
APPLICATIONS TO ANALYSIS OF A TOPOLOGICAL 
DEFINITION OF SMALLNESS OF A SET 

BY J. L. DOOB 

1. Introduction. In this paper a certain definition of smallness of a 
set in a topological space is applied to various problems in measure 
theory and potential theory. The small sets are necessarily countable 
if the space has a countable basis but the topological spaces in the 
applications will not have countable bases, and in fact the main point 
in the applications will be to verify that these spaces have a much 
weaker property, a weakening of the Lindelof property: an arbitrary 
union of open sets is to be equal to a countable subunion, up to a 
small set. This property and its implications are discussed in the next 
section. In §3 an abstract mechanism is set up to facilitate proofs 
that a given topological space has a weak Lindelof property. In §4 
it is shown how any Radon measure v on Euclidean space determines 
a topology on the space, going back, if the measure is Lebesgue mea­
sure and the dimensionality 1, to Denjoy's discussion of approximately 
continuous functions. I t is shown that in this topology Euclidean 
space has a weak Lindelof property. In this application the class of 
small sets is the class of sets of v measure 0. After a review of the 
fine topology of potential theory from a point of view which illustrates 
the role of this topology in the fundamental convergence theorem of 
potential theory and in the usual smoothing operations, it is shown 
that in a rather general probabilistic framework the space of proba­
bilistic potential theory, in the fine topology, has a weak Lindelof 
property. The small sets in the classical case are the polar sets, in the 
general case are the semipolar sets, under some restrictions on the 
probabilistic context. The general theorems on lower envelopes of 
various classes of upper semicontinuous functions on any space with 
a weak Lindelof property yield new results and unify and generalize 
old ones. 

In all applications, a weakened Lindelof property makes it possible 
to reduce certain problems involving lower envelopes of families of 
upper semicontinuous functions, in particular (by way of indicator 
functions) intersections of families of closed sets, to problems involv­
ing countable families. For example, in the specialization to classical 
potential theory, among other results it is shown that if A-**i(A) is 
a function from subsets of the given space to the extended reals, with 
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certain properties enjoyed for example by the capacity of A, and 
{Ft, (t(ET)} is a decreasingly directed class of fine closed sets, then 
7 ( 0 1 F«)=inf<7(F<). References to related work of Choquet, Getoor, 
Brelot will be made below. 

2. The quasiLindelöf property. Let R be a Hausdorff space. All 
functions on R will be to the extended reals. If u is any such function, 
define u' as the limit superior function of u, that is, the function 
defined by 

w'(£) — lim sup u(ri) 

except that if £ is an isolated point of i?, u'{%) =u(£). (The limit con­
cept used here does not involve the value of the function at the point 
of approach.) The function u is upper semicontinuous if and only if 
u^u'. For any function u, uf is upper semicontinuous. If p is a 
countable ordinal u^ is defined as u' if p = 1 and if w(<r) is defined for 
a <p , u{p) is defined as (u^~l))r if p is not a limit ordinal, as lim,+p u(<r) 
if p is a limit ordinal. If A is a subset of JR, A1 is defined as the union of 
the set of points of A which are isolated points of R and the set of 
limit points of A, so that if IB is the indicator function of a set B, 
IB' = (IB)'\ A ( P ) is then defined by transfini te induction in the obvious 
way for p a countable ordinal or equivalently defined as the set for 
which /A(P) = ( / ^ ) ( P ) . We shall use the fact, easily proved by trans-
finite induction, that for upper semicontinuous u and every countable 
ordinal p, 

(2.1) { ? : w ( Ö è f } ( / , ) C U ^ 0 ^ ) è r } C { È : « ( Ö è *}('> iis<r. 

DEFINITION. A subset of R will be called weakly quasinull if there is 
an upper semicontinuous function u such that u>u' on A\ if u' is 
continuous A will be called quasinull. A property will be said to hold 
[weakly] quasieverywhere if it holds except on a [weakly] quasinull set. 

Every quasinull set is weakly quasinull and a subset of a set of either 
type is of the same type. A set of either type contains no isolated 
point of R. I t is no restriction to suppose that u in the definition just 
given has its range in an arbitrary interval. The following assertions 
contain useful further details. 

(a) A countable union of quasinull or weakly quasinull sets is of the 
same type. To see this choose un upper semicontinuous in such a way 
that un>Un on the nth set, and that 0^ww^2"~n. Then if u= ^2urf 

u>u' on the union of the sets and uf is continuous if each ul is. 
(b) For arbitrary u on R, the set where u>u' is weakly quasinull and 



i966] SMALLNESS OF A SET 581 

is quasinuU if u' is continuous. To see this let 2/ = max[w, u']. Then 
v' = u' and v is upper semicontinuous. Moreover 

so that the set on the left is weakly quasinuU, quasinuU if u' is con­
tinuous, as asserted. In particular, applying the assertion to indicator 
functions of sets, if A is an arbitrary set A —AC\Af is weakly quasi-
null, and is quasinuU if A' is empty. 

(c) A set is weakly quasinuU [quasinuU] if and only if it contains no 
isolated point of R and is a countable union of isolated sets [sets with no 
limit points]. In fact by (a) and (b) a set with the stated property is 
weakly quasinuU or quasinuU. Conversely suppose that A is weakly 
quasinuU, say 

AC {*: «ft) >«'(*)} 
where u is upper semicontinuous. Then A contains no isolated point 
of R and 

A = U A H {{: «({) è b > a à *'(©} 
a, b 

where a, b run through the rationals. Each brace is an isolated set so 
A is a countable union of isolated sets. If A is even quasinuU we can 
suppose that u' is continuous and in this case each brace is a set with 
no limit points, so A is a countable union of such sets. 

Note that if BC\B' = 0yB = C- C', where C=B\JB', so that every 
weakly quasinuU set can be expressed as a countable union of sets of 
the form C—C with C closed. 

DEFINITION. A topological space will be said to have the [weak] quasi-
Lindelof property if every union of open sets is equal, up to a [weakly] 
quasinuU set to a countable subunion. If the discrepancy can be made 
a set A with [AC\A(n) = 0] A<n) = 0 , the space will be said to have the 
[weak] quasiLindelöf <n) property. 

The index n in this definition can be any countable ordinal. 
If a space has the [weak] quasiLindelöf(m) property it has the 

[weak] quasiLindelöf(n) property for n>m and the [weak] quasi-
Lindelöf property. A trivial covering argument shows that if R has 
the quasiLindelöf property a weakly quasinuU set is the union of a 
countable set containing no isolated points of R and a quasinuU set. 
I t follows that if R has the quasiLindelöf property every weakly 
quasinuU set is quasinuU. 

LEMMA 2A. A space has the weak quasiLindelöf^ property if and 
only if whenever F is the intersection of a family of closed sets there is an 
intersection F«> of a countable subfamily such that F^CFQF^. 
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The relation FCZF^ is of course trivial: only the left half of the in­
clusion relation is significant. The dual version of this result, obtained 
by complementation, makes it clearer that this lemma sharpens the 
weak quasiLindelöf(w) property: according to the lemma a space has 
the weak quasiLindelöf(w) property if and only if whenever G is the 
union of a family of open sets there is a union G^ (the complement 
of Fw) of a countable subfamily such that GooCGC(n)Goo. Here a)H 
for any open set H is the union of H with those isolated points of its 
complement which are not isolated points of the space, ( 2 ) i J= (1 )( (1)iî) 
and so on. The condition of the lemma is sufficient because under this 
condition if A = G — G*, = Fw — F it follows that 

A r\ A(n) CAr\F™CAr\F = 0. 

To prove that the condition of the lemma is necessary suppose that 
the space has the weak quasiLindelöf(n) property, so that there is a 
countable intersection F» with (F» — F)r\(F«-F)™ = 0. Then, de­
noting complementation by ~, 

F(: } C ( F . - F)(w) U / } C (F. - F)~ U Fin) CF^F 

so F^CF (because F ( * ) nF o o = 0 ) as was to be proved. 
If the space has the quasiLindelöf(w) property, Fw can be chosen as 

stated in the lemma and in addition so that (Fo o--F) ( n ) = 0 . The 
latter relation implies (but is not implied by) the equality F ("} = F ( n ) . 

THEOREM 2.1.-4 space has the weak quasiLindelöfin) property if and 
only if whenever u is the lower envelope of a family of upper semicontinu-
ous functions there is a countable subfamily with lower envelope «„ such 
that u^^u^Uoo. A space has the [weak] quasiLindelöf property if and 
only if when u is as above there is a countable subfamily with lower en­
velope Woo such that u^ — u [weakly] quasieverywhere. 

Note that u^ — u^ weakly quasievery where, quasieverywhere if 
the space has the quasiLindelöf property. Since an upper semicon-
tinuous function ƒ on a completely regular space is the lower envelope 
of the class of continuous functions j ^ / , Theorem 2.1 implies that if 
R is completely regular and has the [weak] quasiLindelöf property 
every upper semicontinuous function is the [weakly] quasievery­
where limit of a decreasing sequence of continuous functions. 

If the functions in the theorem are indicator functions of closed 
sets the first part of the theorem reduces to the lemma, so it is suffi­
cient to prove that the condition of the lemma implies that of the 
theorem. Suppose then that a family of upper semicontinuous func-
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tions is given, with lower envelope u. Applying the lemma, choose a 
countable subfamily, whose lower envelope u* satisfies the condition 

(2.2) { f c i a ö M ^ C {*:«(€) M 
for all rational s. I t is sufficient to prove that u^ ^u. Now accord­
ing to (2.1) 

(2.3) {*: u:\0 è r } C {J: ««(Ö ^ *} ™ ü s < r. 

If u$(Ç) = a , and if r <a, £ is in the set on the left side of (2.3), there­
fore in the set on the right side of (2.2) for s<r. Hence u(Ç) ̂ cc, so 
u$£*u, as was to be proved. If the space has the [weak] quasi-
Lindelöf property and if u is the lower envelope of a family of upper 
semicontinuous functions then, using the complementary version of 
the quasiLindelöf property, there is a countable subfamily, with 
lower envelope &«,, such that simultaneously for all rational r the 
difference 

{£:*/oo(Ö â r} - {i:u(Q ^ r} 

is [weakly] quasinuU. Neglecting a [weakly] quasinuU set this differ­
ence is empty simultaneously for all real r, so u00 = u off this [weakly] 
quasinuU set. Conversely if the condition of the second part of the 
theorem is satisfied (even only for indicator functions of closed sets) 
it is obvious that R has the [weak] quasiLindelöf property. 

If the space has the quasiLindelöf(n) property, uw can be chosen 
as in the theorem and in addition so that ^ï)==w(w), but the validity 
of this condition is not sufficient to yield the quasiLindelöf(n) prop­
erty. 

The class B of Borel subsets of R is defined as the Borel field gener­
ated by the class of closed sets. Since every weak quasinuU set is a 
countable union of sets A—A' with A closed, weakly quasinuU sets 
are Borel sets. 

DEFINITION. If y is an increasing function from a class of Borel 
measurable functions to the extended reals, y will be called a [weak] 
quasicapacity if the following conditions are satisfied. 

(i) If Ui>u2> • • • are upper semicontinuous functions in the do­
main of 7 , & = limn.»eo Un is in the domain, and y{u) =limnH.co7(wn) if 
the latter limit is not + <*>. 

(ii) If u is in the domain of y and if v^u with equality [weakly] 
quasieverywhere then v is in the domain and y(u) =y(v). 

If the space has the quasiLindelöf property a quasicapacity is a 
weak quasicapacity. If the domain of 7 is a class of indicator func-
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tions of sets we shall write 7^4) instead of 7(iU). Every measure on 
B which vanishes on [weakly] quasinull sets is a [weak] quasi-
capacity. 

THEOREM 2.2. If R has the [weak] quasiLindelöf property, if 
{utl t(ÇzT)} is a generalized decreasing sequence (=directed decreasing 

family) of upper semicontinuous functions with limit u, and if every u% 
is in the domain of a [weak] quasicapacity y then u is in the domain of 
7, and y(u) =lim« y(ut) whenever the limit is not + « . 

In fact the quasiLindelöf property (or weak one, as the case may 
be) reduces this theorem to the case of ordinary sequences, for which 
the desired property is part of the definition of a quasicapacity. 

Let ix be a measure whose domain includes B and suppose that 
/x = ^Mn is the sum of countably many finite measures. Then there 
is a weakly quasinull set A 0 such that /x vanishes on weakly quasinull 
subsets of R —A0. QjLn(Ao) maximizes /xn(5) for B weakly quasinull.) 
With this definition of A0, /x can be written as the sum of two mea­
sures, 

n(A) = n(A C\{R- A,)) + p(A C\ AQ), 

the first vanishing on every weakly quasinull set, the second sup­
ported by a weakly quasinull set. The decomposition is unique, al­
though Ao is not. There is a corresponding decomposition if aweakly n 

is omitted throughout. The following theorem shows that the first 
component has a minimal closed support, uniquely determined by /x 
since the first component is. 

THEOREM 2.3. Let R have the [weak] quasiLindelöf property and let /x 
be a measure on B which is the sum of countably many finite measures 
and which vanishes on [weakly] quasinull sets. Then there is a smallest 
closed support F of /x, and F= F'. 

Let JF be the intersection of the class of closed supports of F. Ac­
cording to Theorem 2.1 if R has the [weak] quasiLindelöf property 
there is a countable subclass with intersection say F«> such that 
Fa — Fis [weakly] quasinull. Since F^ is a support of /x, F is also, so 
F is the smallest closed support. Since F' C.F and the difference is 
weakly quasinull, quasinull if R has the quasiLindelöf property, Ff 

is also a closed support, so Ff = F. 
If /x is replaced by any family of measures this argument shows 

that there is a smallest closed set which is simultaneously a support 
for every measure in the family. 
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THEOREM 2.4. Suppose that R has the [weak] quasiLindelöf prop­
erty, let fu ƒ2 be functions from R to the extended reals, with fi â ƒ/ and 
let 5ft be a class of subsets of R, containing the [weakly] quasinull sets 
and containing the countable unions of its members. Then the lower en­
velope u of the class T of upper semicontinuous f unctions è / i on R, and 
also è / 2 neglecting a set in 5ft, is in I \ and u = u'. 

If vÇzT, v'ÇzT also, because v^fi implies that v' j^/i è/i , and v^ft 
neglecting an 5ft set implies the same for vf. If the lower envelope u 
is in r , u = u' because u'ÇY and uf^u. The function u is trivially 
upper semicontinuous and è/i . Let u* be the lower envelope of a 
countable subclass of T chosen so that u^ — u [weakly] quasievery-
where. Then uM is in T so u is also, as was to be proved. 

Note that Theorem 2.3 is a special case of Theorem 2.4. In fact if 
jfi = 0 and f2 = 1 and if 5ft is the class of sets of p measure 0 the min­
imizing function u of Theorem 2.4 is easily seen to be the indicator 
function of the minimal closed support of /A. 

3. Axioms for lower envelopes. The partial orders used below are 
supposed transitive and reflexive. If X is a partially ordered set, a 
subset A may or may not have an order infimum, and there may be 
more than one. An element will be called a countable infimum of A 
if it is an infimum both of A and of some countable subset of A. 

In many contexts the following axioms are satisfied. 
Ai. r is a distinguished family of functions from a set R to the ex­

tended reals; Y contains the lower envelope of every countable sub­
family. 

A2. u—>u* is a transformation from T into the class of functions 
from R into the extended reals, satisfying the conditions 

u* ^ u, 

u\ ^ U2 implies that u* ^ w2*. 

Az. If To is a subfamily of I \ with lower envelope u, there is a 
countable subfamily of T0 with lower envelope u* satisfying u^^u 

The fact that u^u* is trivial even without the axiom. If Az is 
satisfied whenever T0 is a directed decreasing family it is satisfied for 
all T0. If the functions involved are all indicator functions of sets we 
shall write B* for the set whose indicator function is 1% and I \ To 
will be taken as classes of sets. 

THEOREM 3.1. Let X be a partially ordered space under <g and sup­
pose that every directed decreasing subset of X has a countable infimum. 
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Let It be the space of vectors with some countable number of X-valued 
components. Suppose that A\ and A^ are satisfied and that there is an 
increasing function C from T into Jt (ordered componentwise) with the 
property that C(u)<&C(v) implies that u*^v*. Then Az is satisfied. 

I t is sufficient to prove the theorem for X = Jt, that is in the one 
dimensional case, because in the order described Jt actually has the 
very properties demanded of X. The phraseology of the theorem was 
chosen to make it easier to apply. In the one dimensional case a 
directed subfamily T0 of T maps under u—>C(u) into a directed subset 
of X. Suppose that infn C(un) is a countable infimum of the latter 
subset, and that uw is the lower envelope of the un sequence. Then 
Uoo is in T and C(u^) ^ C(v) for every v in To, souZ^v*Sv for every v 
in TV We conclude that uZ 'è.u, thus obtaining the non trivial half of 
Az. 

4. Application to measures on Euclidean space. Let R be an open 
subset of a Euclidean space and let v be a completed Radon measure 
of subsets of R. Define the v topology by the convention that J is a 
v limit point of a set A not containing £ if for every v measurable 
superset B of A 

v(B r\ I) 
(4.1) Km sup > 0. 

I v(I) 

Here J is a member of a family of sets, each containing £, and the 
limit superior is taken as the diameter of I shrinks to 0. For each £ 
the family of sets I is to have the property that the fundamental de­
rivative theorem is valid: when C is v measurable, limj v(CC\I)/v(I) 
= 1 a t v almost every point £ of C when I shrinks to £ in the pre­
scribed family. We assume that v and the / family have the property 
that, for each £, p(I)>0 for all I in the prescribed family. We thus 
consider only measures which are strictly positive on nonempty 
(Euclidean) open subsets of R. The v isolated points of R are the 
points of strictly positive v measure. For example, if v is Lebesgue 
measure the J family for £ can be the family of intervals containing 
£ and with edges parallel to the coordinate axes. In this case what is 
involved is the strong derivative [ l0] . For general v (assigning strictly 
positive measure to nonempty Euclidean open sets) i" can range 
through the balls or cubes with center £ or more generally through the 
sets of a Morse star blanket [9]. 

Specializations and generalizations of this topology have been dis­
cussed by many authors since the introduction by Den joy of approxi-



i966J SMALLNESS OF A SET 587 

mately continuous functions, recently for example by Goffman, 
Neugebauer and Nishiura [4] and by Zink [ i l ] . Applying the density 
theorem, v almost every point of a set'is either a v limit point of the 
set or a v isolated point of R. If A is v measurable its v closure and its 
v interior differ from A by sets of v measure 0. The set of v limit points 
of an arbitrary set is the same as that of any v measure cover of the 
set. Thus the v closed sets and hence the v Borel sets are v measurable. 
Every v weakly quasinull set is v quasinull and a set is v quasinull 
if and only if it is of v measure 0. Let u' be the limit superior function 
of u in the v topology and define A' correspondingly for the set A. 

THEOREM 4.1. The space R in the v topology has the quasiLindelofa) 

property. 

Since the v weakly quasinull sets are v quasinull it is sufficient to 
prove tha t this property is valid using the criterion of Lemma 2.1. 
Let r = r 0 be a family of v closed sets with intersection F. In apply­
ing Lemma 2.1 it is no restriction to assume that To contains the 
countable intersections of its members. We shall apply Theorem 3.1 
to show that a set F^ exists as described in the lemma with » = 1. We 
use the set version of the axioms A\, A2, A3, defining A* as A1. Let X 
be the set of extended real numbers with the usual order and if G is 
a finite union of sets of a countable basis for the topology of R and 
if A is v closed define C0(A) =v{GC\A). If C0(A) SCG(B) for every 
G, A1 C.B'. Thus the hypotheses of the set version of Theorem 3.1 are 
satisfied, with C(A) the vector with components {CG(A)\, as was 
to be proved. I t is instructive to see what changes would be made if 
the criterion of Theorem 2.1 instead of Lemma 2.1 were to be used. 
In this application of Theorem 3.1, r = r 0 is a family of upper semi-
continuous functions, u* = u', X is the space of extended real valued 
monotone nondecreasing left continuous functions on [0, <*> ) ordered 
by pointwise inequality. If u is in T and G is as above CQ(U) is the 
element of X which at 5 has the value v{%: §£(2, u(tj) ^s}. 

As an example of the interpretation in the present context of the 
theorems in §2 we apply Theorem 2.3, obtaining: if JX is a Radon mea­
sure absolutely continuous with respect to v there is a smallest v closed 
set which supports /z. (If h is the Radon-Nikodym derivative dfx/dv, 
this smallest support is the v closure of the subset of R! where h is 
strictly positive.) As a second example let v be Lebesgue measure and 
define the v topology with I in (4.1) a cube with center £. Let w b e a 
Lebesgue measurable function. Then it is approximately continuous 
almost everywhere so it is v continuous almost everywhere, hence 
coincides almost everywhere with a v upper semicontinuous function 
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u\. Goffman, Nishiura and Neugebauer [4] proved that in this topol­
ogy the space is completely regular and it therefore follows from the 
quasiLindelöf property (see the remarks after the statement of Theo­
rem 2.1) that U\ and therefore also u are the almost everywhere limit 
of a decreasing sequence of v continuous functions. The latter result 
is due to Zink [ i l ] . 

5. The fine topology in potential theory—classical case. The defini­
tions in §2 were suggested by the properties of the fine topology of 
potential theory. In the classical case this topology on a Green space 
(the Green space hypothesis that the space supports a nonconstant 
positive superharmonic function is unnecessary if minor modifica­
tions are made below) is defined as the coarsest making superhar­
monic functions continuous. Concepts relative to the fine topology 
will be identified by the qualifier "fine." To avoid trivial special re­
marks we suppose that R has no points at infinity if the dimensional­
ity exceeds 2. (Such points would have to be treated like isolated 
points. Since no point of the space is a limit point of the set of those 
points nothing is lost for our purposes by excluding them.) The fine 
limit superior function of a function u will be denoted by uf and if 
A is a set A' is defined correspondingly. No point of R is fine isolated. 
A set is polar, that is, of zero capacity if and only if it has no fine 
limit points, equivalently if and only if it is fine isolated. A countable 
union of polar sets is polar. Thus the classes of fine weakly quasinull 
and fine quasinull sets coincide with the class of polar sets. "Fine 
weakly quasieverywhere" and "fine quasie very where" both reduce to 
"except for a polar set" which is exactly the meaning of "quasievery-
where" in classical potential theory and we shall therefore use the 
latter terminology in this section. 

If u is a function from R to the extended reals, u(2)=u'. In fact 
replacing u by max[w, u'] if necessary, we can suppose that u is 
uppersemicontinuous. With this hypothesis u — u' quasieverywhere 
and a polar set has no fine limit points so u and u' must have the 
same fine limit superior at every point. Specializing to indicator func­
tions we deduce that A^2)=Af: the class of fine limit points of a set 
is fine perfect. 

Let T be a family of superharmonic functions, bounded locally from 
below, with lower envelope u. Then u and u' are fine upper semicon-
tinuous, u'ï>u, and there is equality quasievery where. According to 
the fundamental convergence theorem of classical potential theory, 
if a function u\ is defined as the minimum of u and its limit inferior 
function in the ordinary topology, u\ is superharmonic and u = ui 
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quasieverywhere. The function u\ is a smoothed version of u, and, 
trivially, u' = u{ =Ui. Thus u1 is identified with u\. A corresponding 
identification will be stressed in the next section in the context of a 
general potential theory in which the analogues of superharmonic 
functions need not be lower semicontinuous and in which the anal­
ogous smoothing is defined differently. 

Choquet [2] proved that every fine closed set is the union of a pair 
of sets of which the first is closed and the second has arbitrarily small 
capacity. [He does not state this result explicitly but it is contained 
in the proof of his Theorem 2 for the special case when his given set 
X is fine closed if one replaces the first set X\ of his decomposition by 
its closure.] It follows that every fine closed set is the union of an 
F9 set and a polar set. Using the fact that every polar set is a subset 
of a Gs polar set it follows easily that every fine Borel set is the union 
of a Borel set and a polar set. Thus a completed Radon measure 
which vanishes on polar sets has the fine Borel sets in its domain of 
definition. 

6. The fine topology in potential theory—probabilistic potential 
theory. For the background of the following work see [6], [7]. Let 
R be a locally compact Hausdorff space with a countable topological 
basis and let {P<, t^O} be a semigroup of transition operators yield­
ing, in combination with any initial distribution fxt a Markov process 
{*M(0}« If M is concentrated at the point £ we write x^(f) for x^(t). 
It is supposed that Hunt's condition (A) [o] is satisfied, so that the 
process can be chosen to have right continuous sample functions, 
with left hand limits at all points. A property will be said to hold p 
nearly everywhere on R if the set where it does not hold is a subset 
of an analytic set B such that B is hit by almost no path of the x^t) 
process. (It would be no more general to suppose B only nearly 
analytic.) 

If £ is a point of R and A a subset of i?, A is said to have £ as a fine 
limit point if whenever S is a nearly analytic superset of A almost all 
process paths with initial point £ meet B—Br\{i*} arbitrarily soon. 
In this way a completely regular topology, the fine topology, is de­
fined, depending on the given family of transition operators. Con­
cepts associated with the fine topology will be identified by the quali­
fier "fine." A point £ of R is fine isolated if and only if almost every 
Xt(t) path stays at £ during an initial time interval. The pth fine 
limit superior function of u will be denoted by #(p), and A(p) is defined 
correspondingly. Define A+ as the set of points regular for A% that 
is the set of points £ for which if B is any nearly analytic superset of 
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A almost every x$(t) path meets B a t arbitrarily small strictly positive 
times. Then A' CA+CA\JA' so if A is fine closed A+CA. Moreover 
A+ is fine closed because (A+)' C(A\JA')' =A' CA+. I t is trivial that 
(A1\JA2)+=AtVAt so (A\JA+)+=A+\JA++CA+UA+=:A+. If « is 
a function from R to the extended reals define u+(Ç) as the supremum 
of the values of c for which {rj:u(rj)^c}+ contains the point £. The 
function u+ is fine upper semicontinuous because the set {£: u+(%) è c} 
= f\fci {£: w(£ )^c— l / n } + is fine closed. Obviously u! ^u+ and if 
there is strict inequality a t a point w+ = w a t that point. If A is a set, 
/ A + = (IA)+- If ^ is nearly Borel measurable, u+(g) = lim sup^o ^ [#$(0 ] 
for almost every path. 

A set is called semipolar if it is a subset of a countable union \JBn 

of nearly analytic sets Bn with B£ = 0 . A semipolar set is thus a 
special fine quasinull set. Conditions true except for points of a semi-
polar set are commonly said to be true quasieverywhere, but we shall 
avoid confusion by not using this terminology. 

In classical potential theory the stochastic processes are Brownian 
motion processes and the fine topology is that discussed in §5. In 
this case A'=A+, the classes of fine weakly quasinull, fine quasi-
null, and semipolar sets coincide. A set is in this class if and only if it 
has no fine limit points and any member of the class is a subset of a 
G& set in the class. The "countable union" and "nearly analytic" in 
the definition of a semipolar set are pointless in this special case. 

If Xj^O and if (a) u is a universally measurable positive function for 
which e~uPtu^u, the left side of the inequality increases as t de­
creases. If (b) lim^o PtU = u, Hunt [6] called u X-excessive and 
proved that X-excessive functions are nearly Borel measurable. For 
each X > 0 the fine topology is the coarsest topology making X-exces­
sive functions continuous. For every yt, a X-excessive function is right 
continuous with left limits on almost every x^it) path, and two X-
excessive functions equal on the complement of a semipolar set are 
identical because almost every x^if) path meets a semipolar set in a 
countable parameter set. 

If a function u satisfies condition (a) of the preceding paragraph 
the function u\ defined by 

**i(Ö = lim (P«tf)(Ö = lim E{u[x^(t)]} 

(where E denotes expectation) is a commonly used smoothing of u. 
The function u\ is X-excessive and Ui^u; hence u{ =ui^*u'. 

We shall encounter a situation in which in addition to (a) it is 
known that u is nearly Borel measurable and has a limit (necessarily 
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u'(%) and w+(§)) a t each point £ along almost every x$(() path, as £—»0: 

«'(O = ^+(£) = lim«[**(0]-

Taking expectations and applying Fatou's lemma, 

«'(Ö = ^+(Ö = E\ lim »[**(*)]} ^ «i(Ö 

so that w' = w+ = u\ S u in this situation. Moreover the set where u > u' 
is not only fine quasinuU but even semipolar. In fact this set is a 
countable union of sets of the form 

{*:«(8 è i > a è «'ft)}. 

Each of these sets is a nearly measurable Borel set A, with A+~ 0 
because if £ were a point in -4+ it would satisfy ^ + ( £ ) ^ 6 , o>^w'(£) 
=«+(€). 

We shall frequently impose Meyer's condition on the transition 
probabilities: 

(L) There is a Radon measure fx on the space R, with fx(R) = 1, such 
that ix(A)>0 whenever A is a nearly analytic fine open set. 

The normalization to a probability measure is of course unessen­
tial but will be convenient below. Meyer pointed out [7] that this 
condition is equivalent to the condition that for s o m e \ > 0 (equiv-
alently every X>0) there be a Radon measure m such that if u is 
X-excessive and vanishes m almost everywhere then u vanishes iden­
tically. In the classical case this condition is satisfied with m sup­
ported by any singleton. We shall sometimes impose a further condi­
tion, also satisfied in the classical case: 

(L') For every £ in R, almost no x^{t) path meets £ for t strictly posi­
tive but sufficiently small unless the path stays at £ during an initial time 
interval, that s> unless £ is a fine isolated point of R. 

The condition (L/) is equivalent to the condition that A+ = A' for 
every A. 

Parts (i) (due to the writer) and (iii) (due to Meyer) of the follow­
ing theorem are not new but the proofs are sketched to illustrate the 
point of view of this paper. Par t (ii) may be useful when it is desira­
ble to avoid hypothesis (L). 

THEOREM 6.1. Let u be the lower envelope of a family of \-excessive 
functions. 

(i) If the family is countably infinite, u' is \-excessive, u'?£u, and 
there is equality except on a semipolar set. Moreover for every £ u has 

file:///-excessive
file:///-excessive
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u'(g)—u+(Ç) as limit at £ in the fine sense and on almost every x^(t) 
path (*->0). 

(ii) In the general case to each probability distribution p on R cor­
responds the lower envelope ^u of some countable subfamily such that 
pu'^u except on a semipolar set and, for every v in the family ^u' Sv 
fx nearly everywhere on R. 

(iii) In the general case under hypothesis (L) u' is \-excessive and 
there is a countable subfamily with lower envelope u^ such that u'* = ut 
= u'^u+^u^Uoo, with equality except on a semipolar set. 

We can suppose tha t the given family is uniformly bounded. 
PROOF OF (i). If u is the lower envelope of a countable family of 

X-excessive functions u is fine upper semicontinuous, nearly Borel 
measurable, and e~uPtu?£u. Thus u satisfies condition (a) of the two 
conditions defining X-excessive functions. Hence u' is X-excessive. 
The standard upcrossing inequalities show that for 0 ^ r i < r 2 the ex­
pected number of upcrossings of [r%9 r2] by Z>[*T*( ' ) ] is bounded inde­
pendently of the member v of the given family, from which it follows 
tha t almost no sample function of the w[#M(J)] process has an oscil­
latory discontinuity. In particular if n is supported by the singleton 
{£} u must have a limit a t £ along almost every path of the x^(t) 
process as t—>0. We have seen in the preliminary discussion at the 
beginning of this section that then the conclusions of (i) are true. 

PROOF OF (ii). Let 5 be a countable dense set of parameter values 
and choose a countable subfamily of the given family of X-excessive 
functions in such a way that the lower envelope Mw of the subfamily 
satisfies 

/ift[#/i(0] = ess inf *>[#/* (OL 1 S S, 

where v ranges through the entire family. Applying (i), Mw' is X-
excessive and if v is in the family 

with probability 1. Since Mw' and v are right continuous as functions 
of the parameter on almost all sample paths Mw' ^v n nearly every­
where on R. On the other hand pU^u and ^u1 =^u off a semipolar set. 
Hence ^u'^u off a semipolar set. 

PROOF OF (iii). Under (L) take /x in (ii) as the measure whose 
existence is supposed in (L). Then the fact that ^u1 ̂ v \x nearly every­
where and that both sides are fine continuous implies that the in­
equality holds everywhere. Hence „u1'rgw so »u'Su^^u. Taking 
primes in this inequality yields u' ^^uf. Thus (iii) is true with 

file:///-excessive
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In probabilistic potential theory connections between the given 
topology of R and the fine topology play an essential role. One such 
connection, linked with the complete regularity of the fine topology, 
is the fact that the fine topology is the coarsest making the X-exces-
sive functions continuous, if A>0. A more specific result than this 
was proved by Hunt [6] who showed that if A is a nearly analytic 
set and if £ is a point not in AKJA+ then if X>0 there is a X-excessive 
function equal to 1 on A and less than 1 at £. According to the defini­
tion of A+ the same result holds if A is arbitrary. Hunt ' s result was, 
more specifically, the following. Let V(A) be the X probability (proba­
bility computed using e~uPt instead of Pt) that an x^(t) path hits 
the nearly analytic set A a t some strictly positive time. If A is an 
arbitrary set let U(A) be the lower envelope of the X-excessive func­
tions è l on A. Hunt proved that if A is nearly analytic V{A) is X-
excessive, V(A) ^ U(A)f and there is equality except on A — AC\A+, 
where, trivially, V(A) < 1 = U(A). 

The additional connections between the given and fine topologies 
listed in the following lemmas are mostly known, a t least in their 
set versions, but are given for ready reference and because they are 
not otherwise conveniently available. We continue to use the nota­
tion U(A) and V(A) as just defined, supposing that X is some strictly 
positive number fixed throughout the discussion. 

LEMMA 6.1. Suppose that (L) is true. 
(i) If A is nearly analytic, U(A)'=U(A)+= V(A). 
(ii) If A is fine closed, A+ is the set where U(A)f = 1. 
(iii) If u is an arbitrary function from R to the extended reals u+ is 

nearly Borel measurable and the set where u>u+ is semipolar. In par-
ticular if u^u+ (and this is true if u^uf) u is nearly Borel measurable. 

PROOF OF (i). If A is nearly analytic we have already noted Hunt ' s 
theorem that V(A)^U(A) with equality except on A—AC\A+ so 
taking primes and applying Theorem 6.1 we obtain 

V(A) ^ U(A)' = U(A)+ g U(A) 

and there is equality except perhaps on A — AC\A+. If £ is in this set 
almost every x^(t) path misses A during an initial open time interval, 
so there is equality above on the part of the path corresponding to 
this interval. But then since X-excessive functions are right continu­
ous on almost all xç(t) paths, V(A)(£) = Z7(4)'(£), as was to be proved. 

PROOF OF (ii). Let A be a fine closed set. Applying Hunt ' s theorem, 
A is the set where U(A) = 1. If ^ is in 4+ , 17(4)'((•) = 1 because U(A) 
has the limit Z7(4)'(£) on almost every x^(t) path when /—>0. Con-



594 J. L. DOOB [J«ly 

versely if £ is not in A+ there is a nearly analytic superset B of A such 
tha t almost no x^(t) path meets B in some initial open time interval. 
Tha t is, 7 ( B ) ( 8 < 1 . But then U(A)'(£) ^ U(B)'(£) = F(B)(£) < 1 , as 
was to be proved. 

PROOF OF (iii). If A is fine closed (ii) implies that A+ is nearly 
Borel measurable. For an arbitrary set A, AUA+ is fine closed and 
A+ = (AyJA+)+ so yl+ is nearly Borel measurable. For any function 
u from R to the extended reals u+ is nearly Borel measurable because 

{*: **+(Ö ^ *} = fl {*:«(*) è c - l/n}+. 

If -4 is fine closed A—A+is semipolar because it is a subset of the set 
where U(A) > U(A)'. More generally for any set B the set B —Br\B+ 

is semipolar because this difference is A — A+ where A is the fine closed 
set BKJB+. Still more generally, if u is any function from R to the 
extended reals, the set where u>u+ is semipolar because if r\ is in 
the set C+, where C = {£: «(£) ^ & > a è ^ + ( £ ) } , then u+(rj)^b so 
C n C + = 0 . Hence C = C - C n C + is semipolar. 

LEMMA 6.2. Suppose that (L) is /rwe. 
(i) Every fine quasinull [semipolar] set A is a subset of a union [}Bn 

with Bn nearly Borel measurable and Bn = 0 [B£ = 0 ] 
(ii) If (L') is also true every fine weakly quasinull set is semipolar. 

PROOF OF (i). I t is sufficient to prove that (i) is true for any set A 
with A' — 0 [-4+ = 0 ] . Since A is the union of the fine closed nearly 
Borel measurable set A+ and a subset of the set where U(A) > U(A)f 

it need only be shown that the latter set is a subset of a countable 
union of nearly Borel measurable sets Bn with £ j = 0 . By Theorem 
6.1 there is a countable lower envelope Z7ooC4) of the class defining 
U(A) such that U00(A)^U(A) and U„(A)'=U(Ay. Since UJA) is 
fine upper semicontinuous and nearly Borel measurable, we need only 
remark that the set where Uo0(A)> U^A)' is a countable union of 
sets of the form {£: Uao(A)(i)^b>a^UJkA)'(jO} and that each of 
these sets is nullified by the plus operation. 

PROOF OF (ii). Since every fine weakly quasinull set is a countable 
union of sets of the form A—A' where A is fine closed, and since 
under (L') A' =A+ (ii) is a consequence of Lemma 6.1 (iii) as applied 
to the indicator function of A. 

LEMMA 6.3. Suppose that (L) is true. If u is any function from R to 
the extended reals there is a countable ordinal a such that w((r)=^((r+1) 

The set version of Lemma 6.3 states that for any set A there is a 
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countable ordinal a such that A{a) =Ai<r+1\ The truth of this version 
implies that of the general case. In fact the set version implies that 
there is a countable ordinal a so large that if r is rational {£ : u(%) ^ r} ('> 
= Br is independent of p^<r. Then by (2.1) BrC{è:uV>(£)^r} CBS 

for p^cr and s<r. If Bt- = C[s<t B8 this means that {£: w(p)(£) è*} 
— Bt- for all real positive t when p^o*, so w(<r)=w(H_1) as was to be 
proved. To prove the set version of the lemma let X be strictly posi­
tive and let A be a fine closed set. Then A(p) is the set where U(A(fi)) 
= 1 so we need only show that U(A(p)) does not depend on p for large 

p. Now U(Aip)y is X-excessive and 

17(4 <*+*>)' g U(A<p+V) ^ C/(^^+10' ^ t / (^^+ 1 ) ) ^ Ï7(i4<p>)'. 

By Theorem 6.1 (iii) there is a countable subclass of {U(A(f,)Y} 
whose lower envelope v has the property that v' S U{A^)f for all p. 
This means tha t there is an ordinal ar such that U(A(p)y = U(A(<r)Y 
for p><r and the displayed inequality above shows that then U(A(p)) 
does not depend on p for large p, as was to be proved. 

Under (L) if A is fine closed we have shown that A =Ai*<JA2 where 
Ai ( = A+) is nearly Borel measurable and A% is semipolar. If A is an 
arbitrary set which can be expressed in this way the fact that A2 is 
a subset of a nearly Borel semipolar set B which can be assumed not to 
meet A% yields the fact that (denoting complementation by ~) 

A = (AtU B)~U (B- A2) 

so that A is also the union of a nearly Borel measurable set and a 
semipolar set. From this we conclude that every fine Borel set is the 
union of a nearly Borel measurable set and a semipolar set and more 
generally tha t every fine Borel measurable function is equal off a 
semipolar set to some nearly Borel measurable function. Since nearly 
Borel measurable sets are universally measurable, if ju is a completed 
Radon measure which vanishes on semipolar sets what we have 
proved implies that, under (L), fx is defined on the class of fine Borel 
sets. Such a measure is a [weak] quasicapacity if it even vanishes on 
fine [weakly] quasinull sets. If (L') is also satisfied, fine weakly quasi-
null sets are semipolar, so any fx vanishing on semipolar sets is now a 
fine quasicapacity and fine weak quasicapacity. 

Getoor pointed out in a letter that a modification of Hunt 's proof 
[6] that excessive functions are nearly Borel measurable shows that 
under (L) excessive functions are even Borel measurable. The proof 
of Lemma 6.1 can be sharpened using this fact to yield the result that 
under (L) if u is an arbitrary function from R to the extended reals 
u+ is Borel measurable. The function v in Theorem 8.2, the set Ĵ  in 
Theorem 8.3, and the function u in Theorem 8.4 below are therefore 
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Borel measurable. In Lemma 6.2 (i) the set Bn can be supposed Borel 
measurable. The preceding paragraph can be strengthened: under 
(L) every fine Borel measurable function is equal off a semipolar set 
to some Borel measurable function. 

7. Application to classical potential theory. We use the notation 
and conventions of §5 in this section. 

THEOREM 7.1. The space of classical potential theory, with the fine 
topology has the quasiLindelofil) property. 

Since the classes of fine quasinull and weakly quasinull sets are 
the same in classical potential theory it is sufficient to prove the 
theorem using the criterion of Lemma 2.1 for the weak quasiLin-
delöf(1) property. The proof of Theorem 4.1 can be carried over to 
this theorem almost word for word. Let r = r 0 be a family of fine 
closed sets with intersection F< In applying Lemma 2.1 it is no re­
striction to assume that Y contains the countable intersections of its 
member sets. We shall apply the set version of Theorem 3.1 to show 
that a set F* exists as described in Lemma 2.1 with n = l. We use 
the set versions of axioms Ai9 A%> A%> defining ^4*= A'. The first two 
axioms are obviously satisfied. Let X be the set of extended real num­
bers with the usual order and G a finite union of sets of a countable 
basis for the topology of R. If A is fine closed define CQ(A) as the 
capacity of GH\A. We are using Choquet's theorem that a fine closed 
set is the union of an F„ set in the given topology and a polar set, so 
that GC\A is capacitable. If CQ(A)^CQ(B) for every G we shall 
show below that A C.B neglecting a polar set, so A' C.B'. Thus the 
hypotheses of the set version of Theorem 3.1 are satisfied, with 
C(A) = { CQ(A) }, as was to be proved. (Just as in the proof of Theo­
rem 4.1 the criterion of Theorem 2.1 can be used instead of that of 
Lemma 2.1, in fact with the same choice of X as in Theorem 4.1, 
and with v replaced by the capacity function.) There remains the 
proof that CQ{A)^CQ{B) for all G in the indicated class implies 
that A C.B neglecting a polar set. I t is elementary that the given 
inequality must hold for all open G. One can then prove the desired 
result by applying the Wiener criterion that a point be a fine limit 
point of a set to show that Af C.B'. Alternatively one can extend the 
given equality to all compact G and thereby find that if G is any 
compact subset of A —AC\B the capacity of G vanishes, and this fact 
implies the desired result. This proof of Theorem 7.1 is given for com­
parison with the proof of Theorem 4.1. The proof of Theorem 8.1 
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uses a different choice of X and C which is more elegant and is of 
course applicable to the present special case. 

Theorem 2.2 is applicable to ordinary capacity, since the latter is 
a fine quasicapacity and weak quasicapacity in the sense of §2. To 
apply Theorems 2.3 and 2.4 the proper hypothesis on /x is that ix be 
a completed Radon measure in the original topology, vanishing on 
polar sets. We have pointed out that such a measure is defined on the 
class of fine Borel sets so that Theorems 2.3 and 2.4 are applicable 
in the present context. 

Getoor [5] proved in a probabilistic context a theorem (see §8) 
which implies that in classical potential theory a Radon measure 
vanishing on polar sets has a smallest fine closed support. Choquet 
[2] then gave a nonprobabilistic proof of this result, which in our 
development is an application of Theorem 2.3 to the fine topology. 
Brelot [l] showed that various functionals in a potential theoretic 
context including the classical case are what we have called in §2 
quasicapacities (fine topology) and applied the methods of an un­
published version of the present paper to these functionals. 

8. Application to probabilistic potential theory. We use the nota­
tion of §6. 

THEOREM 8.1. The space of probabilistic potential theory, in the fine 
topology, under condition (L), has the quasiLindelöfa) property. More 
specifically, given a family of fine upper semicontinuous functions with 
lower envelope u there is a countable subfamily with lower envelope u* 
such that ut ^u^u*-

Note that u^ — ut fine quasieverywhere, and in fact except on a 
semipolar set, and that u'^ut so that the result proved is definitely 
stronger than that the space has the fine quasiLindelöf(1) property, 
unless (L') is satisfied when the two properties are equivalent. 

We shall prove the theorem in its set version, in which the func­
tions involved are indicator functions of fine closed sets. A trivial 
modification of the argument in the proof of Theorem 2.1 (replacing(n) 

by +) shows that this is sufficient. Suppose then that T = r 0 is a 
family of fine closed sets with intersection F. We shall apply Theorem 
3.1 to show that a countable intersection F«> of sets in Y exists, satis­
fying FtC.FC.Foo. It is no restriction to assume in the proof that V 
already contains the countable intersections of its members. We use 
the set version of Axioms A\, A2, Az in §3, defining A* = A+. Fix 
X > 0 and let X be the space of X-excessive functions, ordered by point-
wise inequality. Then every subset of X has a countable infimum by 

FtC.FC.Foo
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Theorem 6.1 (iii). Define C(A) = U(A)'. Then A+ is the set where 
C(A) = 1. Hence C(A) ^ C(B) implies that A+QB+ and Theorem 3.1 
is applicable to yield the existence of the desired set F^. 

As we remarked in §2 the validity of the quasiLindelöf property 
(in the fine topology) implies that every (fine) weakly quasinull set 
is (fine) quasinull. Thus we need not distinguish between these types 
of sets in the following. A trivial covering argument shows that every 
fine quasinull set is the union of a countable set and a semipolar set. 
The fine quasinull sets are thus semipolar if and only if singletons 
not corresponding to fine isolated points are semipolar, that is, if and 
only if (L') is satisfied. 

THEOREM 8.2. In the space of probabilistic potential theory, under 
condition (L), if u is a fine upper semicontinuous function there is a 
unique f unction v such that (a) v is fine upper semicontinuous', (b) v^u, 
with equality off a semipolar [fine quasinull] set and (c) if vi satisfies 
(a) and (b) Vi^v. The function v is nearly Borel measurable and 
v~v+ [» = »']. 

Let v be the lower envelope of the class of functions satisfying (a) 
and (unbracketed) (b). According to Theorem 8.1 there is a countable 
lower envelope v^ of members of this class such that vt ^v^v*. Since 
vt is in the class we conclude that vt =v. Thus v is in the class, v — v+ 

and v is nearly Borel measurable, as was to be proved. The bracketed 
assertion is proved similarly. 

We have seen in §6 that under (L) if fx is a completed Radon mea­
sure in terms of the given topology of R and if this measure vanishes 
on semipolar sets then the measure is defined on the class of Borel sets. 

THEOREM 8.3. Under (L), if JJL is a completed Radon measure, van­
ishing on semipolar sets, fx has a smallest fine closed support F, with 
F=F+. 

Under (L') the classes of fine weakly quasinull, fine quasinull and 
semipolar sets are identical, so this theorem becomes just an applica­
tion of Theorem 2.3. Without (17) the proof of Theorem 2.3 is ap­
plicable in the present context since, under (L) (in the notation of 
tha t proof) F^ — F is semipolar, and A+ is a fine closed support of 
fi if A is. 

Theorem 2.4 corresponds to a result generalizing Theorem 8.3. 

THEOREM 8.4. Letfi,f2 be f unctions from R to the extended reals with 
fi ^ f t and let ^Ibea class of subsets of R containing the semipolar sets 
and containing the countable unions of its members. Then under (L) 
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the lower envelope u of the class of fine upper semicontinuous functions 
è/ i on R and also è / 2 neglecting a set in %l is in the class, and u = u+. 

The proof of Theorem 2.4 is applicable if "'" is replaced by iC+". 
Theorem 8.4 becomes a specialization of Theorem 2.4 if (L') is satis­
fied. 

For any initial distribution /x there is a corresponding stochastic 
process {#M(0> t^O}. Here Xp{t) is a random variable with value 
Xti(t, co) at the point co of a certain measure space with measure PM. 
Suppose that (t, co)—>a(t, co) is an extended real valued function of the 
pair (/, o)). Suppose that a(-, co) is continuous and monotone increas­
ing on [0, oo ) for fixed co and that a(t, •) is PM measurable for fixed t, 
for every y. Il A is a nearly analytic set and if co is fixed, the set of 
values of t for which x^it, co) £.4 may be a support of the measure 
dta(t, (S) for PM almost all co. If this is true simultaneously for every t̂, 
A is said to be a support for a. If A is semipolar (in which case, under 
(L) A is a subset of a nearly Borel semipolar set), the dta(t, co) mea­
sure of the set of values of t in question is 0 for PM almost every co 
because almost every Xp(t) path meets A at a countable set of param­
eter values. Since every fine closed set differs from a nearly Borel set 
by a semipolar set, if A is fine closed and co is fixed the set of values 
of t in question is a Borel set, if an co set of PM measure 0 is excluded, 
so the concept of a fine closed support of a is now meaningful. 

If a is a continuous additive functional Getoor [5] showed (even 
without assuming (L)) that the functional has a smallest fine closed 
support. He pointed out (orally—for the details see Meyer [8]) that 
the existence of this support implies, under hypotheses much stronger 
than (L), hypotheses which imply the existence of a certain cor­
respondence between continuous additive functionals and measures 
which vanish on semipolar sets, that a measure of the latter type has 
a smallest fine closed support. Theorem 8.3 is thus Getoor's measure 
result with weaker hypotheses. We now go in the reverse direction 
and, assuming only (L), prove using Theorem 8.3 that any function 
a, satisfying the hypotheses of the preceding paragraph but not neces­
sarily a continuous additive functional, has a smallest fine closed 
support. 

THEOREM 8.5. If ais as described then {under (L)) a has a smallest 
fine closed support F; F—F+ and F is nearly Borel measurable. 

The fact that F—F+ implies that F is nearly Borel measurable, 
according to Lemma 6.1. We can suppose that a is bounded, replac­
ing a by arctan a if necessary to achieve boundedness. For every /*, 
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a is measurable with respect to the product of the field of Borel t 
sets and the field of PM measurable o) sets. For each /x and Borel sub­
set A of R define v^A) as the PM integral of the dta(tf œ) measure of 
the set where x^t, a ) ) £ A Then *>M is a measure, and we shall assume 
tha t it has been completed. If A is nearly Borel measurable it is 
obviously in the domain of *>M, and if A is nearly Borel measurable and 
semipolar v^{A) = 0 since almost every x»(t) path hits A in a countable 
parameter set. If A is an arbitrary semipolar set it is a subset of a 
nearly Borel measurable semipolar set so again v^(A)=0. Thus the 
measure j>M is a completed Radon measure vanishing on semipolar 
sets. As such we have seen that this measure is defined on the class 
of fine Borel sets. The set A is a support for every *>M if and only if A 
is a support of a. Now according to the trivial generalization of Theo­
rem 2.3 noted after the proof of that theorem, translated into the 
context of Theorem 8.3, the class of measures {v^} has a smallest 
common fine closed support. Tha t is, there is a fine closed set F 
which is a support of v^ for every n and which is the smallest fine 
closed set with this property. This set is the smallest fine closed sup­
port of a, and F^F* according to (our extension of) Theorem 8.3. 
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