A RADON-NIKODYM THEOREM IN W*-ALGEBRAS1

BY SHÔICHIRÔ SAKAI

Communicated by F. Browder, September 10, 1964

- 1. Introduction. The purpose of this paper is to show a Radon-Nikodym theorem in general W^* -algebras as follows: Let M be a W^* -algebra, and ϕ , ψ two normal positive linear functionals on M such that $\psi \leq \phi$; then there is a positive element t_0 of M with $0 \leq t_0 \leq 1$ satisfying $\psi(x) = \phi(t_0xt_0)$ for all $x \in M$ (Theorem 2). This theorem is the affirmative solution to a problem raised by Dixmier [1, p. 63] and the author [3, p. 1.46 and Question 2 in the appendix]. A less cogent Radon-Nikodym theorem in general W^* -algebras has been proved by the author [3, p. 1.46].
- 2. Theorems. To prove the above theorem, we shall provide some considerations.

Let M be a W^* -algebra, ϕ a normal positive linear functional on M. For $a, x \in M$, put $(Ra\phi)(x) = \phi(xa)$; then $Ra\phi$ is a σ -continuous linear functional on M. Then we shall show

PROPOSITION 1. Suppose that Ra ϕ is self-adjoint; then we have $|(Ra\phi)(h)| = |\phi(ha)| \le ||a||\phi(h)|$ for $h \ge 0 \le M$.

PROOF. By the assumption, $(Ra\phi)^*(x) = [(Ra\phi)(x^*)]^- = [\phi(x^*a)]^- = [\phi((a^*x)^*)]^- = \phi(a^*x) = (Ra\phi)(x) = \phi(xa)$ for $x \in M$.

Hence $\phi(a^*x) = \phi(xa)$, so that $\phi(xa^2) = \phi(xaa) = \phi(a^*xa)$; therefore $Ra^2\phi \ge 0$ and so, analogously, we have $\phi(xa^4) = \phi((a^2)^*xa^2)$.

By the analogous discussion, we have

$$\phi(xa^{2^{n+1}}) = \phi((a^{2^n})^*x(a^{2^n}))$$
 for $x \in M$.

Then, for $h \ge 0$,

$$\begin{aligned} \left| \phi(ha) \right| &= \left| \phi(h^{1/2}h^{1/2}a) \right| \leq \phi(h)^{1/2}\phi(a^*ha)^{1/2} \\ &= \phi(h)^{1/2}\phi(ha^2)^{1/2} \leq \phi(h)^{1/2} \left\{ \phi(h)^{1/2}\phi((a^2)^*ha^2)^{1/2} \right\}^{1/2} \\ &= \phi(h)^{1/2}\phi(h)^{1/4}\phi(ha^4)^{1/4} = \phi(H)^{1/2+1/4}\phi(ha^4)^{1/4} \\ &= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ &= \phi(h)^{\sum_{i=1}^{n} (1/2^i)} \phi(ha^2)^{1/2^n} = \phi(h)^{1-1/2^n}\phi(ha^2)^{1/2^n} \\ &\leq \phi(h)^{1-1/2^n} (\left\| \phi \right\| \left\| h \right\| \left\| a \right\|^2)^{1/2^n} \\ &= \phi(h)^{1-1/2^n} \left\| a \right\| (\left\| \phi \right\| \left\| h \right\|)^{1/2^n} \to \left\| a \right\| \phi(h) \qquad (n \to \infty). \end{aligned}$$

¹ This research was partially supported by NSF GP-2026 and NSF GP-2 at the University of California, Berkeley.

Hence we have $|\phi(ha)| \leq ||a||\phi(h)$.

This completes the proof.

Now we shall show an application of Proposition 1. For $b \in M$, we consider a linear functional $Rb\phi$, then

THEOREM 1. Let $Rb\phi = Rv | Rb\phi |$ be the polar decomposition of $Rb\phi$ (cf. [2], [3]); then the absolute value $| Rb\phi |$ of $Rb\phi$ is majorized by $||b||\phi$, that is, $|Rb\phi| \le ||b||\phi$.

PROOF. Since $|Rb\phi| = Rv^*(Rb\phi)$ (cf. [2], [3]), $|Rb\phi|(x) = \phi(xv^*b)$, so that by Proposition 1 we have

$$\begin{aligned} \left| \phi(hv^*b) \right| &= \phi(hv^*b) \le \left\| v^*b \right\| \phi(h) \\ &\le \left\| b \right\| \phi(h) \quad \text{for } h \ (\ge 0) \in M. \end{aligned}$$

This completes the proof.

Now let $s(\phi)$ be the support of ϕ and we shall consider the W^* -algebra $s(\phi)Ms(\phi)$. Let $\tilde{\phi}$ be the restriction of ϕ on $s(\phi)Ms(\phi)$.

Let $\pi^{\vec{\phi}}(\mathfrak{F}_{\vec{\phi}})$ be the W^* -representation of $s(\phi)Ms(\phi)$ on a Hilbert space $\mathfrak{F}_{\vec{\phi}}$ constructed via $\vec{\phi}$, then we can consider $s(\phi)Ms(\phi)$ as a concrete W^* -algebra on the Hilbert space $\mathfrak{F}_{\vec{\phi}}$. Let ξ be the image of $s(\phi)$ in $\mathfrak{F}_{\vec{\phi}}$, then $\vec{\phi}(x) = \langle x\xi, \xi \rangle$ for $x \in s(\phi)Ms(\phi)$, where \langle , \rangle is the inner product of $\mathfrak{F}_{\vec{\phi}}$.

Let $\{s(\phi)Ms(\phi)\}'$ be the commutant of $s(\phi)Ms(\phi)$ in $\mathcal{G}\phi$, then $[s(\phi)Ms(\phi)\xi] = [\{s(\phi)Ms(\phi)\}'\xi] = \mathcal{G}\phi$, where $[(\cdot)]$ is the closed linear subspace of $\mathcal{G}\phi$ generated by (\cdot) , namely, ξ is a separating and generating vector of $s(\phi)Ms(\phi)$.

Now we shall show

THEOREM 2. Let ψ be a normal positive linear functional on M such that $\psi \leq \phi$; then there is a positive element t_0 of M with $0 \leq t_0 \leq 1$ satisfying $\psi(x) = \phi(t_0xt_0)$ for $x \in M$.

PROOF. Let ψ be the restriction of ψ on $s(\phi)Ms(\phi)$; then $\tilde{\psi} \leq \tilde{\phi}$ and, therefore, there is a positive element h'_0 with $||h'_0|| \leq 1$ of $\{s(\phi)Ms(\phi)\}'$ such that $\psi(x) = \langle xh'_0\xi, h'_0\xi \rangle$ for $x \in s(\phi)Ms(\phi)$.

Now we shall consider a σ -continuous linear functional f' on the W^* -algebra $\{s(\phi)Ms(\phi)\}'$ as follows: $f'(y') = \langle y'h_0'\xi, \xi \rangle$ for $y' \in \{s(\phi)Ms(\phi)\}'$; then $f' = R_{h_0'}g'$, where $g'(y') = \langle y'\xi, \xi \rangle$ for $y' \in \{s(\phi)Ms(\phi)\}'$.

Since $g' \ge 0$, by Theorem 1, $|f'| \le ||h_0'|| g'$, so that there is a positive element t_0 of $s(\phi) Ms(\phi)$ with $0 \le t_0 \le 1$ such that $|f'|(y') = \langle y't_0\xi, \xi \rangle$.

Then

$$|f'|(y') = R_{(v')} f'(y') = f'(y'v'^*) = g'(y'v'^*h_0'),$$

where $R_{v'}|f'|=f'$ is the polar decomposition of f'. Hence

$$\langle y't_0\xi, \xi \rangle = \langle y'v'^*h_0'\xi, \xi \rangle$$

for $y' \in \{s(\phi) Ms(\phi)\}'$.

Since $[\{s(\phi)Ms(\phi)\}'\xi] = \mathfrak{D}\phi$, we have $t_0\xi = v'*h_0'\xi$ and so $v't_0\xi = v'v'*h_0'\xi$.

On the other hand,

$$\langle y'v'v'^*h_0'\xi,\xi\rangle = |f'|(y'v') = Rv'|f'|(y') = f(y')$$

= $\langle y'h_0'\xi,\xi\rangle$ for $y' \in \{s(\phi)Ms(\phi)\}'$;

hence $v'v'^*h_0'\xi = h_0'\xi$ and so $v't_0\xi = h_0'\xi$. Therefore,

$$\tilde{\psi}(x) = \langle xh_0' \xi, h_0' \xi \rangle
= \langle xv't_0 \xi, v't_0 \xi \rangle = \langle xv'^*v't_0 \xi, t_0 \xi \rangle
= \langle xv'^*h_0' \xi, t_0 \xi \rangle = \langle xt_0 \xi, t_0 \xi \rangle
= \langle t_0 xt_0 \xi, \xi \rangle
= \tilde{\phi}(t_0 xt_0) \quad \text{for } x \in s(\phi) Ms(\phi).$$

Now we have

$$\psi(x) = \psi(s(\phi)xs(\phi)) = \tilde{\psi}(s(\phi)xs(\phi))$$

$$= \tilde{\phi}(t_0s(\phi)xs(\phi)t_0)$$

$$= \phi(t_0xt_0) \quad \text{for } x \in M.$$

This completes the proof.

REFERENCES

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris. 1957.
- 2. S. Sakai, On linear functionals of W*-algebras, Proc. Japan Acad. 34 (1958), 571-574.
- 3. ——, The theory of W*-algebras, Lecture notes, Yale University, New Haven, Connecticut, 1962.

University of California, Berkeley and University of Pennsylvania