HOMEOMORPHISMS OF $S^n \times S^1$

BY NELSON L. MAX1

Communicated by S. Smale, June 8, 1967

It is the object of this note to describe several results about homeomorphisms of $S^n \times S^1$. The main tool is Theorem 2: Every homeomorphism of $S^n \times S^1$ extends to a homeomorphism of $D^{n+1} \times S^1$. The proof is sketched in §1 and the result used in §2 to yield information about deformations of homeomorphisms. §3 contains results on the division of S^{n+2} by $S^n \times S^1$.

1. DEFINITION. Two submanifolds L^{n-1} and M^{n-1} in N^n are said to be *transverse* if there is a coordinate system about each point of $L^{n-1} \cap M^{n-1}$ in which L^{n-1} and M^{n-1} look like intersecting hyperplanes in \mathbb{R}^n .

THEOREM 1. If Σ is a locally flat n-sphere in $S^n \times S^1$, n > 1, then Σ bounds a locally flat (n+1)-disk Δ in $D^{n+1} \times S^1$ which is transverse to $S^n \times S^1$.

PROOF (SKETCH). If Σ bounds a disk in $S^n \times S^1$, the proof is trivial, so assume that it does not. Look at the universal covering space $S^n \times R^1$ of $S^n \times S^1$ with covering translation T, and let Σ_0 be a lifting of Σ to $S^n \times R^1$. Since T is stable, the region between Σ_0 and $T\Sigma_0$ is an annulus (Brown and Gluck [1]). Thus there is a homeomorphism $g: S^n \times R^1 \longrightarrow S^n \times R^1$ such that Tg = gT and $g(S^n \times \{0\}) = \Sigma_0$. It will be sufficient to construct a disk $\Delta_0 \subset D^{n+1} \times R^1$ such that

- (1) Δ_0 is locally flat,
- (2) Δ_0 is transverse to $S^n \times R^1$ along Σ_0 , and
- (3) Δ_0 is disjoint from its translates $T^k\Delta_0$.

Then Δ_0 will project onto the desired Δ .

Construction of Δ_0 . Choose a number M such that $\Sigma_0 \subset S^n \times (-M, M)$. Let A be the annular region on $S^n \times S^1$ between Σ_0 and $S^n \times \{M\}$, and B the disk $D^{n+1} \times \{M\}$. Then $A \cup B$ is a locally flat manifold, which is a disk by the generalized Shoenflies theorem (Brown [2], [3]).

Give R^{n+1} polar coordinates $(r, x) \rightarrow rx$ where $r \in [0, \infty)$ and $x \in S^n$.

¹ This is a summary of the author's doctoral thesis written while on a National Science Foundation fellowship. The author wishes to thank his advisor Herman Gluck for suggesting the problem and for simplifying several proofs.

We push $A \cup B$ inside $D^{n+1} \times R^1$ with a homeomorphism defined in a neighborhood of $A \cup B$ by

$$G(r, x, t) = (r(1 - p_2(g^{-1}(x, t))/2M), x, t),$$

where $p_2(x, t) = t$.

Since G moves a point of A toward the center of D^{n+1} by a distance proportional to its R^1 coordinate under g^{-1} , G keeps Σ_0 fixed, and $(1 \times g^{-1})G(A)$ lies in a cone $C_0 = \{r, x, t | r = 1 - t/2M\}$. Thus if $\Delta_0 = G(A) \cup G(B)$, conditions (1) and (2) are satisfied, and (3) can be checked by verifying that each of the four terms in the expansion of $(G(A) \cup G(B)) \cap (T^kG(A) \cup T^kG(B))$ is empty.

THEOREM 2. Every homeomorphism $h: S^n \times S^1 \to S^n \times S^1$, n > 1, extends to a homeomorphism $H: D^{n+1} \times S^1 \to D^{n+1} \times S^1$.

PROOF. Lift h to a homeomorphism $\tilde{h}: S^n \times R^1 \to S^n \times R^1$ of the universal covering spaces, and construct Δ_0 as above. Since Δ_0 is a disk, $\tilde{h} \mid S^n \times \{0\}$ extends to a homeomorphism $G_0: D^{n+1} \times \{0\} \to \Delta_0$. Define an embedding $G_1: \partial(D^{n+1} \times [0, 1]) \to R^{n+1} \times R^1$ by $G_1 \mid D^{n+1} \times \{0\} = G_0$, $G_1 \mid D^{n+1} \times \{1\} = TG_0T^{-1}$, and $G_1 \mid S^n \times [0, 1] = \tilde{h} \mid S^n \times [0, 1]$. Since Δ_0 is transverse to $S^n \times R^1$, the sphere $G_1(\partial(D^{n+1} \times [0, 1])) = \Delta_0 \cup T\Delta_0 \cup \tilde{h}(S^n \times [0, 1])$ is locally flat. Thus, by the generalized Shoenflies theorem, G_1 extends to an embedding $G: D^{n+1} \times [0, 1] \to D^{n+1} \times R^1$. Since GT = TG whenever both sides are defined, G projects to the desired homeomorphism H.

REMARK. If h is piecewise linear and n+1>4, then H can be made piecewise linear by the Hauptvermutung for cells. Also, if n=1, the above proof is valid whenever the lifting $\tilde{h}: S^1 \times R^1 \to S^1 \times R^1$ exists, as is the case for Theorem 3.

COROLLARY. Let M^{n+2} be a manifold constructed by identifying $S^n \times D^2$ and $D^{n+1} \times S^1$ using some homeomorphism $h: S^n \times S^1 \to S^n \times S^1$ of their boundaries. Then M^{n+2} is homeomorphic to S^{n+2} for n > 1.

2. DEFINITION. Let h_0 and h_1 be homeomorphisms of M onto itself. A homeomorphism $H: M \times [0, 1] \to M \times [0, 1]$ is called a *weak isotopy* (or *concordance*) between h_0 and h_1 if $H(x, 0) = (h_0(x), 0)$ and $H(x, 1) = (h_1(x), 1)$.

THEOREM 3. Let H be a homeomorphism of $D^n \times S^1$, h its restriction to $S^{n-1} \times S^1$, and g a weak isotopy between h and the identity. Then g extends to a weak isotopy G between H and the identity.

PROOF. Consider $D^n \times S^1 \times [0, 1]$ as $D^{n+1} \times S^1$. Then the desired map G has already been defined on $S^n \times S^1$, so apply Theorem 2.

COROLLARY. Let WI(X) be the group of weak isotopy classes of homeomorphisms of X. Then the inclusion map $i: S^n \times S^1 \rightarrow D^{n+1} \times S^1$ induces an isomorphism

$$i^*: WI(D^{n+1} \times S^1) \to WI(S^n \times S^1)$$
 for $n > 1$.

Conjecture 1. WI $(S^n \times S^1) = Z_2 + Z_2 + Z_2$ for $n \ge 2$. By obstruction theory, the group of homotopy equivalences of $S^n \times S^1$ with itself is $Z_2 + Z_2 + Z_2$. Thus the conjecture is that every homeomorphism of $S^n \times S^1$ which is homotopic to the identity is weakly isotopic to the identity. The following theorems are partial results in this direction.

Theorem 4. Every homeomorphism h of $S^n \times S^1$, $n \ge 2$, is weakly isotopic to a homeomorphism h' such that

$$h'(S^n \times \{0\}) \subset S^n \times (-\epsilon, \epsilon)$$
, for any given $\epsilon > 0$.

THEOREM 5. Every stable homeomorphism of $S^n \times S^1$, $n \ge 2$, which is homotopic to the identity is weakly isotopic to one which is fixed on $S^n \times \{0\} \cup \{0\} \times S^1$.

THEOREM 6. Every homeomorphism H of $S^n \times S^1$ which is piecewise linear in a neighborhood of $\{0\} \times S^1$ and homotopic to the identity is weakly isotopic to the identity. (Cf. Browder [6]).

PROOF. We may assume the neighborhood is $D^n \times S^1$ with boundary $S^{n-1} \times S^1$. The cases n=1 and n=2 follow from Gluck [4]. If $n \ge 3$, unknot $H(\{0\} \times S^1)$ piecewise linearly, by Guggenheim [9]. Then by the regular neighborhood theorem there is a piecewise linear isotopy which moves $H(D^n \times S^1)$ onto $D^n \times S^1$. By induction, $H|S^{n-1} \times X^1$ is weakly isotopic to the identity. Then apply Theorem 3.

3. The following two theorems are related to the unknotting of $S^n \times S^1$ in S^{n+2} (cf. Goldstein [7]). Let $f: S^n \times S^1 \to S^{n+2}$ be a locally flat embedding, and let A_1 and A_2 be the closures of the components of $S^{n+2}-f(S^n \times S^1)$. By the Mayer-Vietoris theorem, one of them, say A_1 , has the homology of S^1 , and the other, A_2 , has the homology of S^n .

THEOREM 7. If f is also piecewise linearly locally flat in a neighborhood of S^1 , and $n \ge 3$, then A_2 is homeomorphic to $S^n \times D^2$.

PROOF (SKETCH). By the van Kampen theorem, A_2 is simply connected. By general position, embed a piecewise linear 2-disk D in A_2 with $\partial D = f(\{0\} \times S^1)$. Let N be the closed star of D in a suitable triangulation of A_2 near D. Since A_2 is a combinatorial manifold near D, N is a ball by the regular neighborhood theorem. By the corollary to Theorem 2 and the Shoenflies theorem, the closure of $A_2 - N$ is

also a ball, and one can check that the two balls fit together to make $S^n \times D^2$.

REMARK. If Theorem 7 were true without the extra assumptions, Conjecture 1 for stable homeomorphisms would follow from Theorem 5.

THEOREM 8. If $f(S^n \times \{0\})$ is unknotted in S^{n+2} , then some finite k-fold covering space of A_1 is homeomorphic to $D^{n+1} \times S^1$, for $n \ge 3$.

PROOF. Let A be the two point compactification of the universal covering space \tilde{A}_1 of A_1 . The boundary of A is locally flat except possibly at the two added points. Therefore, by Hutchinson [8], A is a ball, and \tilde{A}_1 is homeomorphic to $D^{n+1} \times R^1$. Let $\tilde{f}(S^n \times \{0\})$ span a nice disk Δ_0 in \tilde{A}_1 , and choose a large k so that Δ_0 is disjoint from $T^k \Delta_0$. Then proceed as in Theorem 2.

BIBLIOGRAPHY

- 1. M. Brown and H. Gluck, Stable structures on manifolds. I, II, III, Ann. of Math. (2) 97 (1964), 1-58.
- 2. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math (2) 75 (1962), 331-334.
- 3. ____, A proof of the generalized Shoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 4. H. Gluck, The embeddings of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- 5. ——, Embeddings in the trivial range, Bull. Amer. Math. Soc. 69 (1963), 824-831.
- 6. W. Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155-163.
- 7. R. Goldstein, A product of spheres piecewise linearly unknots in a sphere, Ph.D. Thesis, University of Pennsylvania, 1966.
- 8. T. Hutchinson, Two pointed spheres, Notices Amer. Math. Soc. 14 (April 1967), 364.
- 9. V. Gugenheim, Piecewise linear isotopy and embeddings of elements and spheres. I and II, Proc. London Math. Soc. (3) 3 (1953), 29-53, 129-152.

University of California, Berkeley