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1. Introduction. In [1] Almgren considered the situation of a
closed minimal variety H, of dimension 2 immersed in S He ob-
served that the second fundamental form, a real valued bilinear form
on the tangent space to H, is in fact the real part of a holomorphic
quadratic differential with respect to the conformal structure on H
induced by the metric inherited from its immersion in S% He used
this fact to conclude that .S? could not be immersed as a minimal vari-
ety in S?® unless it was already totally geodesic.

It turns out that under the most general circumstances the second
fundamental form of a p-dim minimal subvariety of an n-dim Rie-
mannian manifold satisfies a natural second-order elliptic differential
equation which generalizes the holomorphic condition mentioned
above. In the case that the ambient manifold is S* the equation may
be used to show that a closed minimal subvariety of S*, of arbitrary
codimension, which does not twist too much is already totally geo-
desic. In a sense this theorem is analogous to Bernstein’s theorem for
complete minimal subvarieties in R*,

2. A standard operator. Let M be a Riemannian manifold? of
dimension # and V(M) a d-dimensional vector bundle over M. Sup-
pose the fibers of V(M) carry a euclidean inner product and suppose
there is given a connection in V(M) which preserves this inner product.
If W is a cross-section in V(M) and x& T (M), the tangent space to
M at m, we denote by V,WW the covariant derivative of W in the x
direction. V. W& V(M)m.

Let x, y€T(M)m. We define V, ,WE V(M) as follows. Let ¥ be a
vector field on M which extends y. We then set

(2.1) VeuW = V.V W — Vo yW

where V.Y is ordinary covariant differentiation of a vector field on M
with respect to the Riemannian connection. It is easy to see that this
definition is independent of the choice of Y.

Letey, - - -, e, be an orthonormal basis of T(M).,. If W is a cross-
section in V(M) we define V2V by

1 Prepared with partial support from NSF GP 4503.
% All manifolds will be assumed to be orientable,
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(2.2) VW = 3 V.., W.

tm=1

This definition of V2 is independent of the choice of frame ¢y, - - -, e.
Thus, V2 is a second-order differential operator mapping the space of
cross-sections of V(M) into itself.

PRroOPOSITION 2.1. V2 is an elliptic operator. If M is compact we have

2.3) [ ww,2= [ w,v2),
(2.4) [ ww, w20,

M
(2.5) f (VIW, W) = 0 & V2W = 0

< W 1s covariant constant.

3. The second fundamental form. Let M be an #z-dimensional
C» Riemannian manifold, H a p-dimensional manifold, and ®: H—>M
an immersion. We consider the following vector bundles over
H: T'(H) =the tangent bundle; N(H) = the normal bundle; S(H) = the
bundle of symmetric linear transformations of T (H),—T(H)x;
A(H)=Hom(N(H), S(H)). Each of these vector bundles has a
natural euclidean inner product on its fibers, and each has a natural
connection which preserves this inner product.

The second fundamental form. @ is a cross-section in 4 (H). That is,
for wEN(H),, Q(w): T(H)y—T(H) is a symmetric linear trans-
formation. H is immersed as a minimal variety if and only if for each
hE H and each wEN(H);, tr G(w) =0.

@ gives rise to two natural linear maps at each point

G:NH)w— NH)n; Q:SH)w— SH)x

defined as follows. Since N(H); and S(H), are euclidean we may de-
fine @* =transpose of @. @*: S(H),—N(H);. We then set

@ = Gc*oaq.
Let fi, - - -, fs be an orthonormal basis for N(H),, where d=n—p.
We then set

d
@ = 2 (ad(a(f))*.

=1
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This definition is independent of the choice of frame {f:}.
Using @ and G we define @(®), a new cross-section in 4 (H) by

G(@) = Qo @+ Qo Q.

Let R denote the curvature tensor of M. We use the convention
that for x, y&ET'(M)» and orthonormal, the sectional curvature,
k(x, v) of the plane section spanned by x and y satisfies k(x, y)
= — (R, 4%, ¥). By letting R operate on @ we will construct a new
cross-section, R(@), in A(H).

For x, yET(M)sny, Roy: T(M)ymy—T(M)samy is a skew symmetric
linear transformation. It induces:

Rey: N(H)»— N(H)s,
Rey: T(H),— T(H)n,
(Rivza w> = <R-'Mlz) w) 3w G N(H)h’
(Rot, w) = (Raydd(2), db(w)) 5, % € T(H)n

Then RY, and RZ, are skew symmetric.
Letey, -+ - ,ep,beaframein T (H). Let wE N(H)yand x, yE T (H)s.
We define the cross-section, R(®), in 4 (H):

2@ (Rave) (e3), 3) + 2(Q(Ryre) (e, #)
(R@@)(@), 3) = 2{-+(@(Rewed (2), 3) — K@) (e, Rew)
= (@ @) @), Reges) — (Q(w)(5), Rues)

In the above expression, which is independent of the choice of {e;} ,
we have sometimes identified points in T°(H); with points in T'(M)sm)-

E.g., Rﬁ,‘ =Rg¢(x),d¢(ec)°
Finally, we construct a third cross-section in 4(H) which exists
independently of @. For x&T(M)4m) let Vo(R) denote the standard
covariant derivative of the curvature tensor. We now define
R'€A(H)x:
» (Ve;(R)o;.ay, w)
(R (w) (%), ) = ‘Z (Ve (R) e w) ¢ *
]
+<Vw (R)c,-.zei, y)
ﬁ.Ei!ldMA 3.1. If d=n—p=1, (@) =||a||?a. If d=2, 05 (G(a), @)
=l el

LEmMMA 3.2. If M =S" then R(Q)=pQ and R'=0.
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4. Minimal varieties.

THEOREM 4.1. Let H be a C* manifold of dimension p, M a C*
Riemannian manifold of dimension n, and ¢: H—M an immersion.
Suppose the image of H in M is a minimal variety. Then the second
fundamental form, @, when regarded as a cross-section in the vector
bundle A(H) satisfies the equation:

4.1) Vi@ = — @(Q) + R(®@) + R'.

THEOREM 4.2. Let H be a C* p-dimensional manifold immersed in S*
as a minimal variety. Then the second fundamental form, G satisfies the
equation

(4.2) Vi@ = — &(@Q) + Q.

COROLLARY 4.1. Let H be a closed p-dimensional manifold immersed
in S* as a minimal variety. Then if at each point of H ||G||2<p, H is
totally geodesic, 1i.e., the image of H in S™ is the intersection of S with
a p-dimensional subspace of R+,

THEOREM 4.3. Let H be an immersed minimal variety of codimension
1 in S». Then the second fundamental form, @, satisfies the equation

(4.3) vie = (n — 1 —||@||»)ea.

Under the hypothesis of codimension 1 Formula (4.3) may be re-
written in a form which makes it subject to more careful analysis.
Let V denote the unit normal vector field to H, chosen to make the
orientation come out right. The second fundamental form, @, may
now be regarded as a real valued symmetric bilinear form B, defined by

B(x, y) = (@(V)(#), y).

THEOREM 4.4. Let H be an immersed minimal variety of codimension
1 in S». Let R denote the curvature of H with respect to the metric in-
herited from the immersion. Let ey, - - -, en—1 be a frame in T(H).
Then B satisfies the equation

n—1

(4.9) V2B(x, y) = — Z B(Eds-seia y) + B(es, R‘iv’y)'

t=1

Equation (4.4) is interesting because both sides are defined in-
trinsically in terms of the geometry on H inherited from the immer-
sion. The operator on the right-hand side is almost identical to the
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curvature operator on skew symmetric bilinear forms which appear as
the linear piece of the Laplace-Beltrami operator. Although it is
probably far from the best theorem, we can easily prove:

THEOREM 4.5. Let g denote the standard metric on SP. There exists
a neighborhood of g in the space of nonequivalent Riemannian structure
such that S? together with any metric g’ in this neighborhood cannot be
isometrically immersed in S™ as a minimal variety.

Finally, we will express Equation (4.4) as a first-order condition on B
and we will make the connection with holomorphic quadratic dif-
ferentials mentioned in §1.

THEOREM 4.6. Let B be a field of symmetric bilinear forms on a com-
pact Riemannian manifold, H. Suppose tr B=0. Then B satisfies
(4.4) if and only if B satisfies

(4.5) Va(B)(3, 2) = Vu(B)(x,2), V=,3,2& T(H)n

If dim H=2, B satisfies (4.5) and tr B=0 if and only if the form
Q(x) =B(x, x)—1B(x, j(x)) is a holomorphic quadratic differential
(J being the usual 90° rotation). How to relate the dimension of the
space of such forms on manifolds of higher dimension to some dif-
ferential or geometric invariants seems to be a good problem.

BIBLIOGRAPHY

1. F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and an
extension of Bernstein's theorem, Ann. of Math. 84 (1966), 277-292.

INsTITUTE FOR DEFENSE ANALYSES AND
THE UNIVERSITY OF PENNSYLVANIA



