NEW SIMPLE LIE ALGEBRAS OF TYPE D4

BY H. P. ALLEN¹ AND J. C. FERRAR²

Communicated by G. D. Mostow, November 27, 1967

This brief note is to demonstrate the existence of a new class of (exceptional) Lie algebras of type D_4 . The construction stems from a cyclic sixth degree extension P/Φ , together with an element γ of norm 1 in the unique cubic subfield F/Φ of P/Φ , where $\gamma \in N_{P/F}(P^*)$. Each such γ will determine a non-Jordan (see [1] for definition) Lie algebra $\mathfrak{L}(\gamma)$, of type D_{4III} . Two algebras of this form, $\mathfrak{L}(\gamma)$ and $\mathfrak{L}(\rho)$, will be isomorphic if and only if γ differs from a conjugate of ρ by a norm in $N_{P/F}(P^*)$. The possibility of obtaining new D_4 's from such a construction was first conjectured in [2].

We shall make free use of the well-known theory of finite Galois descent for nonassociative algebras and all the results which we use may be found in ([5, Chapter 10]).

0. Preliminaries. We assume without further mention that all fields which appear here have characteristic unequal to 2 or 3.

Let \Im be a split exceptional central simple Jordan algebra over P, $\{e_1, e_2, e_3\}$ a set of supplementary orthogonal primitive idempotents and let $\mathfrak{D} = \mathfrak{D}(\Im/\Sigma Pe_i)$ be the subalgebra of the derivation algebra of \Im annihilating ΣPe_i . Then \mathfrak{D} is the split D_4 . If \mathfrak{L} is a Φ -algebra form of \mathfrak{D} $(P \supset \Phi)$, then we let \mathfrak{L}^* be the Φ -subalgebra of $\operatorname{End}_P \Im$ generated by \mathfrak{L} (we view \mathfrak{L} as a Φ -subspace of \mathfrak{D} which contains a Φ -basis which is also a P-basis for \mathfrak{D}). It is known that $(\mathfrak{L}^*)_P \cong P_8$ $\oplus P_8 \oplus P_8$. \mathfrak{L} is special (i.e., has the form $\mathfrak{L}(\mathfrak{L}, J)$ where (\mathfrak{L}, J) is a central simple associative algebra of degree 8 with involution) if and only if \mathfrak{L}^* has proper ideals. When \mathfrak{L}^* is simple, i.e. when \mathfrak{L} is exceptional, then \mathfrak{L} is of known type—a Jordan D_4 —if and only if \mathfrak{L}^* is a total matrix algebra over its center. \mathfrak{L} is of type $D_{4\Pi\Pi}$ $(D_{4\Pi\Pi})$ if the center of \mathfrak{L}^* is a cyclic (noncyclic) extension of Φ .

If \mathfrak{L} is of type $D_{4\text{III}}$ and F is the center of \mathfrak{L}^* —the canonical $D_{4\text{I}}$ -field extension of \mathfrak{L} —then \mathfrak{L} is a non-Jordan $D_{4\text{III}}$ if and only if none of the simple components of $(\mathfrak{L}^*)_F$ is a total matrix algebra.

We shall need some technical information about the structure of split Cayley algebra. For this we refer to [6] and for convenience list the results below for reference.

¹ This research was done while the author was a NATO postdoctoral research fellow at the Mathematics Institute, University of Utrecht.

^a On leave from Ohio State University.

Let \mathbb{C} be the vector space of all 2×2 matrices.

$$\begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix}$$

where α , $\beta \in P$ and a, $b \in P^{(3)} = P \times P \times P$. \mathbb{C} is equipped with a bilinear multiplication and an involution, which are defined by

$$\begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} \begin{pmatrix} \gamma & c \\ d & \delta \end{pmatrix} = \begin{pmatrix} \alpha \gamma + a \cdot d & \alpha c + \delta a - b \wedge d \\ \gamma b + \beta d + a \wedge c & \beta \delta + b \cdot c \end{pmatrix}$$

and

$$\begin{pmatrix} \overline{\alpha} & \overline{a} \\ b & \beta \end{pmatrix} = \begin{pmatrix} \beta & -a \\ -b & \alpha \end{pmatrix}$$

where $a \cdot d$ and $b \wedge d$ denote the usual dot and cross product in $P^{(8)}$. \mathbb{C} is a split Cayley algebra over P.

The mapping $x \to x\bar{x} = n(x) \in P \subset \mathbb{C}$ is a nondegenerate quadratic form of maximal Witt index, the generic norm on \mathbb{C} . If $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ is the usual cartesian basis for $P^{(3)}$ and we define $u_i \in \mathbb{C}$ by

$$u_{i} = \begin{pmatrix} 0 & 0 \\ \epsilon_{i} & 0 \end{pmatrix} \qquad u_{i+4} = -2 \begin{pmatrix} 0 & \epsilon_{i} \\ 0 & 0 \end{pmatrix} \qquad 1 \leq i \leq 3$$

$$u_{4} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad u_{8} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix},$$

then u_1, \dots, u_8 is a basis for \mathbb{C} where $n(u_i, u_j) = \delta_{i+4,j}$, n(x, y) denoting the norm bilinear form of n(x) with i+4 taken modulo 8.

The multiplication table for ©, which is given in [6] for this basis, will be invaluable. (See p. 483.)

The product $u_i u_j$ is found in the *i*th-row, *j*th-column.

1. Lemma 1. Let & be the split Cayley algebra over P and let $\gamma_1, \gamma_2, \gamma_3 \in P^*$ with $\gamma_1\gamma_2\gamma_3 \in (P^*)^2$. Then there exists a related triple (T_1, T_2, T_3) of proper similarities in & where each T_i is selfadjoint with ratio γ_i . In particular, $(T_i)^2 = (\gamma_1, \gamma_2, \gamma_3)$.

PROOF. (See [4] for the definition of related triples.) We take \mathbb{C} as in the preceding section and assume without loss of generality that $\gamma_1\gamma_2\gamma_3=1$. Let T_i , i=1, 2, 3, be the linear transformation whose matrix T_i , with respect to u_1, \dots, u_8 , is given on the following page.

Using the fact that $\{u_1, \dots, u_4\}$, $\{u_5, \dots, u_8\}$ span supplementary totally isotropic subspaces, it is easy to see that $n(u_i, u_i T_k) = 0$ if $i \neq j$. This implies that each T_i is selfadjoint. We have

$$n(u_iT_k, u_jT_k) = 0 = n(u_i, u_j) \quad \text{if } j \neq i+4 \pmod{8}$$

$$n(u_iT_k, u_{i+4}T_k) = \gamma_k n(u_i, u_{i+4}) \quad 1 \leq i \leq 3$$

$$n(u_4T_k, u_8T_k) = \gamma_{2+k}^{-1} \gamma_{1+k}^{-1} n(u_4, u_8) = \gamma_k n(u_4, u_8) \quad \text{where the}$$

subscripts on the γ 's are taken modulo 3.

This shows that T_k is a similarity of ratio γ_k . To complete the proof we must show that

$$\overline{u_i u_j T_1} = \gamma_1(u_i T_2)(u_j T_3) \quad \text{for all } i, j.$$

By examining the multiplication table for the u's, we see that $u_i u_j = 0$ implies $(u_i T_2)(u_j T_3) = 0$. The remaining 32 cases are verified by straightforward computations. q.e.d.

The construction. Let P/Φ be a cyclic sixth degree Galois extension with F/Φ the cubic subfield of P/Φ , and let s be a generator for gal (P/Φ) . Choose $\gamma \in F^*$ with $1 = N_{F/\Phi}(\gamma) = \gamma \gamma^s \gamma^{s^2}$.

Take \mathfrak{C}_0 as the split Cayley algebra over Φ with basis $\{u_1, \dots, u_8\}$ as described in $\S 0$ and let $\mathfrak{C} = \mathfrak{C}_{0P}$ be the split Cayley algebra over P with basis $\{u_1, \dots, u_8\}$. We let $T = (T_1, T_2, T_3)$ be the related triple of similarities in \mathfrak{C} constructed in Lemma 1 with the ingredients $\gamma, \gamma^{s^2}, \gamma^s$. Finally let S be the s-linear automorphism of \mathfrak{C} which fixes \mathfrak{C}_0 . Let $\mathfrak{J} = \mathfrak{h}(\mathfrak{C}_3)$ and let [(123), S] and [1, T] be the transformations in $\Gamma L_{\Phi}(\mathfrak{J}/\Sigma Pe_i)$ as defined in [1, Equations 9 and 5].

Lemma 2.
$$[(123), S][1, T] = [1, T][(123), S]$$
.

PROOF. We must show that $ST_1 = T_2S$, $ST_2 = T_3S$ and $ST_3 = T_1S$. If we define $(\alpha_{ij})^s = (\alpha_{ij}^s)$ in P_3 , and if T_i denotes the matrix of T_i with respect to $\{u_1, \dots, u_3\}$, then our conditions reduce to $T_1 = T_2^s$, $T_2 = T_3^s$ and $T_3 = T_1^s$. But this is immediate from the form of T_i given in Lemma 1.

Assume now that $\gamma \in N_{P/F}(P^*)$ (this assumption is nonvacuous over finite algebraic number fields) and let $C(\gamma)$ be the transformation [(123), S][1T] in $\mathfrak{h}(\mathfrak{C}_3)$. $C(\gamma)$ is s-linear and $C(\gamma)^6 = (\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = \gamma^3$, $\alpha_2 = (\gamma^{*2})^3$ and $\alpha_3 = (\gamma^*)^3$. It follows from this that conjugation by $C(\gamma)$ induces a pre-cocycle of $\operatorname{gal}(P/\Phi)$ in $\operatorname{Aut}_{\mathfrak{D}}\mathfrak{D}$, $\mathfrak{D} = \mathfrak{D}(\mathfrak{J}/\Sigma Pe_i)$, and hence fixes a Φ -form, say $\mathfrak{L}(\gamma)$. $\mathfrak{L}(\gamma)$ is clearly of type D_{4III} with F/Φ as its canonical D_{4I} -field extension. Since the division algebra parts of the simple ideals of $\mathfrak{L}^*(\gamma)_F$ are the cyclic algebras $(P/F, \gamma^3)$, $(P/F, (\gamma^{*3})^3)$, $(P/F, (\gamma^{*3})^3)$ and $\gamma^3 \in N_{P/F}(P^*)$, we see that $\mathfrak{L}(\gamma)$ is a non-Jordan D_{4III} . Observe that the algebra $\mathfrak{L}(\gamma)$ is a twist of a Steinberg D_{4III} and that this is precisely the situation conjectured at the end of [2].

Isomorphism conditions. Let P/Φ be as above. For any $\gamma \in F^*$ with $\gamma \gamma^s \gamma^{s^2} = 1$, we can define the algebra $\mathfrak{L}(\gamma)$ as in the preceding. Writing down explicitly the condition for isomorphism between $\mathfrak{L}(\gamma)$ and $\mathfrak{L}(\rho)$ we obtain (in terms of descent)

$$A^{-1}C(\gamma)A(\mu_1,\mu_2,\mu_3)=C(\rho)\qquad A\in GL(\Im/\Sigma Pe_i),\quad \mu_i\in P^*.$$

In particular we see that $[(123), 1]C(\gamma)[(132), 1] = C(\gamma^s)$ so $\Re(\gamma) \cong \Re(\gamma^s) \cong \Re(\gamma^{s^2})$. More generally we have

THEOREM. Let P/Φ be cyclic sixth degree with F/Φ the cubic subextension. If γ , ρ are elements of F of norm 1, then $\Re(\gamma) \cong \Re(\rho)$ if and only if $\Re(\gamma)_F^* \cong \Re(\rho)_F^*$ (as algebras without involution).

PROOF. One direction is clear. For the other, the condition $\mathfrak{L}(\gamma)_F^* \cong \mathfrak{L}(\rho)_F^*$ is equivalent to a relation of the form $\rho = \gamma^{s^i} \lambda \lambda^{s^i}$ for some i, $0 \le i \le 2$. The preceding discussion enables us to assume that i = 0, i.e. that $\rho = \gamma \lambda \lambda^{s^i}$. Observe that $N_{P/\Phi}(\lambda) = 1$ (take $N_{F/\Phi}$ of both sides) and set $\epsilon = \gamma (\lambda^{s^i} \lambda^{s^i})^{-1}$. Then $\epsilon \epsilon^{s^2} \epsilon^{s^i} = 1$ and we let E be the related triple described by Lemma 1 for ϵ , ϵ^{s^2} , ϵ^{s^i} . A straightforward calculation shows that

$$[1, E]^{-1}C(\gamma)[1, E]((\lambda^{\mathfrak{s}}\lambda^{\mathfrak{s}^{2}})^{-1}, (\lambda^{\mathfrak{s}^{3}}\lambda^{\mathfrak{s}^{4}})^{-1}, (\lambda\lambda^{\mathfrak{s}^{5}})^{-1}) = C(\rho)$$
 so $\Re(\gamma) \cong \Re(\rho)$. q.e.d.

2. Special fields. As remarked above, our construction may be carried out over finite algebraic number fields. The results of [2] show that any $D_{4\text{III}}$ over such a field is split by a cyclic sixth degree extension P/Φ and by a slight modification of the proof of Proposition 3 of [2] we may assume that P has no real primes. Let \mathcal{L} be a non-Jordan $D_{4\text{III}}$ over Φ . Let \mathcal{L}_F (F as before) be the canonical $D_{4\text{II}}$ extension of \mathcal{L} . In the indicated reference it is also shown that \mathcal{L}_F is fixed under conjugation by a semilinear transformation [1, (C_i)] where $[1, (C_i)]^2 = (\gamma^3, (\gamma^3)^3, (\gamma^3), \gamma \in F, N_{F/\Phi}(\gamma) = 1$. Since \mathcal{L} is a non-Jordan $D_{4\text{III}}$, $\gamma \in N_{P/F}(P^*)$.

Let $\Delta = (P, t, \gamma^3)$, $t = s^3$. Then \mathcal{L}_F has a realization as $\mathcal{L}(\Delta_4, J)$ which we can describe explicitly as follows:

Write $\Delta = P + CP$, $C^2 = \gamma^3$, $\alpha C = C\alpha^t$, define a Δ -module structure on \mathfrak{C} by setting $x \cdot (\alpha + C\beta) = x\alpha + (xC_1)\beta$, and let — denote the involution $\alpha + C\beta \rightarrow \alpha + C\beta^t$ in Δ . It follows from [3] that \mathfrak{L}_F is isomorphic to the Lie algebra of all Δ -linear transformations in \mathfrak{C} which are skew with respect to the nondegenerate-hermitian form

$$f(x, y) = n(x, y) + Cn(x, yC_1^{-1})^t$$

on \mathbb{C}/Δ . In case $\mathfrak{L} = \mathfrak{L}(\gamma)$, then $\{u_1, u_2, u_3, u_4\}$ is an orthogonal basis for \mathbb{C}/Δ and we compute

$$f(u_i, u_i) = C_{\frac{1}{2}}^1 \qquad 1 \le i \le 3$$

$$f(u_4, u_4) = C_{\frac{1}{2}}^1 \gamma^{*2}.$$

In a forthcoming paper, the first author has shown that f cannot have maximal Witt index. However, using the Hasse principle for hermitian forms of type D we conclude that f has Witt index 0 if and only if there is a real prime p on F with \mathfrak{L}_{F_p} the compact real D_4 .

	u_1	u_2	u_3	u4	u_5	u_6	u_7	u_8
u_1	0	$\frac{1}{2}u_7$	$-\frac{1}{2}u_{6}$	u_1	$-u_8$	0	0	0
u_2	$-\frac{1}{2}u_{7}$	0	$\frac{1}{2}u_5$	и2	0	$-u_8$	0	0
u_3	$\frac{1}{2}u_6$	$-\frac{1}{2}u_{5}$	0	u_3	0	0	$-u_8$	0
и4	0	0	0	u_4	u_5	u_6	u 7	0
u_5	$-2u_{4}$	0	0	0	0	$4u_8$	$-4u_2$	$2u_5$
u_6	0	$-2u_{4}$	0	0	$-4u_{3}$	0	$4u_1$	2 <i>u</i> ₆
<i>u</i> ₇	0	0 -	-2u ₄	0	$4u_2$	$-4u_{1}$	0	2117
<i>u</i> ₈	$2u_1$	$2u_2$	$2u_3$	0	0	0	0	2 <i>u</i> ₈

BIBLIOGRAPHY

- 1. H. P. Allen, Jordan algebras and Lie algebras of type D_4 , J. Algebra 5 (1967), 250-265.
- 2. ——, Lie algebras of type D_4 over algebraic number fields, Pacific J. Math. (to appear).
- 3. ——, On the equivalence of Hermitian forms over crossed product division algebras, Trans. Amer. Math. Soc. (to appear).
- 4. N. Jacobson, Triality and Lie algebras of type D₄, Rend. Circ. Mat. Palermo Ser. II 13 (1964), 1-25.
 - 5. ——, Lie algebras, Interscience, New York, 1962.
- 6. G. B. Seligman, On automorphisms of Lie algebras of classical type. III, Trans. Amer. Math. Soc. 97 (1960), 286-316.

University of Utrecht