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1. Let g1, g5, - + +, g» be positive numbers with D #.; gs=1. For
every sequence (X1, X2, * - -, X,) with all x,>0 and for every real 7,
consider the mean of order r, M.(x1, %2, + -, %), defined as
(>or_, @xf)Vr if 7520, and as J]P., «f if »=0. For given positive
%1, X3, * + + , X, it is known (see, e.g. [3, p. 17], or [11, p. 26]) that
M, (%1, %o, + + -, %) is strictly increasing with 7 (except when x;

=x, + + - =x,), and consequently if »<s, then
(1) 1= Ma(xl, X2y * * °, xn)/Mr(xla X2y * 7y %n),
(2) 0= MS(xI: Xy, vy Fn) — Mr(xlxx2: <y Ta).

2. A natural question to ask is, whether one can give upper bounds
for the right hand sides of (1) and (2) under, say, the hypothesis that
A=Zx;<B,j=1,2, .-, n, where 4 and B are constants (0<4 <B).
Such an upper bound for the ratio in (1) was given by Cargo and
Shisha in [4], a paper which served as a motivation and starting
point of a consideraple amount of further work by various authors.

3. The main purpose of the present note is to give an upper bound
for the difference in (2) under the restriction on the x; stated in §2.
As applications, we shall obtain a number of inequalities, including
“complements” to the classical inequalities of Cauchy and Hélder.
Full proofs omitted here are to be found in [15].

4. In this section, ¢1, ¢z, * * + , ¢ are fixed (though arbitrary) posi-

tive numbers with D #.; ¢:=1, and for every sequence (x1, %z, * - * , %)

with all x,>0 and every real 7, M,(x1, %2, - - -, %) is as in §1.
THEOREM 1. Let r, s, A, B be given reals (0<A<B, r<s), and

let I denote the m-dimensional cube {(xl, KXoy * v, %) ASxx =B,

k=1,2,.--, n} Then throughout I,

(3) MS(xlﬁ Xgy © 0y xn) - Mf(xl; Yoy * 00y xn) = A,

where A s

4) [6B*+ (1 —0@)4°]ts — [0B"+ (1 — O) Ar]Yr  ifrs £ 0,
[6B: + (1 — ) 4s]v/s — BPA™®  ifr =0,
and
328



DIFFERENCES OF MEANS 329

BlAY — [9B" + (1 — 0)Ar]tr  if s = 0.
0 is defined as follows. Let

h(x) = x's — (ax + D) witha = B-4 )
Bo — As
BsAr —_ BrAa

b=—---; ifrs # 0,
Ba —_— Ac
h(x) = x'ls — A(B/A) @491 (B—42) ifr =0,
and
h(x) = — xtlr + A(B/A)@4nIE—4 s =0,

Let J denote the open interval joining A® to B® if s#0, and let J = (B, A")
if s=0. Thereis an x* & J such that h(x) <h(x*) for every x (EJ, #£x*).
(Observe that if rs#0, then ax-+b>0 at the end points of J and, there-
fore, throughout J.) We set

§ = (x* — A7) /(B* — 4°)  if s %0,
§ = (x* — A7) /(B — A7)  ifs = 0.

Equality in (3) for a point (x1, %2, + + + , %a) 1 holds if and only if there
exists a subsequence (ki, kay - - -, kp) of (1, 2, - - -, n) such that
> 1 Qi =0, X, =B (m=1,2, -+, p), and x,=A4 for every k dis-
tinct from all ky,. Finally,if s =1, then x* is the unique solution of b’ (x) =0
n J.

and

5. Here is an outline of a proof of Theorem 1. Suppose rs 0. Then
[12] throughout (4, B),

r(x" — ax®* — b) > 0.
Let (%1, %2, * - -, %,) be a point of I. Then

{(£09)-o(£0) ] 0
k=1 k=1
M (%1, %2y * + + ) Xn) — Mo(21, %o, + + +, %)

(50" [o(£o)+ ]
= h( i qu,:).

k=1

and so,
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One shows that there is a unique point in the closure of J where 4 (x)
attains its maximum there, and this point, x*, belongs to J. Thus,

M(x1, 22y« + -, #n) — Mp(%1, %9, « * +, %n)
= h(x*)
= h(0B° + (1 — 0) 4°)
= [6B*+ (1 — ) 4°]1/e — [6B 4+ (1 — 9) Ar]iIr = A.

In case s=1, one can also prove the theorem by the method used
in [4] to obtain an upper bound for the right hand side of (1). Namely,
suppose #>1, 750, and set F(x1, %2, + + + , %n) =M, (%1, X2, * + + , Xn)
— M, (x1, %3, + + -, %a); one shows that a point of I where F attains its
maximum in [ must be a vertex of I. Thus, the last difference is
bounded in I by max{[xB'+(1—x)A*]!s— [xBr+(1—x)Ar]!":
0= xél} which equals A.

REMARK. If 20, s=1, then 6 of Theorem 1 is the unique solution
in (0, 1) of

,ys,__ ,Yr__l

1
[oGr — 1) + 1] @1 — oty — 1) + 1] e =

(y = B/A4).

6. Here are two examples.

ExAMmPLE 1. Letqy, qs, - - + , g be positive numbers with > 2_, gi=1,
let 0<A<B, and set y=B/A. Let A=x,<B, k=1,2,---, n By
Theorem 1 and by the preceding Remark,

n 1/2 n
(E qu:> — 2 g = [0B2 + (1 — 0) 42112 — [9B + (1 — 6) 4],
k=1 k=1
where 6 is the unique solution in (0, 1) of
= D¢ =) + 172 =~ (v — 1) =0.

A short calculation yields

n 2 1/2 n (B —_ A)2
5 — s —"" .
©) (g qu,,) E W= UB 1+ 4)

Equality holds in (5) if and only if there exists a subsequence
(P1, k2, - - -, Bp) of (1,2, - - -, m) such that

B+ 34

?
=" (= =Bm=1,2,---,9p),
Eqkm 4(B+A)( )a Xken (m ’ P)
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and x;=A4 for every k distinct from all &,
ExAamPLE 2, Let ¢1, @2, * * +, Qny 4, B, 7y, %1, X2, * * +, X, be as in
Example 1, By Theorem 1 and by the last Remark,

n n -1
> qutn — ( > qk/xk> SO0B+ (1 —60)4—[B1+ (1 —6)4A,
k=1 k=1
where 0 is the unique solution in (0, 1) of

y=1+ 0 =Dt~ 1) + 12 =0
Solving for 8 and substituting in the last inequality, one gets

n n -1

(6) ( 2 quk) - ( > Qk/xk> s (B2 — AR,

k=1 k=1

Equality holds in (6) if and only if there exists a subsequence

(1, Boy » + +, Bp) of (1,2, + + -, m) such that 3 2 _; gi,, = (1+y~12)-1,

xp,=B (m=1,2, -, p),and x,=4 for every k distinct from all k.
(6) can be obtained directly. For k=1, 2, « - - , n, we have,

% — (A + B) + ABap = (1 — A) (2 — B)ag <0,

G < (4 + B)g — Aqux;I-
So,

n n -1
( > quk) - ( > qemn 1)
k=1 k=1

n n -1
<4+ B- AB( Eqw?) - ( qux?)

k=1 k=1

n - 1/2 n 1 —1/272
= A-I—B—-[{ABEquk} - {qux,, } ] — 2(AB)12

k=1 k=1
<A+ B— 2(4B)'2
— (B1/2 —_— Al/2)2.
One can also derive from this proof the necessary and sufficient condi-

tion given above for equality in (6). (Compare the method of this
proof with Diaz and Metcalf [9, §2, Remark 3].)

7. Let 0<mu=<a; S My, 0<meZ0;5M,, j=1, 2,---, n, n21,
mame < M1M>, and let &, &, - - -, & be real numbers 0. Set g;
=q;b;8/ S cabi, x;=a;/b; (j=1, 2, - - -, n). Observe that

0 <mi/M: = x; < My/ma G=1,2,:--,n).
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By (6),

n n 2 n n
) [( > aisi) > a,-bjsf] - [( > ajb,-si) > bf-e?]

j=1 j=1 j=1 J=1

= [(My/ma) V12 — (my/ M) 1],

One obtains also a necessary and sufficient condition for equality in
(7). Since the left hand side of (7) is =20 by Cauchy’s inequality, (7)

may be considered a “complementary” inequality to Cauchy’s. Tak-
ing &1=§ - - - £,=1, we obtain

[(£)/ Eon]-[(5)/ B
< [(M3/mayts2 — o/ M)

8. We give now a complement to Hélder’s inequality.

THEOREM 2. Let p>1, p~i4qg =1, 0<A<B, and let ai, a,
‘', @n, by, by, -+, bs be positive numbers with A <a}/*/b{?<B
(G=1,2,:-+-,n). Set y=B/A. Then

n n 1/ n n 1/
Oé[(zdz})/ Eaibi] p‘[(Zdz‘bJ) ij:l ’
(8) J=1 =1 j=1 =1
< [6B» + (1 — ) A»]1» — [9B—2 + (1 — 6) A~9]-1/q,
where 0 is the unique solution in (0, 1) of
9@ = Dlaly> = 1) + 110+ plye = Dtye — 1) + 1]-0-1 = 0.

Egquality on the right in (8) holds if and only if there exisis a subsequence
(kly k2, tte ,kt) Of (1, 2, 17") such that (Z:n-l akmbkm)/z.;‘-l a’jbi=0:
a*/b?=B (m=1, 2, -, 1), and a}/*/by?=A for every k distinct
from all k. Equality on the left in (8) holds if and only if all the ratios
ayt/b¥? are equal.

Indeed, if we take in Theorem 1, r=—gq, s=p, g;=a,b;/ > o, abs,
x;=al'/b¥? (j=1, 2, - - -, m), we have by (3),

(9) 0= Mp(xh Xy * 0 0y xﬂ) - M—q<xla Xy * * 0y xn) s A

Equality on the left holds if and only if all the x; are equal. The dif-
ference in (9) equals the middle member of (8). The number A, by
(4) and by the Remark in §5, is the right hand member of (8). The
necessary and sufficient condition in Theorem 2 for equality on the
right in (8) follows, too, from Theorem 1. The inequality on the left
in (8) is, of course, just Hoslder’s inequality, and the condition given
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for equality there, is just the familiar condition for equality in
Hélder's inequality.

9. A number of matrix inequalities follow from Theorems 1 and 2.
For these inequalities the reader is referred to [15]. For corresponding
Hilbert space in inequalities, see [14].
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