A NOTE ON MINIMAL VARIETIES1

JAMES SIMONS

Communicated by Eugenio Calabi, January 4, 1967

1. Introduction. In [1] Almgren considered the situation of a closed minimal variety H, of dimension 2 immersed in S^3 . He observed that the second fundamental form, a real valued bilinear form on the tangent space to H, is in fact the real part of a holomorphic quadratic differential with respect to the conformal structure on H induced by the metric inherited from its immersion in S^3 . He used this fact to conclude that S^2 could not be immersed as a minimal variety in S^3 unless it was already totally geodesic.

It turns out that under the most general circumstances the second fundamental form of a p-dim minimal subvariety of an n-dim Riemannian manifold satisfies a natural second-order elliptic differential equation which generalizes the holomorphic condition mentioned above. In the case that the ambient manifold is S^n the equation may be used to show that a closed minimal subvariety of S^n , of arbitrary codimension, which does not twist too much is already totally geodesic. In a sense this theorem is analogous to Bernstein's theorem for complete minimal subvarieties in R^n .

2. A standard operator. Let M be a Riemannian manifold² of dimension n and V(M) a d-dimensional vector bundle over M. Suppose the fibers of V(M) carry a euclidean inner product and suppose there is given a connection in V(M) which preserves this inner product. If W is a cross-section in V(M) and $x \in T(M)_m$, the tangent space to M at m, we denote by $\nabla_x W$ the covariant derivative of W in the x direction. $\nabla_x W \in V(M)_m$.

Let $x, y \in T(M)_m$. We define $\nabla_{x,y} W \in V(M)$ as follows. Let Y be a vector field on M which extends y. We then set

$$\nabla_{x,y}W = \nabla_x\nabla_yW - \nabla_{\nabla_xy}W$$

where $\nabla_x Y$ is ordinary covariant differentiation of a vector field on M with respect to the Riemannian connection. It is easy to see that this definition is independent of the choice of Y.

Let e_1, \dots, e_n be an orthonormal basis of $T(M)_m$. If W is a cross-section in V(M) we define $\nabla^2 W$ by

¹ Prepared with partial support from NSF GP 4503.

² All manifolds will be assumed to be orientable.

(2.2)
$$\nabla^2 W = \sum_{i=1}^n \nabla_{e_i,e_i} W.$$

This definition of ∇^2 is independent of the choice of frame e_1, \dots, e_n . Thus, ∇^2 is a second-order differential operator mapping the space of cross-sections of V(M) into itself.

PROPOSITION 2.1. ∇^2 is an elliptic operator. If M is compact we have

(2.3)
$$\int_{M} \langle \nabla^{2}W, Z \rangle = \int_{M} \langle W, \nabla^{2}Z \rangle,$$

$$(2.4) \int_{M} \langle \nabla^{2} W, W \rangle \leq 0,$$

(2.5)
$$\int_{M} \langle \nabla^{2} W, W \rangle = 0 \Leftrightarrow \nabla^{2} W = 0$$

 \Leftrightarrow W is covariant constant.

3. The second fundamental form. Let M be an n-dimensional C^{∞} Riemannian manifold, H a p-dimensional manifold, and $\Phi: H \rightarrow M$ an immersion. We consider the following vector bundles over H: T(H) = the tangent bundle; N(H) = the normal bundle; S(H) = the bundle of symmetric linear transformations of $T(H)_h \rightarrow T(H)_h$; A(H) = Hom(N(H), S(H)). Each of these vector bundles has a natural euclidean inner product on its fibers, and each has a natural connection which preserves this inner product.

The second fundamental form. α is a cross-section in A(H). That is, for $w \in N(H)_h$, $\alpha(w) : T(H)_h \to T(H)_h$ is a symmetric linear transformation. H is immersed as a *minimal variety* if and only if for each $h \in H$ and each $w \in N(H)_h$, tr $\alpha(w) = 0$.

a gives rise to two natural linear maps at each point

$$\tilde{\mathfrak{A}}: N(H)_h \to N(H)_h; \qquad \mathfrak{A}: S(H)_h \to S(H)_h$$

defined as follows. Since $N(H)_h$ and $S(H)_h$ are euclidean we may define $\mathfrak{A}^* = \text{transpose}$ of \mathfrak{A} . $\mathfrak{A}^* : S(H)_h \to N(H)_h$. We then set

$$\tilde{\alpha} = \alpha^* \circ \alpha$$
.

Let f_1, \dots, f_d be an orthonormal basis for $N(H)_h$, where d=n-p. We then set

$$\mathbf{a} = \sum_{i=1}^{d} (\operatorname{ad}(\mathbf{a}(f_i)))^2.$$

This definition is independent of the choice of frame $\{f_i\}$. Using \mathbf{a} and $\tilde{\mathbf{a}}$ we define $\bar{\mathbf{a}}(\mathbf{a})$, a new cross-section in A(H) by

$$\overline{a}(a) = a \circ \tilde{a} + a \circ a.$$

Let R denote the curvature tensor of M. We use the convention that for x, $y \in T(M)_m$ and orthonormal, the sectional curvature, k(x, y) of the plane section spanned by x and y satisfies $k(x, y) = -\langle R_{x,y}x, y \rangle$. By letting R operate on α we will construct a new cross-section, $R(\alpha)$, in A(H).

For $x, y \in T(M)_{\phi(h)}$, $R_{x,y}$: $T(M)_{\phi(h)} \to T(M)_{\phi(h)}$ is a skew symmetric linear transformation. It induces:

$$egin{aligned} R_{x,y}^N\colon N(H)_h &
ightarrow N(H)_h, \ R_{x,y}^T\colon T(H)_h &
ightarrow T(H)_h, \ \langle R_{x,y}^Nz,w
angle &=\langle R_{x,y}z,w
angle &z,w \in N(H)_h, \ \langle R_{x,y}^Tz,w
angle &=\langle R_{x,y}d\phi(z),d\phi(w)
angle &z,w \in T(H)_h. \end{aligned}$$

Then $R_{x,y}^N$ and $R_{x,y}^T$ are skew symmetric.

Let e_1, \dots, e_p be a frame in $T(H)_h$. Let $w \in N(H)_h$ and $x, y \in T(H)_h$. We define the cross-section, $R(\alpha)$, in A(H):

$$\langle R(\mathbf{G})(w)(x), y \rangle = \sum_{i=1}^{p} \begin{cases} 2\langle \mathbf{G}(R_{x,e_{i}}^{N}w)(e_{i}), y \rangle + 2\langle \mathbf{G}(R_{y,e_{i}}^{N}w)(e_{i}), x \rangle \\ +\langle \mathbf{G}(R_{e_{i}w}^{N}e_{i})(x), y \rangle - 2\langle \mathbf{G}(w)(e_{i}), R_{e_{i}x}^{T}y \rangle \\ -\langle \mathbf{G}(w)(x), R_{e_{i}y}^{T}e_{i} \rangle - \langle \mathbf{G}(w)(y), R_{e_{i}x}^{T}e_{i} \rangle \end{cases}.$$

In the above expression, which is independent of the choice of $\{e_i\}$, we have sometimes identified points in $T(H)_h$ with points in $T(M)_{\phi(h)}$. E.g., $R_{x,e_i}^N = R_{d\phi(x),d\phi(e_i)}^N$.

Finally, we construct a third cross-section in A(H) which exists independently of α . For $x \in T(M)_{\phi(h)}$ let $\nabla_x(R)$ denote the standard covariant derivative of the curvature tensor. We now define $R' \in A(H)_h$:

$$\langle R'(w)(x), y \rangle = \sum_{i=1}^{p} \begin{cases} \langle \nabla_{e_i}(R)_{e_i,x}y, w \rangle \\ + \langle \nabla_{e_i}(R)_{e_i,y}x, w \rangle \\ + \langle \nabla_{w}(R)_{e_i,x}e_i, y \rangle \end{cases}.$$

Lemma 3.1. If d=n-p=1, $\overline{\alpha}(\alpha)=\|\alpha\|^2\alpha$. If $d\geq 2$, $0\leq \langle \overline{\alpha}(\alpha),\alpha\rangle \leq \|\alpha\|^4$.

LEMMA 3.2. If $M = S^n$ then $R(\alpha) = p\alpha$ and R' = 0.

4. Minimal varieties.

THEOREM 4.1. Let H be a C^{∞} manifold of dimension p, M a C^{∞} Riemannian manifold of dimension n, and ϕ : $H \rightarrow M$ an immersion. Suppose the image of H in M is a minimal variety. Then the second fundamental form, \mathfrak{A} , when regarded as a cross-section in the vector bundle A(H) satisfies the equation:

$$\nabla^2 \alpha = - \bar{\alpha}(\alpha) + R(\alpha) + R'.$$

THEOREM 4.2. Let H be a C^{∞} p-dimensional manifold immersed in S^{n} as a minimal variety. Then the second fundamental form, α satisfies the equation

$$\nabla^2 \alpha = -\bar{\alpha}(\alpha) + \rho \alpha.$$

COROLLARY 4.1. Let H be a closed p-dimensional manifold immersed in S^n as a minimal variety. Then if at each point of $H \|\alpha\|^2 < p$, H is totally geodesic, i.e., the image of H in S^n is the intersection of S^n with a p-dimensional subspace of R^{n+1} .

THEOREM 4.3. Let H be an immersed minimal variety of codimension 1 in S^n . Then the second fundamental form, Ω , satisfies the equation

(4.3)
$$\nabla^2 \alpha = (n - 1 - ||\alpha||^2) \alpha.$$

Under the hypothesis of codimension 1 Formula (4.3) may be rewritten in a form which makes it subject to more careful analysis. Let V denote the unit normal vector field to H, chosen to make the orientation come out right. The second fundamental form, Ω , may now be regarded as a real valued symmetric bilinear form B, defined by

$$B(x, y) = \langle \alpha(V)(x), y \rangle.$$

THEOREM 4.4. Let H be an immersed minimal variety of codimension 1 in S^n . Let \overline{R} denote the curvature of H with respect to the metric inherited from the immersion. Let e_1, \dots, e_{n-1} be a frame in $T(H)_h$. Then B satisfies the equation

(4.4)
$$\nabla^2 B(x, y) = -\sum_{i=1}^{n-1} B(\overline{R}_{e_i,x}e_i, y) + B(e_i, \overline{R}_{e_i,x}y).$$

Equation (4.4) is interesting because both sides are defined intrinsically in terms of the geometry on H inherited from the immersion. The operator on the right-hand side is almost identical to the

curvature operator on *skew symmetric* bilinear forms which appear as the linear piece of the Laplace-Beltrami operator. Although it is probably far from the best theorem, we can easily prove:

THEOREM 4.5. Let g denote the standard metric on S^p . There exists a neighborhood of g in the space of nonequivalent Riemannian structure such that S^p together with any metric g' in this neighborhood cannot be isometrically immersed in S^p as a minimal variety.

Finally, we will express Equation (4.4) as a first-order condition on B and we will make the connection with holomorphic quadratic differentials mentioned in $\S1$.

Theorem 4.6. Let B be a field of symmetric bilinear forms on a compact Riemannian manifold, H. Suppose $B \equiv 0$. Then B satisfies (4.4) if and only if B satisfies

$$(4.5) \nabla_x(B)(y,z) = \nabla_y(B)(x,z), \forall x, y, z \in T(H)_h.$$

If dim H=2, B satisfies (4.5) and tr B=0 if and only if the form Q(x)=B(x, x)-iB(x, j(x)) is a holomorphic quadratic differential (J being the usual 90° rotation). How to relate the dimension of the space of such forms on manifolds of higher dimension to some differential or geometric invariants seems to be a good problem.

BIBLIOGRAPHY

1. F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. 84 (1966), 277-292.

Institute For Defense Analyses and The University of Pennsylvania