ug U7 0

U b 2“4 0 0 0 0 4Ms - 4142 2“5

Ug 0 —2u O 0 —4u3; O duy  2ug

Uy 0 0 —2u, O 4uy, —4u;, O 207

Usg 2141 2142 2143 0 0 0 0 2“3
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