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This note announces the main results obtained in a paper of the 
same title to appear in the Journal of Algebra, in which complete 
proofs can be found. 

Introduction. We recall that a topological group G is a profinite 
group if it is the inverse limit of finite groups and that a G-module A 
is a discrete G-module if A — \)AH, where H runs through the open sub­
groups of G and AH is the set of elements of A left fixed by H (cf. 
[4]). We note tha t if H is a normal subgroup of Ky then A H is a 
K/H-module. A class formation consists of a profinite group G and a 
G-module satisfying certain axioms which we do not repeat here: the 
reader will find them and their consequences in [ l ] . The reciprocity 
map for the formation gives a homomorphism 

ooH: AH->H/H' 

for each open subgroup H of G since H/H' is the group of the maxi­
mal abelian extension of H (cf. p. 179 of [6]). Let CH be the kernel 
of O)H and let DH be its cokernel. For each subgroup K of G, contain­
ing if as a normal subgroup, the exact sequence of i£/iî-modules 

0 -> CH -> AH -> H/H' ~> DH -> 0 

gives rise to homomorphisms 

dq: Ê*-*(K/H, DH) -> H«(K/H, CH) 

as the composition of two coboundary maps. 

THEOREM 1. The following are equivalent f or a class formation: 
(i) s c d p G ^ 2 , 
(ii) For every integer q, the map dq induces an isomorphism onto on 

the p-primary components. 

The second condition is equivalent to a group theoretic property 
introduced by Kawada in [3]. 

For any field fe, let G& denote the Galois group of the separable 
closure of k. The following results about the associated class forma-

1 This paper was written with partial support of NSF grant GP4124 while the 
author was T. H. Hildebrandt Instructor at the University of Michigan. 
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tions are proved in class field theory (cf. [ l ] ) . 
(a) For a local field fe, the reciprocity map is injective and its 

cokernel is Z/Z, where Z is the total completion of the integers. In 
particular, the cokernel is uniquely divisible and thus cohomologi-
cally trivial. 

(b) For a function field of one variable over a finite field, the situa­
tion is as in (a). 

(c) For a number field fe, the reciprocity map is surjective and its 
kernel is the connected component of the identity of the idèle class 
group. The cohomology groups of the kernel are thus elementary 2-
groups and trivial if k is totally imaginary. 

(d) If k is a field complete under a discrete rank one valuation 
with algebraically closed residue class field, the reciprocity map is an 
isomorphism [5]. 

I t is not difficult to verify that cd Gk=:2 in these examples, e.g. 
page 11-16 of [4]. Tate has shown the stronger result scd Gk=z2 for 
(a), (b) and (c) as a consequence of a deep duality: a proof is given 
on page 11-25 of [4] for p-adic fields while the other cases remain 
unpublished. 

Whenever a new class formation is discovered, a description of the 
kernel and cokernel of the reciprocity map is given and Theorem 1 
tells us immediately whether or not scdp Gk = 2 : this is the case in 
the above examples, except if p = 2 and k is a number field which is 
not totally imaginary. 

Pseudocompact algebras. A complete Hausdorff topological ring A 
is said to be a pseudocompact ring if it admits a system of open neigh­
borhoods of 0 consisting of two sided ideals I for which A / I is an 
Artin ring. If A is an algebra over the commutative pseudocompact 
ring 12, we shall say tha t A is a pseudocompact iï-algebra if A/7 has 
finite length as O-module. A complete Hausdorff topological A-module 
M is pseudocompact if it admits a base of open neighborhoods of 0 
consisting of submodules N for which M/N has finite length. The 
category CA of pseudocompact A-modules is an abelian category with 
exact inverse limits and enough projectives: in fact, we show that 
©A is dual to the category £)A° of discrete modules over the opposed 
algebra A0. We may thus define as usual the homological dimension, 
1KIAC4), of the pseudocompact A-module A as the least integer n for 
which we can find a projective resolution 0-^Pw—> • • • •—>P0—>A —»0 
and we write gldim A = SUPA1K1AG4) where A runs through (3A. I t is 
possible to introduce functors Ext": 6AX£>A~>£)Q and Tor£: eA° X C A 



i966] ALGEBRAS, GROUPS AND CLASS FORMATIONS 323 

—>GQ as derived functors of Horn A and of the completed tensor prod­
uct. These allow us to generalize the elementary results on homo-
logical dimension in complete noetherian semilocal rings. As a first 
application we generalize a result proved by P. M. Cohn in case 0 
is a field [2]. 

THEOREM 2. Let & be a commutative pseudocompact ring and let 
12 { {Xi} } be the algebra of noncommuting formal power series in {Xi} 
over 12. Then 

gldim Q{{xi}} = gldim 1 2 + 1 . 

Let G be a profinite group and let 12 be a commutative pseudocom­
pact ring. The complete group algebra 12[[G]] of G over 12 is defined by 
12[[G]]=proj lim 12[G/£7] where U runs through the open normal 
subgroups of G and 12 [G/C7] is the ordinary group algebra. By con­
struction, 12 [[G]] is a pseudocompact 12-algebra. For any discrete 
12[[G]]-module A, ExtS l[0]](Q, A)=H»(G, A) while Tor%[[G]](B, 12) 
define homology groups for G with coefficients in the pseudocompact 
!2[[G]]-module£. 

THEOREM 3. Let cd& G denote the sup of cdp G over the primes p which 
are not units in 12. Then 

gldim 12 [[G\] = gldim 12 + cdQG. 

Application to profinite groups and Theorem 1. We prove Theorem 1 
by presenting G as the quotient F/N of a free profinite group modulo 
a closed normal subgroup N. The following criterion, proved by the 
ideas of the last section, plays a crucial role and may be of inde­
pendent interest. 

THEOREM 4. Let F be a free profinite group. The following are equiv­
alent for G = F/N. 

(i) s c d p G ^ 2 . 
(ii) N/Nr is a projective Zp[[G]]-module and the p-Sylow subgroup 

of the abelian profinite group NC\ V''/ [N, V] is trivial for every open 
subgroup V of F containing N. Here [TV, V] is the closed subgroup 
generated by the commutators [n, v], nÇzN, vÇzV and Zp is the ring of 
p-adic integers. 
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Let D be a dihedral group of order 2p, where p is an odd prime. 
D is generated by the elements a and ]3 with the relations ap~fi2 = 1 
and (ial3 = or1. Let A be the subgroup of D generated by a, and let 
Aoy Ai, • • • , Ap-\ be the subgroups generated by j8, aft, • * • , ap - 1 /3, 
respectively. Let M be any D-module. Then the cohomology groups 
Hn(A0, M) and Hn(Aif M), i = l , 2, • • • , p — 1 are isomorphic for 
every integer n, so the eight groups H~1(Df Af), H°(D, M), Hl(D, jfef), 
# 2 ( A Af), f f" 1 ^. M), HQ(A, M), H-Wo, M), and H»(A0, M) deter­
mine all cohomology groups of M with respect to D and to all of its 
subgroups. We have found what values this array takes on as M runs 
through all finitely generated -D-modules. 

All possibilities for the first four members of this array are deter­
mined as a special case of the results of Yang [4]. But we have not 
been able to extend his methods so as to determine all possibilities 
for the whole array; our methods are independent to those of Yang. 

METHOD OF PROOF. First we follow the method of Parr [3] in 
showing that it suffices to consider only finitely generated Z-torsion 
free ZZ)-modules, where Z is the ring of all fractions m/n of rational 
integers m and n such that (n, 2p) = 1. Lee [2] has listed all indecom­
posable modules of this type; there are ten. We compute directly 
several of the cohomology groups for the first five modules in her list. 
The last five of her list may be treated as members of extensions. 
These yield exact sequences of cohomology groups, which give in­
formation about the last five modules. We can then complete the 
values in all of the arrays by using the result that the cohomology of 


