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1. Introduction. In [ l ] Almgren considered the situation of a 
closed minimal variety if, of dimension 2 immersed in S3. He ob­
served that the second fundamental form, a real valued bilinear form 
on the tangent space to H, is in fact the real part of a holomorphic 
quadratic differential with respect to the conformai structure on H 
induced by the metric inherited from its immersion in 53 . He used 
this fact to conclude that S2 could not be immersed as a minimal vari­
ety in 5 3 unless it was already totally geodesic. 

I t turns out that under the most general circumstances the second 
fundamental form of a p-dim minimal subvariety of an w-dim Rie-
mannian manifold satisfies a natural second-order elliptic differential 
equation which generalizes the holomorphic condition mentioned 
above. In the case that the ambient manifold is Sn the equation may 
be used to show that a closed minimal subvariety of Sn, of arbitrary 
codimension, which does not twist too much is already totally geo­
desic. In a sense this theorem is analogous to Bernstein's theorem for 
complete minimal subvarieties in Rn. 

2. A standard operator. Let M be a Riemannian manifold2 of 
dimension n and V(M) a d-dimensional vector bundle over M. Sup­
pose the fibers of V(M) carry a euclidean inner product and suppose 
there is given a connection in V(M) which preserves this inner product. 
If W is a cross-section in V(M) and xÇzT{M)m> the tangent space to 
M a t m, we denote by VXW the covariant derivative of W in the x 
direction. VxW^V(M)m. 

Let x, yET(M)m. We define VXtVWG V(M) as follows. Let F be a 
vector field on M which extends y. We then set 

(2.1) VXtVW = VXVYW - VvxYW 

where Vx Y is ordinary covariant differentiation of a vector field on M 
with respect to the Riemannian connection. I t is easy to see that this 
definition is independent of the choice of F. 

Let eu • • • , en be an orthonormal basis of T(M)m. If W is a cross-
section in V(M) we define V2 W by 

1 Prepared with partial support from NSF GP 4503. 
8 All manifolds will be assumed to be orientable. 
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(2.2) VW = E V^TT. 

This definition of V2 is independent of the choice of frame ei, • • • , en. 
Thus, V2 is a second-order differential operator mapping the space of 
cross-sections of V(M) into itself. 

PROPOSITION 2.1. V2 is an elliptic operator. If M is compact we have 

(2.3) f (VW,Z) = f <TF,V2Z>, 
J M J M 

(2.4) f <VW, W) ^ 0, 

(2.5) | <VW, WO = 0 <=> VW = 0 
• ' M 

<^W is covariant constant. 

3. The second fundamental form. Let M be an w-dimensional 
C00 Riemannian manifold, H a ^-dimensional manifold, and <£: H-+M 
an immersion. We consider the following vector bundles over 
H: T(H) = the tangent bundle; N(H) = the normal bundle; S(H) = the 
bundle of symmetric linear transformations of T(H)h-*T(H)h; 
A(H) = Hom(N(H), S(H)). Each of these vector bundles has a 
natural euclidean inner product on its fibers, and each has a natural 
connection which preserves this inner product. 

The second fundamental form, d is a cross-section in A{H). That is, 
for w^N(H)hf &(w): T(H)h—>T(H)h is a symmetric linear trans­
formation. H is immersed as a minimal variety if and only if for each 
h£H and each w£N(H)h, tr a(w) = 0. 

Ofc gives rise to two natural linear maps at each point 

â:N(H)h-+N(H)h; a:S(H)h-*S(H)h 

defined as follows. Since N(H)h and S(H)h are euclidean we may de­
fine a* = transpose of a. a*: S(H)h-*N(H)h. We then set 

a = a* o et. 
Let/i , • • • , fd be an orthonormal basis for N(H)h, where d = n—p. 
We then set 

a = £ (ad(a(A)))2-
« - 1 
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This definition is independent of the choice of frame {ƒ*}. 
Using ö and 5 we define Cfc(a), a new cross-section in A{H) by 

ë(a) = aoà + aoa. 

Let R denote the curvature tensor of M. We use the convention 
that for x, yÇzT(M)m and orthonormal, the sectional curvature, 
k(x, y) of the plane section spanned by x and y satisfies k(x, y) 
= — (Rx,yX, y). By letting R operate on Ct we will construct a new 
cross-section, R(&), in A(H). 

For x, yÇzTiM)^), Rx,v: T{M)4>Ql,)-^T{M)<f>(jh) is a skew symmetric 
linear transformation. It induces: 

Rx,y:N(H)h-

RT
XtV: T(H)h-

N(H)h9 

(Rx,yzy w) = (RXtVz, w) z,wE N(H)hy 

(RÎtVz, w) = {RXtVd<i>(z), d4>{w)) z,wG T(H)h. 

Then 2& and S*, are skew symmetric. 
Let£i, • • • , ep be a frame in T(H)h. Let wÇzN(H)h and x, y £ T(H)h. 

We define the cross-section, i?(a), in A(H): 

<*(«)(»)(*), y) - E 
«• -1 

2(a(Rleiw)(ei), y) + 2<a(^w)(«d, *>] 

+ (a(ReiWei)(x)i y) - 2<a(w)(*), £?,.y> 

l -<a(w) (a) , JR^e,) - <a(w)(y), l£<rf<> J 

In the above expression, which is independent of the choice of {«<}, 
we have sometimes identified points in T(H)h with points in T(M)+(M. 

E . g . , Rxti^Râ4>(x)M(Hy 
Finally, we construct a third cross-section in A(H) which exists 

independently of G. For #£r(iW%(*) let VX(R) denote the standard 
covariant derivative of the curvature tensor. We now define 
R'eA(H)k'. 

WW^J-E 
»- i 

+<V«,(JR)i<.i*>w> 
l+<Vw(K)e.,*e<, y>J 

LEMMA 3.1. if d=n-p = i, a(a) = ||a||2a. if d^2, og(a(a), a) 
all alk 

LEMMA 3.2. If M=Sn then R(a)=pa and i?' = 0. 
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4. Minimal varieties. 

THEOREM 4.1. Let H be a C00 manifold of dimension p, M a C00 

Riemannian manifold of dimension n, and </>: H—*M an immersion. 
Suppose the image of H in M is a minimal variety. Then the second 
fundamental form, Q, when regarded as a cross-section in the vector 
bundle A(H) satisfies the equation: 

(4.1) v2a = - â(a) + R(a) + R'. 

THEOREM 4.2. Let H be a C°° p-dimensional manifold immersed in Sn 

as a minimal variety. Then the second fundamental form, & satisfies the 
equation 

(4.2) v2a = - a(a) + pa. 

COROLLARY 4.1. Let H be a closed p-dimensional manifold immersed 
in Sn as a minimal variety. Then if at each point of H || ®||2<£, H is 
totally geodesic, i.e., the image of H in Snis the intersection of Sn with 
a p-dimensional subspace of Rn+1. 

THEOREM 4.3. Let H be an immersed minimal variety of codimension 
1 in Sn. Then the second fundamental form, d, satisfies the equation 

(4.3) v2et = {n- l - | |a | |2)a. 

Under the hypothesis of codimension 1 Formula (4.3) may be re­
written in a form which makes it subject to more careful analysis. 
Let V denote the unit normal vector field to H, chosen to make the 
orientation come out right. The second fundamental form, &, may 
now be regarded as a real valued symmetric bilinear form Bt defined by 

B(x,y) = (a(V)(x),y). 

THEOREM 4.4. Let H be an immersed minimal variety of codimension 
1 in Sn. Let 3? denote the curvature of H with respect to the metric in­
herited from the immersion. Let e\, • • • , en-i be a frame in T(H)h. 
Then B satisfies the equation 

(4.4) V*B(x, y) - - £ B(ReitXeh y) + B(fi<, Rei,xy). 

Equation (4.4) is interesting because both sides are defined in­
trinsically in terms of the geometry on H inherited from the immer­
sion. The operator on the right-hand side is almost identical to the 
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curvature operator on skew symmetric bilinear forms which appear as 
the linear piece of the Laplace-Beltrami operator. Although it is 
probably far from the best theorem, we can easily prove: 

THEOREM 4.5. Let g denote the standard metric on Sp. There exists 
a neighborhood of g in the space of nonequivalent Riemannian structure 
such that Sp together with any metric g' in this neighborhood cannot be 
isometrically immersed in Sn as a minimal variety. 

Finally, we will express Equation (4.4) as a first-order condition on B 
and we will make the connection with holomorphic quadratic dif­
ferentials mentioned in §1. 

THEOREM 4.6. Let B be afield of symmetric bilinear forms on a com­
pact Riemannian manifold, H. Suppose tr JBs=0. Then B satisfies 
(4.4) if and only if B satisfies 

(4.5) V.(B)(y, z) = V„0B)(*, «), V*, y, z G T(H)h. 

If dim H= 2, B satisfies (4.5) and tr f* = 0 if and only if the form 
Q(x)—B(x, x)—iB(x, jix)) is a holomorphic quadratic differential 
( / being the usual 90° rotation). How to relate the dimension of the 
space of such forms on manifolds of higher dimension to some dif­
ferential or geometric invariants seems to be a good problem. 
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