CENTRAL IDEMPOTENTS IN GROUP ALGEBRAS

BY DANIEL RIDER¹

Communicated by E. Hewitt, June 27, 1966

1. **Introduction.** The group algebra $L^1(G)$ of a group G consists of all complex functions f on G which have finite norm:

$$||f|| = \sum_{x \in G} |f(x)| < \infty.$$

Multiplication is given by convolution:

$$f*g(x) = \sum_{y \in G} f(xy^{-1})g(y).$$

A function $f \in L^1(G)$ is an idempotent if f * f = f; it is central if f(xy) = f(yx) for all $x, y \in G$. The support of f is the set of x for which $f(x) \neq 0$. The support group of f is the subgroup generated by the support of f.

The idempotents on abelian groups have been completely characterized [1], [2]; in particular they have finite support groups. Rudin [3] gives examples of noncentral idempotents on nonabelian groups which have infinite support and, a fortiori, infinite support groups.

The purpose of this paper is to answer affirmatively the question raised [3], [4] as to whether or not central idempotents have finite support groups.

THEOREM. The support group of a central idempotent is finite.

2. **Proof of the theorem.** Let f be a central idempotent on G. We can assume that G is the support group of f.

If G' is the commutator subgroup of G then it follows [4, Theorem 2.2] that G' has finite index in G. We will show that Z = the center of G also has finite index in G. But this implies that G' is finite (see, for example, [5, Theorem 15.1.13]) so that G must also be finite.

Let $S = \{x_1, x_2, \dots \}$ be the support of f. Since f is central and has finite norm, $\{gx_ig^{-1}: g \in G\}$ is finite for each x_i so that each x_i commutes with the elements of a subgroup of finite index. Let H_n be the normal subgroup generated by x_1, x_2, \dots, x_n and let Z_n be the ele-

¹ This research was supported in part by Air Force Office of Scientific Research Grant A-AFOSR 335-63.

ments of G which commute with the elements of H_n . Z_n is normal and since H_n is generated by finitely many elements of S it follows that Z_n has finite index.

Choose n_1 so large that

$$(1) \sum_{x \in H_{n_1}} |f(x)| < 1/2$$

and let $H = H_{n_1}$. We divide the remainder of the proof into two cases.

Case I. Assume $HZ_n = G$ for all $n \ge n_1$. Let $x \in Z_{n_1}$. Then x commutes with the elements of H. Now $x \in H_n$ for all but finitely many n so that x commutes with the elements of Z_n for some $n \ge n_1$. Hence $x \in Z$ so that $Z = Z_{n_1}$ and thus Z has finite index.

Case II. Assume $HZ_n \neq G$ for some $n \geq n_1$. Now HZ_n is a proper normal subgroup of G of finite index. Thus there is a finite, nontrivial, irreducible unitary representation T of G which is constant on HZ_n . We will show that this is not possible.

Let U be any irreducible representation of G into the unitary operators on some Hilbert space K. U gives a representation of $L^1(G)$ and since f is central and idempotent

$$Uf = \sum_{x \in G} f(x^{-1})U(x) = \delta(U)E$$

where E is the identity operator on K and $\delta(U) = 1$ or 0.

Let K_0 be the (finite dimensional) Hilbert space on which the T(x) $(x \in G)$ act. T(x) = I, the identity operator, for $x \in H$.

Consider the tensor product of U and T acting on f:

$$(U \otimes T)f = \sum_{x \in G} f(x^{-1})(U(x) \otimes T(x))$$

$$= \sum_{x \in G} f(x^{-1})(U(x) \otimes I)$$

$$+ \sum_{x \notin H} f(x^{-1})(U(x) \otimes T(x) - U(x) \otimes I).$$

Thus, since U(x) and T(x) have unit norm,

$$\|(U \otimes T)f - \delta(U)(E \otimes I)\| \leq \sum_{x \in H} |f(x^{-1})| \cdot 2.$$

Since $(U \otimes T)f$ is idempotent and the norm of the difference of distinct commuting idempotents is at least 1 it follows from (1) that

(2)
$$(U \otimes T)f = \delta(U)(E \otimes I) = Uf \otimes I.$$

Let e_1, e_2, \dots, e_d be an orthonormal basis for K_0 and let X be the character afforded by T:

$$X(x) = \sum_{t=1}^{d} \langle T(x)e_t, e_t \rangle \qquad (x \in G).$$

Let $f^*(x) = f(x)X(x^{-1})$, $f^* \in L^1(G)$. If $a, b \in K$ then it follows from (2) that

$$\langle Uf^*a, b \rangle = \sum_{x \in G} f(x^{-1}) \sum_{t=1}^{d} \langle T(x)e_t, e_t \rangle \langle U(x)a, b \rangle$$

$$= \sum_{t=1}^{d} \sum_{x \in G} f(x^{-1}) \langle (T(x) \otimes U(x))a \otimes e_t, b \otimes e_t \rangle$$

$$= \sum_{t=1}^{d} \langle (T \otimes U)fa \otimes e_t, b \otimes e_t \rangle$$

$$= d \langle Ufa, b \rangle.$$

Hence $Uf^*=dUf=Udf$ for every irreducible representation of G so that $f^*(x)=df(x)$ for $x\in G$. Now this implies that $X(x^{-1})=d$, and hence that T(x)=I, for $x\in S$, the support of f. Thus T(x)=I for all $x\in G$ which is a contradiction.

References

- 1. P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
- 2. Walter Rudin, Idempotent measures on abelian groups, Pacific J. Math. 9 (1959), 195-209.
- 3. ——, Idempotents in group algebras, Bull. Amer. Math. Soc. 69 (1963), 224-227.
- 4. Walter Rudin and Hans Schneider, *Idempotents in group rings*, Duke Math. J. 31 (1964) 585-602
 - 5. W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY