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1. Introduction. In [4] Lefschetz defined quasi-complexes and 
proved his fixed point theorem for that class of spaces. Since then, 
further discussions of quasi-complexes have appeared in [ l ] , [3] and 
[ó]. Unfortunately, the question of whether or not the class of quasi-
complexes contains the class of compact metric ANR's has never been 
settled. In [2] F. Browder introduced the concept of semicomplexes 
and showed that this class does contain the compact metric ANR's 
as well as admitting a local fixed point index for continuous maps. In 
§2 of this announcement the relationship between these two concepts 
is clarified by defining weak semicomplexes and showing that this 
class contains both the quasi-complexes and the semicomplexes. 
Furthermore, the Lefschetz fixed point theorem holds for weak semi-
complexes and within this class the subclasses of quasi-complexes 
and semicomplexes are completely characterized. In §§3, 4 and 5 new 
results on the existence and uniqueness of semicomplexes are given. 

The proofs of these and additional results will appear elsewhere. 
The author wishes to thank Professor Edward Fadell for suggesting 
several of the questions which are considered in this work. 

2. Weak semicomplexes. The definition of a weak semicomplex is 
motivated by the following definition of a semicomplex which is a 
slight modification of that given by Browder in [2]. This definition 
is, however, sufficient for use in all of Browder's results and proofs. 

If X is a compact Hausdorff space, 2(X) will denote the set of all 
finite covers of X by open sets. If a £ 2 ( X ) then Na will stand for 
the nerve of a and C(Na) will stand for the associated chain complex 
of Na with rational coefficients. When a and /? are in X(X) with /3 
refining a (i.e., j3>a), 7rf : C(Np)—>C(Na) will denote the usual chain 
map induced by a vertex transformation based on set inclusion. 

DEFINITION (1). A semicomplex, S(X) = {X, ê, fl, a0, C\}, is a quin­
tuple where X is a compact Hausdorff space; Ó is a collection of finite 
covers of X by connected open sets which is cofinal in 2 (X) ; 12 is a 
cofinal subset of S (X) ; a0 is a function from é into Q such that for 
each A£# , a0(X)>X; and C is a function assigning to X £ # a family, 
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C\, of chain maps consisting of one or more chain maps c£ : C(Np) 
—>C(Na) for every pair ce, /3GŒ such that ce>j3>ce0(X). These chain 
maps c% are called antiprojections and are assumed to preserve the 
Kronecker index as well as satisfy the following axioms. 

(i) If ce>/3>7>ce0(X), ce, /3, 7 G Q and cf, c«GCx then there exists 
a chain homotopy A£ connecting fia and c^ such that for each o - G ^ 
there is a set UÇ£h with sup(<r)Usup(c£(<r))Usup(A2(cr))C U. 

(ii) If ce>/3>7>ce0(X), ce, /3, 7 G Q and c}> c«GCx then there exists 
a chain homotopy TJ connecting c} and 7r̂ c« such that for each crÇENy 
there is a set F £ X with sup(a)^sup(c}(a))VJsup(T}(a))Q V. 

(iii) If ce>c*0(X), ceGO and £«GCx, then <&: H(Na; Q)-*H{Na\ (?) 
is an idempotent endomorphism whose image is exactly the image of 
the projection homomorphism pa: H(X; Q)-^H(Na; Q) where H{X\ Q) 
denotes Cech homology with rational coefficients. 

(iv) If/z>X then ce0(M)>«O(X) and if a>j3>ce0(M),a,/3GŒ, C£0U)GCM 

and £(X)GCx, then there exists a chain homotopy 0% connecting these 
two antiprojections such that for each aÇzNp there is a set WGX with 
sup (cr) Usup(cf (X) (cr)) Usup(fl2(er)) C PT. 

For convenience S(X) will sometimes be called a semicomplex 
structure on the underlying space X. 

If less stringent conditions are placed on the antiprojections, an 
interesting theory can still be developed. 

DEFINITION (2). A weak semicomplex S(X)={X1 fi, C) is a 
triple where X is a compact Hausdorff space; Î2 is a function assigning 
to each X£2(J¥") a cofinal subset 0\ of 2(X) which has a designated 
coarsest element ceo(X) such that ceo(X) >X; and C is a function assign­
ing to each X £ 2 ( X ) a family, Cx, of chain maps consisting of one 
or more chain maps c%: C(Np)—>C(Na) for every pair a, /?GŒx such 
that ce>j8>ce0(X). Each cf £Cx has the property that if cr G JV/s then 
there is a set Z7£X with sup(<r)VJsup(cf(<r))C U. These chain maps 
are called antiprojections and are assumed to satisfy the following 
axioms. 

(i) If a>j8>7>ce0(X), ce, j8, 7GÖX and c£, c^GCx then cf is chain 
homotopic ( ~ ) to c^n-y. 

(ii) If a> j8>7>a 0 (X) , ce, |8, T G ^ X and $ , c%GC\ then cJ^TrJfc*. 
(iii) If a>c*o(X), «GQx and £ G C X then <&: #(iVa; Q)-+H(Na; Q) 

is an idempotent endomorphism whose image is exactly the image of 
the projection homomorphism pa: H(X; Q)-*H(Na; Q). 

DEFINITION (3). A weak semicomplex, {X, Q, C}, is called simple 
if for each X, XGS(X), a<E®x and c^GCx, £ ~ 1 : C(Na)->C(Na). 
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PROPOSITION (1). If a space X has a weak semicomplex structure 
S(X)= {X, fi, C} then for all X the projection homomorphism 
paQiX):H(X; Q)-+H(Na9(k); (?) is infective. If S(X) is simple then paQ(K) 

is also surjective. 

A consequence of this proposition is that if X has a weak semi-
complex structure then X is weakly locally connected in all dimen­
sions in the sense that all rational Cech cycles of any dimension, 
which have sufficiently small support, bound on X. I t is also clear in 
this case that H(X; Q) is finitely generated so that if/: X—>X is a 
map then the Lefschetz number L(f) is defined. 

THEOREM (1). If X has a weak semicomplex structure then f or any 
fixed point free map ƒ : X—»X, L(f)—Q. 

THEOREM (2). A space X is a quasi-complex if and only if it has a 
simple weak semicomplex structure, 

3. Categories of semicomplexes. It is clear from Definition (1) that 
if {X, 3, £2, «o, C} is a semicomplex then X is forced to be locally con­
nected. 

Let S(X) = {X, #, fi, a0, C} be a semicomplex. For each X £ 2 ( X ) , 
pick a refinement X '£# and a cofinal subset fix' of {a£f i | a>ao(X' )} 
which has a designated coarsest element ai (X). Let fi' be the function 
that assigns to X the set fix' and let C' be the function that assigns to 
X the family of chain maps G' = fàSeCx|a, /3Gfix'}. Clearly, the 
derived structure S'(X) = {X, fi', C] is a weak semicomplex. 

If S{X) = {X, <r, fi, «o, C] and 5(F) = { F, $ , ^ , j80, D) are semicom­
plexes, a map h: X-+Y is called a semicomplex map from S(X) into 
S( Y) if h is compatible with these structures. The precise definition 
of this compatibility is quite technical but the basic idea is that 
there are arbitrarily fine covers a, |3£fi and 7, SGSF such that h 
induces chain maps which make the following diagram chain homo-
topy commutative with a chain homotopy of small support on sim-
plexes. 

A'. 

cm > cm 
I Ca a I Q"y 

C(Na) • C(Ny) 

Browder's main result in [2] concerns the existence of a local fixed 
point index. 
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THEOREM (3). If (3, is a category of semicomplexes and semicomplex 
maps then a local fixed point index exists for continuous self-maps on 
the underlying spaces of objects in (B. 

This particular index, which will be called the Browder index, ap­
pears to depend on the particular semicomplex structures involved 
and is clearly influenced by which of the continuous maps are semi-
complex maps. To study this dependence an equivalence relation is 
introduced. 

DEFINITION (4). Two semicomplexes S(X) and T(X) are equivalent 
( ~ ) if the identity map lx on X is as emicomplex map from S(X) into 
T(X). 

PROPOSITION (2). « is an equivalence relation on the collection of all 
semicomplexes. 

If 6 is a category of semicomplexes one can use « to define an 
equivalence relation among the semicomplex maps in 6. Thus a 
category [e] can be defined with equivalence classes [SpO] and [h] 
of the semicomplexes and semicomplex maps in © as objects and 
morphisms. 

PROPOSITION (3). The Browder index yields the same indices when 
applied to equivalent semicomplexes. Hence, the Browder index on a 
category <B induces a local fixed point index on [ e ] . 

Finally, let C' be the category whose objects are all spaces which 
are the underlying space of some semicomplex in (3 and whose mor­
phisms are all maps between these spaces. 

DEFINITION (5). A category 6 of semicomplexes and semicomplex 
maps is fully reducible if [e] is isomorphic to C' under the forgetful 
functor taking [S(X)]->X and [*]->&. 

PROPOSITION (4). If 6 is a fully reducible category then a local fixed 
point index is defined on 6 ' which does not depend in any way on the 
semicomplex structures used. In particular if S(X) and S( Y) are in 6 
then any map f: X—>Y is a semicomplex map from S{X) to S(Y). 

DEFINITION (6). A semicomplex S(X) = {Xy ê, 12, a0, C} is called 
simple if in addition to axioms (i)-(iv) of Definition (1) it satisfies 
the following axiom. 

(v) If a>oj0(X), « G O and c«£Cx then there exists a chain homo-
topy A" connecting c« and 1: C(Na)—>C(Na) such that for each 
<rENa there is a set WE^ with sup (a) U s u p ( £ (a) )Usup(A£ (a) )QW. 

PROPOSITION (5). If S(X) = {X, 0,12, a0, C} is a simple semicomplex 
then any derived weak semicomplex S'(X) ~ {X, 12', Cf\ is also simple. 
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Thus the following relations exist among the various structures. 

weak semicomplex 

. /* V , 
quasi-complex <=> simple weak semicomplex semicomplex 

V . / 
simple semicomplex 

4. Examples. 
PROPOSITION (6). Every compact polyhedron has a simple semicomplex 

structure. 
In [5] Lefschetz defined a class of compact spaces which he called 

HLC* spaces. These include the compact metric ANR spaces and 
the compact generalized manifolds of Wilder [7]. 

PROPOSITION (7). Every metric HLC* space has a semicomplex struc­
ture. 

THEOREM (4). §*, the category of all semicomplex structures and semi-
complex maps on metric HLC* spaces, is a fully reducible category. 

The proof of Theorem (4) relies heavily on the properties of the 
underlying HLC* spaces. However, if only simple semicomplexes 
are considered no assumptions need be made about the underlying 
spaces 

THEOREM (5). $s, the category of all simple semicomplexes and their 
semicomplex maps, is a fully reducible category. 

I t was shown in [3] and [6] that all snake-like continua and their 
hyperspaces are quasi-complexes and hence have simple weak semi-
complex structures. 

5. Products and Suspensions. Let S be the set of all semicom­
plexes; $s the set of all simple semicomplexes; §>w the set of all weak 
semicomplexes and §>sw the set of all simple weak semicomplexes. 

THEOREM (6). If G is any one of S, $s, STT and §>sw with S(X) and 
S(Y) in 6 then there exists a structure S(X)XS(Y) on the space XX Y 
which is in 6. Further, in the case of S, this is natural in the sense that if 
h: S(X) —» S(Y) and h!\ S(X') —» S(Y') are semicomplex maps with 
S(X), S(X'), S(Y), and 5 ( F ) in S then hXhf : S(X)XS(X')->S(Y) 
X S( Yf) is a semicomplex map. 

THEOREM (7). If e is any one of $, $s, &w and $Sw with S(X) in 6 
then there exists a structure Susp(S(X)) on the suspension of X which 
is in (3. Further, if h: S(X)—^S(Y) is a semicomplex map with S(X) 



536 R. B. THOMPSON 

and S{ Y) in S then the suspension of h is a semicomplex map from 
Susp(5(X)) into Susp(5(F)). 
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