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This note gives a construction for minimizing certain twice-differ-
entiable functions on a closed convex subset C, of a Hubert Space, H. 
The algorithm assumes one can constructively "project" points onto 
convex sets. A related algorithm may be found in Cheney-Goldstein 
[ l ] , where a constructive fixed-point theorem is employed to con­
struct points inducing a minimum distance between two convex sets. 
In certain instances when such projections are not too difficult to 
construct, say on spheres, linear varieties, and orthants, the method 
can be effective. For applications to control theory, for example, see 
Balakrishnan [2], and Goldstein [3]. 

In what follows P will denote the "projection" operator for the 
convex set C. This operator, which is well defined and Lipschitzian, 
assigns to a given point in H its closest point in C (see, e.g., [ l ] ) . 
Take x £ f f and y £ C . Then [x — y, P(x) —y]^\\P(x) —y\\2. In the 
nontrivial case this inequality is a consequence of the fact that C is 
supported by a hyperplane through P(x) with normal x — P(x). Let 
ƒ be a real-valued function on H and x0 an arbitrary point of C. Let 
5 denote the level set (xGC: / (x ) ^f(x0)}, and let S be any open set 
containing the convex hull of S. Let ƒ'(*, • )= [V/(x), •] signify the 
Fréchet derivative of ƒ at x. A point zin C will be called stationary if 
P(z—pVf(z)) =z for all p > 0 ; equivalently, when ƒ is convex the linear 
functional f (z, •) achieves a minimum on C a t z. 

THEOREM. Assume f is bounded below. For each xÇzS, h in H and for 
some Po>0, assume that f (x, h) exists in the sense of Fréchet, fix, h, h) 
exists in the sense of Gâteaux, and \f"(x, h, h) | ^||fe||2/Po- Choose cr and 
pk satisfying 0<<r^p0 and <r^pk^2po — a. Set Xk+i = P(xk—pkVf(%k)). 
Then: 

(i) The sequence xk belongs to 5, (xk+i — xk) converges to 0, and f(xk) 
converges downward to a limit L. 

(ii) If S is compact, zis a cluster point of {xk}, and Vf is continuous 
in some neighborhood of z, then z is a stationary point. If z is unique, 
xk converges to z, and z minimizes ƒ on C. 

(iii) If S is convex and f'{x, h, h) ^/x||&||2 for each x G S , hÇzH and 
some /x^0, then L = inf {ƒ(#) : xÇzC}. 

(iv) Assume (iii) with S bounded. Weak cluster points of {xk} mini­
mize ƒ on C. 
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(v) Assume (iii) with JJL positive and Vf bounded on S. Then f (z) = L 
for some z in S, Xk converges to z, and z is unique. 

PROOF. Assume Xk belongs to S and that xk is not stationary. Let 
?ƒ(**) = v/*, x(p) =P(xk -pV/*), S(p) =*(p) -xkand A(p) =ƒ(**) -f(*(p)). 
If we notice that — P[V/A;, ô(p)] ^| |S(p)| |2 and invoke Taylor's theo-
rem, we obtain A(p) è | |a(p) | |*{p- l- /"(S(p) , S(p), 5(p))/2||8(p)||*}. 
Here £(p) =xfc+^ô(p) with £G(0, 1). For some p sufficiently small and 
positive, A(p) is positive and continuous. Let fi denote the least posi­
tive p satisfying A(p)=0, if such exists. If $ exists, A(p)=0 implies 
that joè2p0. Thus if <rgip^2po — <rf A(p)>0 and x(p)ES, whence 
A(p*)è||**+i —**||W4po, proving (i). 

The proof of (ii) being straightforward, we proceed with the proof 
of (iii). Suppose that L^ in f {f(x): xÇ~C} and choose s £ C such that 
f(z)<L. Then 0>ƒ(*)-ƒ(**) ê [V/*, * - * * ] . If lim inf[V/*, s -**]= /3 
were non-negative, a contradiction would be manifest. But the in­
equality [pkV/ft, 2 — **+!] è [xk — #*+l, 2] + [tffc+i, ] holds be­
cause either Xk—PkVfk — Xk+i is the normal to C a t Xk+i, or it is 0. If 
the sequence Xk is bounded, clearly j3 = 0; otherwise choose a sub­
sequence satisfying ||#*+i||>||#fc||. Then jS^O. 

To prove (iv) we observe that ƒ is lower semi-continuous on S if 
and only if the set Sm— {xÇiS:f(x) ^m} is closed in 5 for each m. 
Since ƒ is convex and continuous, Sm is closed and convex, and is thus 
weakly closed. Hence ƒ is weakly l.s.c. If Xk converges weakly to z, 
then lim inf f(xk) =L^f(z). 

Assume the hypotheses of (v). If s>k, we may write that 0 > f(x8) 
—f(xk) è [V/fc, x8 — Xk] + (l/2)n\\xa — xk\\

2j whence {x8} is bounded. In­
voking again the supporting hyperplane at Xk+i, [puVfk, x8 — xk] 
ê [pfcV/fc, Xk+i — Xk]+[xk+i — Xk, Xk+i — x8]. Thus when k is sufficiently 
large \\x8 — xk\\ <e. There exists therefore s £ 5 minimizing ƒ on C, and 
/ ( * ) è / ( s ) + [V/(a), x~z] + (l/2)4x-z\\\ Since [V/(s), x - s ] è O , 
/ ( ^ ) - / ( « ) è ( l / 2 )A t | | ^ -* | | a ; and therefore 2 is unique. 
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