
FOURIER SERIES IN SEVERAL VARIABLES 

VICTOR L. SHAPIRO1 

0. Preface. This article is a survey of certain aspects of the theory 
of multiple Fourier and trigonometric series. I t is by no means meant 
to be a complete survey; for example, it is practically disjoint with 
the material covered on the subject in Zygmund's book [38, Chapter 
17.]. 

There are eight sections to this survey. §1 is the introduction. §2, 
§3, and §4 are expository in the sense that the main theorems in each 
section are proved. §5, §6, and §7 are descriptive. §8 consists of two 
bibliographies, a bibliography for the survey itself, and a general 
bibliography. 

§2 deals with the now classical theory of the Bochner-Riesz sum­
mability of multiple Fourier series and the Abel summability of 
multiple Fourier series. §3 presents Bochner's counter-example for 
the critical index in summability theory in considerable detail. §4 is 
concerned with the uniqueness of multiple trigonometric series and 
proves the main theorem in the subject so far, i.e. uniqueness under 
Abel summability (due to the present author). §5 describes some 
results in conjugate multiple Fourier series defined by means of the 
Calderón-Zygmund kernel and related topics, i.e. analyticity in sev­
eral variables. §6 deals with the Riemannian theory of multiple trigo­
nometric series. §7 describes some applications to geometric integra­
tion theory and potential theory. 

1. Introduction. Operating in ^-dimensional Euclidean space, £&, 
&==2, we shall use the following notation: 

x = (*i, • • • ,**)> y = (yi, • • • , yk), 

ax + $y = (otxi + &yu • • • , axk + #y*), 

(x, y) = Xiyi + • • • + **y*i \A = (%, x)U2> 

m = (mi, • • • , mk)y (rn, x) = TWXI + • • • + tnkXk. 

With f(x) a function in Ll on T&, the ^-dimensional torus 

{x; —7T < Xj g 7T, J = 1, • • • , k} 

and m an integral lattice point, we shall designate the series 
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m 

by £[ƒ] and call it the Fourier series of ƒ where 

«'T* 

It is the purpose of this paper to give a survey of some of the known 
results concerning S[f] and concerning trigonometric series of the 
form X)m Om«,(m,*). 

With A = d2/dxl + • • • + ô2/d^, we observe that Ae««-*> 
= — | w| V(m>a?). Consequently from an eigenvalue point of view, the 
first natural question to ask concerning S[f] is "In what manner, 
does the series 

E ( L f(f»)e*«"-*>) 
n-l \|wi2-»» / 

approximate ƒ?" Bearing in mind the classical counter-examples of 
Fejer and Lebesgue [37, Chapter 8] concerning the one-dimensional 
Fourier series of continuous functions, we see that the answer to the 
above question should be phrased in terms of some summability 
method. The two most natural methods are those of Bochner-Riesz 
and Abel. In particular, we shall say that S[f] is Bochner-Riesz 
summable of order a, henceforth designated by (B—R, a), tof(x) if 

lim L /(my«"'*>(l - | m |2 /#2) a = ƒ(*). 

Bochner-Riesz summability plays the same role for multiple Fourier 
series that Cesaro summability plays for one-dimensional Fourier 
series. For further comments on summability methods for multiple 
Fourier series, see the classical paper of Bochner [3]. 

We say S\f] is Abel summable tof(x) if 

lim ^ / ( w )^ ( m , a j ) " , m M -ƒ(*)• 

The reason for calling this method of summability Abel summability 
is motivated by the fact that the series 

m 

is harmonic in upper E*+i, i.e. in the variables (x, t), for t>0. 

2. Summability. Given ƒ in L1 on Tk (and real-valued unless ex­
plicitly stated otherwise), we shall say that ƒ is extended by periodic-
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ity to Ek if ƒ is defined in all of Eu and ƒ is periodic of period 2w in 
each variable. Letting B(x, r) represent the open fe-ball with center 
x and radius r and letting \B(x, r)\ represent the ^-dimensional 
volume of B(x, r), i.e. \B(x, r)\ =-2irk^rk/kT(k/2)) the first theorem 
we prove is the following [3, p. 189]; 

THEOREM 1. Let ƒ be in L1 on Tu and extended by periodicity to all 
of E^ and let S[ƒ]=]£»ƒ(w)*i(m'*>. Set 

Suppose that |JB(X0, A)|~\/Wo.*)|/(*)—/(*o)|dx--*() as h—>0. Then 

lim <ni(f, xo) = f(xo) for a > (k — l)/2. 
R-**> 

It is to be noted that this theorem implies that 

<TR(J, *) -» ƒ(*) 

almost everywhere. 
The standard technique for proving theorems of this nature is to 

first establish the analogous result for multiple Fourier integrals 
and then proceed by some form of the well-known Poisson summa­
tion formula [37, p. 68] to multiple Fourier series. We shall establish 
Theorem 1 in precisely this manner. 

If g is in L1 on Ek, we shall designate the Fourier transform of g 
by g and define g in a manner analogous to the Fourier coefficient of 
a function on Tk, i.e. g(w) = (2ir)~kfEke~Kx,u)g(x)dx. 

The first lemma we prove is the following : 

LEMMA 1. Let g be in L1 on Ek. Set 

a. . f t(a?,w) , w | 12 . 2 a 

TR{g> *) = | e g(u)(l — \u\/R)du. 

Suppose that \ B(XQ, h) \ ""VWo.*) | g(x) —g(xo) \ dx—>0 as h-*0. Then 

lim TR(g} xo) = g(xQ) for a > (k — l)/2. 

(For a good introduction to the theory of multiple Fourier integrals, 
see [7, Chapter 2].) 

We first observe from an iteration of well-known 1-dimensional 
theorems and from Lebesgue's dominated convergence theorem that 
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the above lemma is clear for the special case g(x) =e-i*-*oi2# Conse­
quently, with no loss in generality, we can assume from the start that 
g(x0)=0. 

Next we observe from Fubini's theorem and the definition of £ that 

(1) r%(g, x) = (2,r)~* f g(y)dy f »°^"u\l - | uf/Bifdu. 

Now it turns out that we can represent the inner integral on the 
right side of (1) in terms of Bessel functions. In particular, we ob­
serve from [33, p. 60] and many other places that 

%v /» x/2 

J M = I cos (z cos 0) (sin 6)2vdd 
(2) 2 - 1 r ( , + l /2 ) r ( l /2 ) J 0 

for v > — \ 
and 

(3) JWH-IW = I Jt(zsm0)(stoL0)i+l(cos6)*'+ld0 
2vT(v+ 1)J o 

for fx> —1 and v> —1. 
We shall use (3) in the following form : 

(4) f J^s)s^x[l - s*/t2]»ds = 2 T ( F + l)/M+,+i(Ö^+1-" for t > 0, 
J o 

Next, designating the inner integral in (1) by (2w)kHR(x—y), we 
see, using spherical coordinates in Ek (see [13, Chapter 11]) and let­
ting o)k-i designate the (& — 1)-dimensional volume of the unit (& — 1)-
sphere, i.e. o)k-i = 2wkJ2/T(k/2) and co0 = 2, that by (2) 

(2x) HR{x) = co*_2 I (1 - r /R ) r I e (sin 0) <Z0 dr 

= 2o)A_2 f (1 - r1/*1) V " 1 

Jo 

• I cos (r | x | cos 0) (sin 0)*~2d0 Jr 

= 2<*-2>'2r[(£ ~ l)/2]r(l/2)«*-i 

•J o 

It then follows from (4) that 
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(S) Hl(x) - c(k, a)JklHa{R | x | )2Î*/2-" | x \~(*"+a) 

where 

<;(£, a) = 2*>2+^r(l/2)r(a+ l)r[(£ - l)/2](27r)^co*-2 

- 2«T(a + l)/(27r)^2. 

Since the inner integral in (1) was designated by {2Tr)kH%{x—y), 
we have from (1) and (5) that 

T«(ft x) = { g(y)H°R(x - y)Jy 

= c(k, <x)RW~« f g(y)Jk/^a(R | * - y | ) | * - y |-<*'«-«><*y. 

With no loss in generality, we can take #o = 0. Setting G(r) 
=zfB(to,r)\g(y)\dyt we see from (6) that to prove the lemma we have 
to show that G(r)=o(rk) as r—»0 implies that 

I JkI2+a(Rs) | | S |-»'***><Kr(j) = <>(1) aS £ - > 00 . 
0 

To establish (7), we need two further facts concerning Bessel func­
tions (see [35, p. 199]), namely that there is a constant cy such that 

(8) I Jv(s) J = cvs
v as s -> 0 for v > - 1, 

and that 

(9) I Jv(s) I ^ W"1'2 as s-> 00 for *> è - h 

Using (8) and the fact that G(s) =o(sk) as s—>0, we see that 

= 0(1) as JR—> 00. 

Using (9), the fact that g is in L1 on £*, and also that a> (fe —1)/2, 
we see that for every S > 0, 

Rki*-a C " J Jk/2+a(Rs) J J s \-v>i*+«>dG(s) 

£ ck/2+aR-^k-1)l2] f I g(y) I /1 y |«+<n-i>/yy 
, . J Ek-B(0,i) 

= ö(l) as .R—> 00. 



1964] FOURIER SERIES IN SEVERAL VARIABLES 53 

Finally using (9) once again, we see that 

Rkl*~a f I Jk/2+*(Rs) I I s |-»w*><JG(j) 
(12) 

ft 

From (10), (11), and (12) we see that for every 5>0, 

^ c*/2+«£- [a- (*-1) /23 f dG(s)/1 s I w-CH-D/i]. 

(13) 

lim sup i?*'2-" f I Jk/2+a(Rs) I I i \-w+a>dG(s) 

^ cm+a lim sup 2J-i«-»-«/« f dG(s)/ \ s \ W-w-u/n. 
JR-* » «/ 22-1 

But G(s) — o(sk) as s—»0 implies that the right side of (13) goes to 
zero as 5—»0, as an integration by parts shows. Consequently (7) is 
established, and therefore the lemma is established. 

LEMMA 2. Let S(x) be the trigonometric polynomial ]Ci«U«i bmei(m'*y, 
i.e. S(x)=J^mbme^m'x) where bm = 0 for |m| >J2i. For R>Q, set 
*US, *) = D M * * bme«».*>(l - 1 m\ */R*)«. Then for a > ( 4 - 1 ) / 2 , 

<TR(S, X) = c(k, a)R * I S(y)Jk/2+a(R \* — y\)\x — y\ * dy 

where c(k, a) is the constant in (5). 

To prove Lemma 2, set 0(0 = (1-J*)*, O ^ ^ l , and <j>(t) = 0 for 
t*zl. Then since S(x) is a finite linear combination of exponentials, 
it is clear that the lemma will follow if we can show that for fixed 
x and every u 

e*<«.*>0( \u\/R) 

(14) C 
= c(k, a)Rk'2-a I «'<«•*>/*/*f«(U \ x - y | ) | x - y |-<*/2+«>tf;y. 

Set g(w) = ei(w»a;)0(| w| /R). Then g(w) is a continuous function which 
is furthermore in L1 on Eh* If |(y) is also in L1 on Ek, it follows from 
Lemma 1 and the Lebesgue dominated convergence theorem that 
g(u)^fake^^(y)dy. By (8) and (9), Jk/i^(R\x-y\ )|*-y|-<*/«+"> 
is in i 1 on E*. Therefore to establish Lemma 2 we need only show 
that 

i(y) - c(*, a)RW-«JmUR | * - y | ) | * - y |-c*/i+«>. 
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But g(y) =H%(x—y) and this last fact follows from (5). Lemma 2 is 
therefore established. 

LEMMA 3. Let f(x) be in L1 on Tk and extended by periodicity to all 
of JSfc. Then there exists a sequence of trigonometric polynomials 
{Sn(x) }fl

w
al such that JTh\ S

n(x) —f(x) | dx—»0 as n-* oo. 

Set 

(so that Kn(t) is the well-known Fejer kernel), and set Sn(x) 
= (2w)-kfTkKn(yi) • • • Kn(yk)f(y+x)dy. Then, for 0 < 0 < T T , 

f I S*(x) -f(x) \dxS f • • • f JTn(yi) • • • Kn(yu)dy 

ƒ 
as w—> oo, and Lemma 3 is established. 

We are now ready to prove Theorem 1. We first observe from (5), 
(8), and (9) that there is a constant N(af R) and an ?j>0 such that 
for x in Ek, \H%(pc)\gN(a, R)[l + \x\]-<k+'\ Consequently, the 
series 

£ E"R{% + 2wm) = HB\x) 
m 

is absolutely convergent, and furthermore 

lim ]T) 3R(X + 27rm) = Z7JR (#) 

uniformly for x in a bounded domain. 
Let {S'(x) }™+1 be the sequence of trigonometric polynomials given 

by Lemma 3. Then by Lemma 2 for x in a bounded domain, 

(5/,*)« f tf(y)A(x-y)dy 

= lim X) I ^(y + 27rw)j& (̂̂  — y — 2wfn)dy 
Ri-+*> \m\SRx J Th 

= lim E f S*(y)HR(y - » + 2*w)c*y 
Bi-»«> \m\gRi J Tk 

= f Si(y)nT(y - x)dy. 

file:///m/SRx
file:///m/gRi
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Consequently since H%*(x) is a continuous periodic function and 
since <r%(S3', x)-*o%(J, x) as j—><*>, we conclude that 

'R(J, X) = f f(y)H*R°(y - »)dy. OTR 

1 n 
Observing that ƒ(y)(1 +1 y—#| )~(A+1ï)) is in L1 on E& for fixed x 

since /B(o,5l-fi)-B(o,«1)|/(^)|rfj = 0(i?i""1) as Ri~->oo, we see that we 
can reverse the above argument and obtain that 

(15) *l(f,x)~ f f(y)Hl(y ~ x)dy. 
J Ek 

To prove the theorem with no loss in generality we can assume 
xo = 0 and /(xo) = 0. Then locally the same proof will apply here as 
applied in the proof of Lemma 1 (as can be seen easily by comparing 
(6) and (15)). Therefore to complete the proof of this theorem we need 
only show that for fixed ô>0, 

(16) lim f f(y)Hl(y)dy - 0. 

But 

Rm-a C I f(y) I Jk/Ha(R \y\)\y |-»/i+«> dy 

_ r \f(y)\ 

and the proof of Theorem 1 is complete. 
We next prove a theorem concerning the Abel summability of 

multiple Fourier series which is a ^-dimensional analogue of the well-
known theorem of Fatou. (For another analogue which is useful, see 
[26, p. 606].) 

THEOREM 2. Let ƒ be in L1 on Tk and extended by periodicity to all 
of Ek. Let S[f] = J^mfMeHmtX) and for t>0, set 

At(f,x) = E/W«'°" , , ,"w<« 
m 

Also set 

&-(x) « lim sup | B(xf h)\~l I f(y)dy 

and 
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P-(x) = lim inf | B(x, h) \~l f f(y)dy. 

Then 

#-(#) ^ lim inf A *(ƒ, x) g lim sup 4̂ *(ƒ, #) ^ /3~(x) 
«-•o i-»o 

To prove Theorem 2, we proceed in a similar manner to the proof 
of Theorem 1. First let g{x) be in L1 an Ek. Then for />0 , 

/
£(y)e*<V'*>-\v\*dy = (2ir)-* I g(«) I e ^ - ^ H v i y y Lfa. 

By (2) and (4) 

/
ei(x,v)-\v\tdy = Wjb_2 I e-rtrk-\ I e<|«|r cos »( sJn 0)*-2J0 <Jf 

^A ^ 0 L •/ 0 J 

= 2»-*)/*r[(*-i)/2]r(j)«*., 

. f V'V*-1/(&_2)/2(f | »| )(f | »| )-(M)/Vr. 
•J o 

Now, as easily seen, the following formula [35, p. 386] holds: 

ƒ
• 0 0 

o 

2a(2ô)T(v + 3/2) 
(a2 + 62)'+8/V7T 

Setting &» = 2^T[(*-l)/2]r[(*+l)/2]«»_i(2T)-*, we conclude 
that for t>0, 

f |(y)e«»^)-l»l«iy = bkt f g(«)[*2 + I * - « l 2 ] - ^ 1 " 2 ^ . 
Ek •* Ek 

Using the same techniques to pass from Fourier integrals to 
Fourier series that we used in the proof of Theorem 1, we conse­
quently obtain that 

(17) At(J, x) « but f f(u)[t* + | x - «fl-CH-D/y*. 

To prove Theorem 2, we see first that it is sufficient to establish 
lim sup^o At(Jy x) ^(3~(x). Next, we observe that we need only estab­
lish this last fact for the special case x = 0. In other words to prove the 
theorem, it is sufficient to show that 
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(18) limsup^,(/, 0) g/8-(0). 
<-*o 

If j(3~(0) = + °° 1 then (18) is immediate. Two cases then present 
themselves, either j3"~(0) is finite or j3~(0) = — 00. (18) will be estab­
lished in both of these cases if we can show 

(19) if 0-(O) < T, then lim sup At(f, 0) g 7. 

We now establish (19) and consequently the theorem. 
We set 

(20) /r(0) = I J3(0, r) h f f(u)du, 
J J5(0,r) 

and by (19) choose 5>0 such that for 0 < r < 5 , jfr(0)<7. Observing 
that ƒ(«)/!«! *+1 is in Ll on Ek-B(0, 5), we then obtain from (17) 
that 
lim sup A <(ƒ, 0) 

S h I B(0,1) I lim sup t f [t2 + r2]-«+1»2drkf r(0) 

g h I JB(0,1) I (* + 1) lim sup t f f*+!/V(0) [t2 + r»]-(H-«)/«f 
*-»o •/ 0 

^ 7&* I 5(0,1) I (A + 1) f /*+1[l + *']-<*+»/»#. 
J 0 

But 6*|S(0f l)|(yfe + l ) /o"^+ 1[ l+^]- ( A + 3 ) / 2^=l , (19) is established, 
and the theorem is proved. 

It is clear that one also could prove results along the lines of non-
tangential Abel summability (see [37, p. 101 ]) but we will not con­
cern ourselves with matters of this nature here. 

For other versions of the theorems proved in this section see [6, 
Chapter 2] and [l l , Chapter 4]. 

3. Critical index. In this section, we shall examine in detail the 
situation that prevails in Bochner-Riesz summability (Theorem 1) 
when a equals the critical index (fe —1)/2. Some rather interesting 
things occur. In the first place, a result is obtained for functions in 
Ll on Eu whose analogue is false for functions in L1 on Tk where as 
usual k^2. In the second place, the result is true in one-dimension 
for functions both in L1 on £1 and in L1 on TV (The critical index for 
k= 1 is a = 0 which is the same as ordinary convergence.) 

THEOREM 3 [3, p. 186]. Let g be in Ll on E*. Set 
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T«~1)/2(g, *) = f ««•••>$(«)[! - I M | V - R 2 ] ( W > / ^ « . 
«J BfO.RI 

Suppose there exists a ô > 0 ÎWCÂ <Âa/ g(*) = 0 /o r # i« 23(0, Ô). r fo» 
l i m B . c o r r i ) / 2 ( g , 0 ) = 0. 

By (6) we observe that 

(21) 
= c[k, (k - i)/2]B}i* f g(y)Jk-i,i(R \y\)\y \-w>dy. 

J Ek-B(Q,d) 

On the other hand, by [35, p. 199], there exists a constant dp such 
tha t for r>0 and * ^ l / 2 , 

(22) | / , ( r ) - 21/2(r7r)-1'2 cos [r - TT/4 - VTT/2] | ^ dvr~*l\ 

We consequently conclude from (21) and (22) that to establish 
Theorem 3, we need only show that 

(23) lim f g(y) cos [JR | y | - kir/2] \ y \~Hy = 0. 
B-*oo J Ek-B(Q,8) 

But (23) follows immediately from the Riemann-Lebesgue lemma 
for functions in Ll on E\ and the proof of Theorem 3 is complete. 

We next establish the ingenious counter-example of Bochner [3, 
p. 193] showing that the analogue of Theorem 3 is false for functions 
in Ll on 7*. 

THEOREM 4. Given 1 > 5 > 0 , there exists a function f in L1 on Tk 
such that f (x) = 0 in 22(0, 8) and such that 

lim sup | <TR (ƒ, 0) | = o o , 

where <rg~1)/2(/, x) = £ M r f /(f»)««<«*>(l- | m\ 2/i?2)<*-1)/2, 

To prove Theorem 4, we set 

(24) £ 2J <? (1 - I m I /JR ) = **(*), 0 â 0, 

and shall write ^ ( t f ) as $#(#). Then it is easy to show using the 
standard techniques that Theorem 4 will follow once we establish the 
following: 

there exists an x0 in Tk — B(0, 6) and an increasing sequence 
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(25) {RJ}J^I such that lim | $#,.(#0) | == °°. 

For consider the Banach space (B consisting of all real-valued func­
tions in Ll on Tk which vanish almost everywhere in B(0, 5). Then 
<^-~1)/2(/> o)==(27r)-kfTJ(x)$Rj(x)dx gives rise to a sequence of 
bounded linear functional Fj on (B, i.e. Fs(f) = <T%~m(f, 0). If the 
conclusion to Theorem 4 is false, then supy | Fj(f) | is finite for each 
ƒ in (B. But then by the Banach-Steinhaus theorem, supy||^|| is 
finite. However 

||Fy|| = (2*)-* sup I **,(*) I . 
x In Tk-B(0,o) 

Therefore \\Fj\\ ^(2r)"k
 \$RJ(XO)\ with XQ given by (25), and conse­

quently supy J &RJ(XQ) I is finite. But this is a contradiction to (25) ; 
and we conclude that Theorem 4 is valid. 

Therefore to establish Theorem 4, we only need to establish (25). 
We shall show even more (see Lemma 6 and the paragraph preceding 
it), namely lim supa-*, | $JR(#) | = °° except possibly for a set of meas­
ure zero in TV In order to do this we need a sequence of lemmas the 
first of which is the following: 

LEMMA 4. Let f if) he a real bounded measurable f unction m O < K < » 
for which 

a(s) = lim T~l f f{t)e-istdt 
T-*«> J 0 

exists for every s in 0^s< <*>. Then a(s) is different from zero for at 
most a countable set of number ss which we shall denote by S = {sus*, • • •} . 
If the numbers in S are linearly independent with respect to integer 
coefficients, then 

\a(s1)\ + \a(s2)\ + • • • < 00. 

(We say the numbers in 5 are linearly independent with respect to 
integer coefficients if (ci, • • • , c») is a set of integers with £ ? + • • • 
+ 4 ^ 0 , then J X i cjSj9*Q.) 

We first note that indeed a (s) 5̂ 0 for only a countable set of non-
negative real numbers. For let rx, • • • , rn be a set of distinct non-
negative real numbers, then 

(26) r-1 ƒ T [f(t) - Ê a(r,y'*•] [ƒ(<) - Ê «(r,)*-*/'] it è 0. 

Letting M be the LM-norm of ƒ on (0, <») and observing that for 
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/MO, T-ijZeV'dt-tO as T-^oo, we see from (26) that X)?-i |*0v)|* 
SM%\ consequently the set 5 of the lemma is at most countable. 

(Note that zero is not in S because of linear independence.) 
Next for sy in S, we write a(si) = | a (sy) \ erfy and form 

(27) Kq(t) = Ù K(sjt - ft) ^ 0 
y-i 

where X(0 = l + ( ^+e^02~ 1 = l+cos *^0. 
Then from (27) we observe that 

(28) Kq(t) = 1 + 2-1 X) [c'*'f*-<* + r**V*] + JR«(fl 

where i£fl(0 is a finite linear combination of e*(w*--••+«<*««)< with 
€p = 0 or ±1 and at least two ep are different from zero. Consequently, 
because of linear independence, €iSi+ • • • + eqsq is not in 5 and not 
equal to zero. Likewise — (eiSi+ • • • +eqsq) is not in S and also is 
not equal to zero. Therefore 

(29) lim r - 1 f f(f)Rq(f)dt = 0 and lim T~l f Rq(t)dt = 0. 

We conclude from (28) and (29) that 

lim F"1 f f(t)Kq(t)dt = 2-1 J ) [âfe)e~^ + a(sj)e^'] 
T-+<» J o y-1 

- t l«w| . 
y-i 

On the other hand by (27), (28), and (29) 

lim T-1 f Tf(t)Kq{t)dt g M lim T^1 f Kq{t)dt = Af. 

We conclude that 

y-i 

and Lemma 4 is established. 
From Lemma 4, we see that the first step in establishing (25) is to 

show that Br1J^T{x)er{Kfdr tends to a finite limit for 0gX< oo. We 
do this with the following lemma: 

LEMMA 5. If x is not of the form 2irm where mis a lattice point, then 
for each X in 0 ̂ X < oo 
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ƒ> R 

$r(%)e-iXrdr 
0 

exists. It equals 0 if X^XmOxO for every m% and it equals ^ |Xm(x) |~* 
if X = Xm(#) where 

\m(x) = J 2irtn — x \ 

and Ck is a nonzero constant. 

To establish Lemma 5, we first establish the following remark 
[31, p. 91]. 

REMARK 1. Let g he a continuous function in Ll on Eh and let g be 
its Fourier transform. Suppose there exists a constant A and an e > 0 
such that \g(x)\ ^ , 4 (l + | x | )-<*+<> and |g(x)| ^ 4 (l + | x | )-<*+<>. Then 

(30) X) g(x - 2wm) = X) £(»0e«m'*>. 

To prove the above remark, we note that both sides of (30) con­
verge absolutely uniformly for x in any bounded domain and repre­
sent periodic functions of period 2ic in each variable. Furthermore, 
the m0th Fourier coefficient of the right side of (30) is |(wo). The 
m0th Fourier coefficient of the left side of (27) is 

(2TT)-* I *-«»o.*> ]T) g(* ~ 2icm)dx = (2TT)-* I g(x)er^m^^dx = g(w0) 
J Tk m J Ek 

and the remark is established. 
Taking g(x) in Remark 1 as Jk+^1/2(R\x\ )/\x\ *+*-*/*, i8>0, we ob­

serve from (14) with a= ( * - l ) / 2 + / 3 and c(*, a) ==2«r(a + l)/(27r)*/2 

that 

c(*,(*-l)/2 + ̂ /Mif e - ^ ^ f 1 ^ ^ 

= (1 - | y |*/2î*) <*-»/«* for | y | < i? 

= 0 for | y | > # . 

We conclude from Remark 1 and (24) with 

b(k, 0) = c(k, (* - l ) /2 + /3)(27T)*+1'2 

tha t 

« JCM)*1'* ~ .W-i/*[*X.(*)] 
(3D • , ( , ) - — — . Ç M a ; ) ] w / 2 • 
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We next obtain from [35, p. 197] that there exists a constant A(k) 
such that for 0 < j 8 < l / 4 and / > 0 , 

| Jw-1/2(t) - (2/TT/)1/2 cos [ * - ( * + /9 )T/2] I < A(k)/L 

Consequently from (31), we see that for 0 < / 3 < l / 4 and i ? > 0 , 

[R\m(x) - (* + fi)*/2] 
**(*)- [KM) A] Ecos-

M*)]** 
< B(k)/Rli* 

where -4 (k) and J5(Jfe) are constants depending on k but not on /3. (Of 
course, 5(e) also depends on x, which is fixed and not of the form 
2iwi.) 

Therefore for R>0 and 1 / 4 > J 3 > 0 , 

(32) 

ET1 f\l(x)e-mdr - Kk,M2,Bfl'Zif"»n'n f 
«J 0 w V * C 

+ ^ ( W ) T T / 2 f e~MXTO(x)+X]^l / [ X m ( x ) ] ^ < 

e dr 

2B(k) 

o ; / i R112 

If X^X m (x ) for every la t t ice po in t m, we see from (32) t h a t 

/

> R 

~ o 
— I $r(%)e-irXdr 
RJ o 

b(k, 0) — eriV+fi'HleiChmM-VR - i ] 
2-d 

2TR » i[\m(x) - \][\m(x)]»+e 
b(k, p) — «*(HP)*/8[r«a.w+x)« - i ] 

2Lt 
2TR T «M^+XlM*)]*4* 

Pass ing t o t h e l imit as /3-H>0, we see t h a t for R>0, 

2B(k) 

RW ' 

R-1 f *,(*) e~Mdr 

+ 

b(k, 0) ^ [enxTO(«)-MB _ i ] 

2irR T 

»(*, 0) 

*M«) - X]M*)]» 

5 2 e«*»/*-
[e-»[x».fc :*>+XIB 

2TR "Z *[\m(x) + X][X.(*)]* 

Consequen t ly if X^Xm(«) for every m, 

2B(k) 

RV* 

ƒ* B 
$r(x)e-irHr = 0. 

o 
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On the other hand proceeding as above we see from (32) that if 
X = Xmo(x), 

MW^)F 
Since 

lim Br1 J $r(x)e~iXrdr = 

b(k, 0) 
= ^ T ) * - 1 ' * ^ * , (ft - l)/2) 

(27T)*-1'2 

= ^ r 2 W - 1 ) / 2 r ^ + 1/2), 

we see that the lemma is established. 
Since every x in Th — 0 is not of the form 27rw and since further­

more y^m |Xw(x)|~* = + 00, we see from Lemmas 4 and 5 that we 
cannot simultaneously have s u p o ^ o ( ^ ( x ) ] < 00 and {Xm(x)}M 

linearly independent with respect to integer coefficients. Conse­
quently to establish (25) and therefore the theorem, it is sufficient to 
establish the following lemma ([3, p. 190] and [30, p. 166]): 

LEMMA 6. The sequence {\m(x) }mis linearly independent with respect 
to integer coefficients for almost every x in Z&. 

Let {m?'}jli be an enumeration of the lattice points in E*. We first 
observe that Xm/(x) is a real-analytic function of x in Ek — 2irm1\ and 
consequently for integers Cu * * • , cn with c?+ • • • H-c^O, 
X X 1 Cj^mjix) is a real-analytic function in E& except at the distinct 
points 27rm\ • • • , 2Trmn. Let i4Cl...Cn be the set of points x in E& 
such that X X i c3\mj(x)~0. If Aci...en is a set of positive measure, 
then it is not difficult to show that 

n 

(33) ]T) Cj\mj(x) = 0 for all x in E*. 

But (33) is impossible if c?+ • • • +cl?*0. For suppose c^^O. 
Then (33) implies that d\mn(x)/dxi tends to a finite value as x—>2irm'1. 
On the other hand an easy computation shows that 

lim d\mh(x)/dxi 

does not exist. We conclude that ACx.. .Cn is of measure zero in E&. 
Let A designate the (countable) union of all such Acl...Cn. Then 

A is of measure zero in E&. If x is not in A, {\mi(x) }?L1 is linearly in­
dependent with respect to integer coefficients. The lemma, and con­
sequently the theorem, is established. 
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We close this section by stating some recent theorems of Stein 
concerning Bochner-Riesz summability of multiple Fourier series at 
the critical index a= {k —1)/2. 

Let C(x, r) be the (k — 1) -sphere which is the boundary of the &-ball 
B(x, r), and, as before, let cok-i be the (& — l)-volume of C(0, 1), the 
unit (fc — l)-sphere [see the paragraph between (4) and (5)]. 

Setting fr(x) = (o)k-irk~~l)~~lJc{x,r)f(y)dc(y) where dc(y) is the natural 
(& — l)-volume element on C(xt r), and setting ô(x, r)=fr(x)—f(x), 
we shall say ƒ satisfies a Dini condition at x if there exists an rj > 0 
such that 

ƒ ô(x, r) | dr < oo. 

The following theorem then prevails [31, p. 107], 

THEOREM 5. Let \f\ log+ | / | be in L1 on Tk and let f be extended by 
periodicity to all of Ek. Also, let S[f] = ^2m}(m)ei(^m'xK Suppose that f 
satisfies a Dini condition at xo. Then 

lim X) /(flO«*<»*>>(l - \m\*/R*)<*-1»* a / W . 
R~*co \m\£R 

We note that if ƒ is in I? on Tk for p> 1, then | ƒ) log* | ƒ] is in L1 

on Tk and that the case ƒ is in L2 on Tk is already contained in the 
original paper of Bochner [3, p. 207]. 

For the proof of the above theorem, we refer the reader to Stein's 
paper [31 ]. The essential idea in the proof is to make a non trivial 
estimate of the difference of the corresponding "Dirichlet" kernels on 
Tk and Ek, i.e. of the difference 

]T e««.*)(l - | m | 2 / # 2 ) ( * - 1 ) / 2 - - f e«*.y)(l _ \y\*/R*)<*-»l*dy. 

Stein furthermore puts the critical index in proper perspective by 
establishing the following generalization of Kolmogorov's classical 
result on one dimensional Fourier series. 

THEOREM 6. There exists an f in L1 on Tk with S[f] = ^2mf(m)e^m»x) 

such that for almost every x in Tk, 

lim sup 
B-*oo 

« + 00. 

For the proof of the above theorem, we refer the reader to Stein's 
paper [30, p. 165]. The essential idea in the proof is to apply a theo­
rem proved in the paper concerning weak type operators. 
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4. Uniqueness. We now turn our attention to a different aspect of 
multiple Fourier series, namely the uniqueness theory of multiple 
trigonometric series. 

In view of Theorem 2, one is led naturally to the following question : 
If lim^o+ 2 J » «m^*(m'a;)~,mU = 0 for all x in Tk, is am = 0 for all ml 
Since the series with coefficients am defined by am = 0 f or ml + • • • 

-{-ml^o and am = mi for m%+ • • • +ml = 0 has the property that 
lim^o+ Zmöwei(m'a!)~|m|< = 0 for all x, we see that another condition 
is needed on the am in order to answer the above question in the 
affirmative. A natural condition, in view of the above, is 
^R-i<\m\^B I am\ — o(R) as R-*oo. The following theorem established 
by Shapiro [25], prevails. 

THEOREM 7. Given the multiple trigonometric series X)w amei(m'x) 

where the am are arbitrary complex numbers. Suppose that 

(ii) lim^o Ylmamei(m'x)-Mt=-0 for x in Tk-Ö. 
Then am = 0 for all m. 

Before proving the above theorem, we would like to make a num­
ber of comments. In the first place, in view of the preceding remarks 
the condition (i) cannot be replaced by ^R-i<\m\sR \am\ =0(.R) as 
R—» 00. In the second place the above theorem is false in one-dimen­
sion (we are assuming throughout this survey that k ̂  2) as is easily 
seen from a consideration of the Fourier-Stieltjes series of the unit 
mass placed at the origin in I\. However, if (ii) is replaced by the 
condition "0 in all of TV' then the above theorem is true in one-
dimension and is due to Verblunsky. (For a history of the aspects of 
the above theorem, see [37, pp. 382-383] and many other places.) 
The ^-dimensional version requires several new and interesting ideas. 

A much more general version of Theorem 7 involving upper and 
lower limits of the Abel partial sums and functions in L1 on Tk actu­
ally prevails. For the full statement and proof of these theorems due 
to Shapiro, we refer the reader to [25] (and also to [27, Chapter l ] 
where analogous theorems for the two-sphere are established. See also 
[19; 12; 17; 18]). 

In order to prove Theorem 7, we first need the concept of an upper 
and lower generalized Laplacian which we define as follows: 

Let G(x) be a function in L1 in a neighborhood of the point #o, then 
using the notation previously introduced (see (20)), set 67»(#0) 
= |JB(x0, h)\""1fB(x0,h)G(x)dx. Then we call A*G(xo) the upper gen­
eralized Laplacian of G at x0 and define it by 
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A*G(*o) = 2(* + 2) limsup [G»(*o) - <?(*«)]/**. 

In a similar manner, we define A* using lim inf/».*o. 
I t is to be noticed that if G(x) is also in class C2 in a neighborhood 

of XQ, then A*G(xo) =A*G(xo) = AG(x0) where A designates the usual 
Laplace operator. 

The following lemma then prevails: 

LEMMA 7. Let G(x) be a function in L1 onTk and extended by periodic­
ity to all of Eh. Let S[G]= ]F)W 6(m)e*<m»x> and for t>0, set G(x, t) 
= ]£ m G(m)ei(m*x)-^m^. Suppose limt^o+ G(x0l t)=G(xo) exists and is 

finite. Set 7*(x0)=lim sup*-o+ — ]C»»| m\ 2G(m)eiCwl»xo)~",w,,' a^d de/me 
7*(#o) similarly using lim inf*_>0+. TAew 

(a) A*G(#o)^7*(#o) <wid 
(b) 7*(^o)^A*G(xo). 

(For the one-dimensional analogue of the above result see [37, 
p. 353].) 

To prove the lemma it is sufficient to prove (a), for (b) will then 
follow by considering — G(x). With no loss in generality, we can also 
assume that Xo = 0 and G(0) = 0 . 

If A*G(0) = — oo, or if 7*(0) = + oo (a) is already established, so 
we can also assume that A*G(0) > — oo and 7*(0) < + oo. 

Suppose (a) does not hold. Then there exists a constant rj such that 
A*G(0)>rç>7*(0). Since we can find a periodic function X(x) which 
is in class C00 with the properties that A(0) = 0 and A\(0) = 77, we can 
assume that rj = Q. We prove the lemma by showing that A*G(0) 
> 0 > 7 * ( 0 ) leads to a contradiction. 

First suppose 7*(0) < 0 . Then with G*(0, 0 designating dG(0, t)/dt 
we observe that lim sup^o — G**(0, i)=y*(0)<0. Consequently, 
Gtt(0, t)>0 for t sufficiently small, and therefore for t sufficiently small 
G*(0, t) is an increasing function of /, i.e. there exists a h>Q such that 
G*(0, /) is an increasing function in the interval 0<2<£o. Also 
G(0, t)/t = Gt(0, s) where 0<s<t by the mean-value theorem, since 
lim*H.oG(0, t)—0. Therefore lim sup^o d[G(0, t)/t]/dt<0 is incom­
patible with the fact that G*(0, t) is an increasing function for 
0<t<t0. Consequently, if we can show that 

(34) if A*G(0) > 0, then lim inf - d[G(f), t)/t]/dt > 0, 
*-»o 

we shall have arrived at a contradiction. 
We now establish (34). Observing that 15(0, r) | Gr(0) =fiHo,r)G(u)du 

we obtain from (17) that for t>0, 
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G(0, t)/t = A f [t' + r*]-«+l»2dr*Gr(Q) 
J 0 

•J 0 
rwGr(0)[^ + f2]-^+s>/2(/r, 

where A and -4' are positive constants. Since G>(0) = 0(1) as r—> 00, 
we conclude that 

(35) 4~G(0, /)/*]/# = il"/ f r*+1Gr(0)[/2 + r«]-»+*)/«^ 
J 0 

where A" is a positive constant. By the assumption in (34), there 
exists hQ>0 such that for 0<r<6t Gr(0)>r2ho. We thus obtain from 
(35) that 

lim inf 4 - G ( 0 , *)/*]/<» ^ 4 " lim inf * f rk+*h0[t2 + r2]-<*+5>/2tfr. 

ƒ
» 00 

0 0 

> 0 ; 

(34) is established, and the proof of the lemma is complete. 
We now prove the theorem. From a consideration of the series 

2m (Pm+à-m)ei(mt*) and 2»*(0»-""£-»)s'Cm'*)f we see from the start 
that it is sufficient to prove the theorem under the additional as­
sumption am — a-m, which we shall henceforth make. 

We next set for / > 0, 

f(x, t) = 2 amei(m'x)-Mt
9 

m 

fi(x, t) = - X am\m\-1ei(-m^-^t, 

(36) ^ ° , , 

ƒ*(#) = lim sup ƒ (Xj t) and ƒ*(#) = lim inf/(#, t), 

and observe that 

(37) for x in Tk ~* 0, lim/i(#, /) and lim F(x, t) exist and are finite. 

To see this, fix x in 7& — 0. Then by (ii), there exists a constant 
K depending on x such that |/(x, /) | SK for 2>0. Then by the 
mean-value theorem for 0 < h < hf there exists an $ such that 
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\fi(x, t2)—fi(x, ti)\ = | ƒ(#, s) — ao\ (/2—/1) where 0 < / i < s < / 2 . There­
fore, jfi(x, 0 satisfies the Cauchy criterion for convergence and the 
first part of (37) is established. Repeating this same argument for 
F(x, t) establishes the second part. 

Using (37), we define the periodic function F(x) in Ek for x^lirm 
by F(x) = lim^o F(x, t). As is easily seen, (i) implies that 
]Çm^oJ #m IVI m 14 < 00. Consequently F(x) is in L% on Tk and S[F] 
= ~" ]C*^o ame^m»x)/\m\2. Using the notation of (20), (i), and the 
fact that jB(x, h)\^lJB{xth)ei{m'y)dy^iike^m'x)Jm{\m\ h)(|m\ ft)~*/2 

where /x& is a constant depending on k but not on rn, we conclude 
that for h>0, 

(38) Fh(x) = - uik E anJmi I « I h)e«»")/ \ m |2( | m \ h)*"K 
wi^O 

(Note that it is clear from (38), that /xi"1 = lim^o Jm(t)t~~kl%. Also, 
note tha t the series in (38) is absolutely convergent.) 

We next obtain from (ii), (36) and Lemma 7 that 

(39) A*F(x) è - ao and A*F(x) £ - a0 for * 5̂  2TTW. 

Consequently, it follows from well-known theorems concerning 
generalized Laplacians [21, p. 14] that if B(x0, ho) contains no point 
of the form 2wm and if F(x) is continuous in B(xot ho), then (39) im­
plies that FOxO+aoltfl 2/2k is actually harmonic in B(xo, ho). 

We now show that given such a B(xo, ho), F(x) is actually continu­
ous there, which is the heart of the whole proof. In order to accom­
plish this, we first need to establish some more facts concerning F(x). 

We set <*i(0 = supo<A£«sup* in Tk \Fh(x) — F(x, h)\ and shall show 
that 

(40) lim at(f) = 0. 
i-*o 

I t follows from the definition of F(x, h) in (36) and Fh(x) in (38) 
that 

sup | F * ( * ) - F ( * , A ) | 
(41) a: in Tk 

^ E k l |^,m,*-M*/*/«(w|*|)(|«i|*)"*/fl l^h1. 

We split the sum on the right side of (41) into two parts, Ah and 
Bh with Ah designating the sum over the lattice points m} l g I m 
£hrl, and Bh designating the sum over the lattice points m, \m 
èzhr1. To establish (40), it is sufficient to show that limjuo-4* = 0 
and lim/uo5& = 0. 

Observing that there is a constant K such that 
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| e-r - txkJk/2(r)r-kl2 | g Kr for 0 g r < 1, 

we see from assumption (i) of the theorem and (41) that 

Ah^Kh £ \am\ \m\-* = ho{lrl). 

Therefore, lim^o ^ = 0. 
Using the fact that there exists a constant K such that | Jk/i(r) \ 

SKr~ll2
y we obtain from (41) and from assumption (i) of the theorem 

that for h small, 

ƒ• 00 /* oo 

e-rhr~ldr + ö(^-(A+l)/2) J r-(A+3)/2^f# 

We conclude that limjuo-B/^O, and, consequently, that (40) is 
established. 

The next fact we establish concerning F(x) is the following: 
Set o&(0 =supo<fcîS« supis_.pi sft,* and p in Ek \ Fh(x) - Fh(p) | . Then 

(42) lim a2(t) = 0. 

By (38), 

sup | Fh(x) - Fh(p) | 
\x— p\£h,z andjp in Bk 

â SUp fik ]j£ 
l3-2>U»,a;andp in J^ lz\m\$brl 

• { | Om\ \Jhii{\m\h)\ ( | m | *)-*/»| w | - * | ^ - ' * > -««<*.*> | } 

+ 2M* D l ^ j \jk/2(\m\h)\(\m\h)-^\m\-2 

A-^lml 

To establish (42), we have to show that both Ah and Bh tend to 
zero as h goes to zero. Tha t lim/uo Bi = 0 was already shown when 
we established (40). For A{, we observe that 

Ai gju* E | a » | | / . / 2 ( | m | ^ ) | ( | m | ^ ) - * / 2 | m | - 2 | m | / i 

go(i)* E l«»l I«h 

g 0(l)*o(*"1). 

Consequently, l inu-o^a' = 0 and (42) is established. 
Next, using the fact that ƒ(x, t) is continuous for t>0 and periodic 

in the x variables, we select a sequence h>h> • • • > / » • • • —»0such 
that 

(43) 

supis_.pi
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(44) sup sup | f(x91) - ƒ(*, tn)\ g 1. 
x in Ek tn+i£ ta tn 

Now, let B(x0l ho) be an open fe-ball whose closure B(xo, ho) con­
tains no points of the form 2Tfn, m an integral lattice point. We 
propose to show that ,F(x)+ao|x| 2/2k is continuous in B(xo, ho)* By 
(ii) of the theorem, lining \f(x, tn)\ = 0 for x in B(x0y h)- Conse­
quently if ~E(y, s) C.B(x0) ho), s > 0 , there exists (by the Baire category 
theorem, see [37, p. 29 (12.3i)]) £ ( / , s ' )C3(y , s), s'>0, and a con­
stant K such that [ƒ(#, / n ) | ^K for x in B(y', s') and w= 1, 2, • • • . 
But, then by (44), |jf(*, 0 | ^K + l for 0<*^*i and x in B(y', s'). 
Employing the same technique used in establishing (37), we obtain 
tha t / i (x , t) and F(x, t) converge uniformly as /—»0 for x in B(y', s'). 
Consequently, F(x)+a0\x\2/2k is continuous in ~B(y', s'), and we 
conclude that the set of points ZC.B(x0, ho) at which F(x) +a 0 j x\ 2/2k 
is not continuous must be nondense (nowhere dense). 

We next observe that Z contains no isolated points. For if z0 were 
an isolated point of Z, then there would exist s0>0 such that F(x) 
+ao\ x\ 2/2k would be harmonic in the punctured &-ball B(zo, 2so) — £o. 
Therefore by (37), (40), (42), and the mean-value theorem for har­
monic functions, for x in B(z0, h) —Zo and 0<h<s0 

| F(zQ) + ao I zo 12/2k - F(x) -QQ\X\2/2k \ 

= J?(so) + Go|*o|2/2& 

- lF\*o-x\(x) + "o f 1 y\*dy/ | B(x, \ zo - x\ ) \ 2k}\ 
\ J B(.x,\zQ-x\) J I 

Û | F ( z o ) - F u , _ „ ( * ) | 

+ | o«| I f ( M 2 - \z0\*)dy\/\B{x,\zn-x\)\2h 

^ | i?(z0) - F(z0, | Zo - * | ) | + | F(z0, | Zo - * | ) - Fi^-^Zo) | 

+ | F|,0_*|(«o) - Fu.-ziO) | + o(l) 

g o(l) + ai(h) + ai(A) 

^ o(l). 

Consequently, lim*^^ <F(#) + a0\x\ 2/2k — .F0so) + a0\zo\ 2/2k. We 
conclude that Z can contain no isolated points. 

Next, let Z designate the closure of Z. Since | /(#, t)\ —>0 for # in 
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Z and since Z is a perfect, we can obtain once again from the Baire 
category theorem and (44) that if Z is a nonempty set that there 
exists a zQ in Z and an s0>0 with ~B(zo, 2SQ)C.B(XO> ho) and a constant 
K such tha t 

(45) I ƒ(*, 0 I ^ K + 1 for 2 in ZB(*0, 2 J 0 ) . 

We propose to show that F(x)+ao\x\2/2k is actually continuous 
a t 0o, and consequently that Z is the empty set, i.e. F(x) +a,o\ x\ 2/2k 
is continuous in B(x0l ho). 

Employing the same technique used in establishing (37), we see 
from (45), tha t fi(z, t) and F(z, t) converge uniformly as t—»0 for z 
in ZB(zo, 2SQ), and consequently since this latter set is closed that 
F(x) is continuous for x restricted to ZB(z0t 2s0). Therefore given an 
€>0, choose si such that 0 < s i < s 0 and such that 

(46) J F(z) - F(z0) I < e for z in YE (z0, *i). 

Next, using (40), (42), and (45) choose 52 such that 

ai(s) < e and a2(s) < « îox 0 < s < S2; 

I ao J (2 J Zo I + Ss2)s2 < e; 

I F(z, s) - F(z) J < € for 0 < * < s2 and z in 2f£(z0, 2s0) ; 

2s2 < si. 

We propose to show that 

(48) I F(x) - F(zo) I < 5e for x in B(z0, s2). 

If x is in B(zo, s2) and x is in Z, then (48) holds by (46) and (47). 
We can therefore suppose that x is in B(z0, s2) and x is not in Z, Let 
z' be the closest point in Z (or one of the closest if more than one 
exists) to x. Then \z'—x\=sz<s2 and F(y)+a0\y\2/2k is a har­
monic function in B(x, S3). Therefore, 

I F(x) - F(zo) I â I F(x) - F(«0 I + ! W - W I 

g | F.,(*) - F(«') I + I aoj 

(49) <2k)-i I f [| y\2 - I * | » ] i y | I * (* , '« ) I"1 

+ I F(z') - F(Zo) I 

^ I F„(«) - F(z') I + 2e, 

by (46) and (47). 
But once again by (47), 
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I F,3(x) - F(z') | <i | F,3(x) - F..0O | + i FUW - F{z', sz) \ 

+ \FV,sà-FW\ 

g ai(st) + ax(sz) + | F(z', sz) - F(*0 | g 3e. 

This last part coupled with (49) gives us (48). We conclude first 
tha t F is continuous at z0i next that Z is empty, and finally that 
F ( x ) + a 0 | x | 2/2k is harmonic in B(xo, ho). 

Since B(xo, h) was any open fe-ball in Ek whose closure does not 
contain a point of the form 2irmt we have that F(x)+a0\x\2/2k is 
harmonic in Ek — Um {2wm}. 

To complete the proof of the theorem, we need the following 
lemma. 

LEMMA 8. For t>0, set 

H0(x, 0 = Z «*(m'*)Hm|'/| f»|f, 

andforj=ly • • • , fe, 

Then for j = 0, 1, • • • , &, 

lim £Ty(x, /) = fly(#) 0#is/s awd is finite for x T* 2irmy Hj(x) is in L1 on Tk, 

and 

lim I | Hj(x, t) - Hj(x) \dx = Q. 

Set 

#(*) = (2T)k[œk~i(k - 2)]"11 x |-^-2> for xinTk-0 and k ^ 3 

= (2w) log | # J-1 for x in T2 — 0 <md k = 2, 

and extend $(x) &y periodicity to all of Ek. Then 

lim [Z7"o(#) ~ $0*0] exists and is finite 
UI-*o 

and 
Ho(x) — I x \2/2k is harmonic in Ek — U {27im}. 

m 

Furthermore, fori=l, • • • , £ , 

lim 2Iy(#) + (2w)kXj/a)k-i I #|fc msfo <md is finite 
\x\-*0 
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Hj(x) is harmonic in Ek — U {2wm\. 
m 

Let us temporarily assume the validity of the lemma, complete 
the proof of the theorem, and then prove the lemma. 

We have that -F(x)+a0| 5c| 2/2fe is harmonic in £* —Um {27rw} and 
that F(x) is a periodic function in L2 on JE*. It is well known [16, 
p. 269] that under these conditions there is a function U(x) which is 
harmonic in 5(0, 1) such that (with $(x) as in Lemma 8) 

00 

(50) F(x) + a0\x\2/2k = U(x) + ci*(*) + £ Yn+2-k(x| x\~*) \ x|-

for x in 23(0, 1) — 0 where Fn is a surface spherical harmonic of order 
n and the series on the right side of (50) is uniformly convergent 
outside of any sphere containing the origin. (Note that in two dimen­
sions, using polar coordinates (r, 0), Fn is a linear combination of 
sin nd and cos nd.) The fact that F(x) and $(x) are in L1 on 5(0, 1) 
immediately implies that Yn(x) is identically zero for n^k. We con­
clude, consequently, from (50) that 

F(x) + aQ\ x\*/2k 
h 

= U(x) + ci $(x) + £ cl xj I x |~* for x in 5(0, 1) - 0, 

and, therefore, from Lemma 8 that there are constants CQ, ch • • • , Ck 
such that 

k 

lim F(x) + (a0 - *o) | » |2/2£ + £ CjHj(x) 
(51) |*|-*o y-o 

= jö where (3 is finite-valued. 
Setting 

V(x) = F(*) + (a0 ~ Co) I ̂ |2/2& 
A; 

(52) + E <*#/(*) f o r xinEk- U { 2TTW} . 
y-o m 

V{2irm) = p + (a0 - Co) | 2TTW |2/2fe, 

we obtain from the periodicity of ƒ?(#) and Hj(x) and (52) that V(x) 
is continuous in £& and consequently from Lemma 8 and the proper­
ties already established for F, that V(x) is harmonic in £*. But 
V(x) — (ao — CQ)\X\

 2/2k is periodic and therefore bounded in Ek. We 
infer, then, from well-known properties of harmonic functions [16, 
pp. 252-253] that V(x) must be a polynomial of degree less than or 
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equal to two. However, the only way that the polynomial V(x) 
— (a0 — Co)\x\ 2/2k can be periodic is if it is a constant. We conclude 
from (52) that there is a constant K such that 

h 

(53) F(x) + X) CjHj(x) = K for x in Ek - U {lirm}. 

From the definition of F(x) and Lemma 8, we obtain from (S3) 
that 

k 

(54) am + Co = — 2 ŷ%* f°r m ^ 0. 

By (i) of the theorem, am+Co = 0(|w|) as m—»<*>, We conclude 
from (50) that Cj = 0 for j = l , • • • , k and therefore from (50) that 
am=~c0. But by (i) of the theorem ^Bà\m\<;R+i\am\ =o(R) as 
R—> oo, On the other hand the number of lattice points in the annulus 
i ? ^ | m | SR+l is 0{Rk~l) as i?—»oo. c0 must therefore be zero, and 
consequently am = 0 for ra^O. But then by (ii) of the theorem, ao = 0, 
and the theorem is established. 

We now prove Lemma 8 (see [24, p. 500 ]). 
We first show that there exists a continuous periodic function yp(x) 

such that 

ê(w) — ^(w) = | m |""2 for tn 5e 0, 

ê(0) - ^(0) - 0. 

(56) £ |ftm)| < * . 
m 

Observing from Green's second identity that for fe^3 and m9^0 

I | x\~(k~2)e~i(m'x)dx 

e-i(m,x) | m |-2fl | x | - ( * - 2 ) / d n d S + ö(!) 

' d[Tk-B(0,€)] 

with a similar remark holding for log l^l""1, we obtain in a manner 
similar to the establishment of (5) that for m5*0 

%{m) = | m |""2 

exp[i(m, * ! + • • " + mfij + • • • + mhxk)] 

+ 4U~ 2 EI — r; ' ^ — 

-ƒ 
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where dk is a constant depending on k but not on m and Mjxf stands 
for the deletion of nijXj. 

We now define $(m) to be the second expression on the right in 
(57) if tn^O and i£(0)=4>(0). \p(m) consequently satisfies (55). To 
show (56), we observe that for mi5*0 

ƒ.' l#l + " * * + 7T + • • • + Xk\ dXi 

J
T s in miXi Xi 

_ j # 
^m1[x\+ . . . + „ - * + . . .*2] <*+»'* 

and obtain consequently that there is a constant d*' such that 

/?0N I*(«)I s # ( | « I + 1 ) - 2 £ ( k l + 1 ) - 1 • • • 

•(|W,-| + l ) - 1 * - - - ( | m * | +1)" 1 . 

On the other hand, 

[ ( |«x | + D - - - ( | ^ | + 1)]<"-»'* 

£ ( | » | + D 2 ( |w 1 | + l ) - - - ( | « y | + 1 ) * - - - ( | « » | + 1 ) . 

(58) and (59) imply that 

E | *(») | £ * # E Kl » i | + 1) • • • (I «»| + I)]"»1-»» < oo, 

and (56) is established. 
We now define \p(x) = ]T}W $(tn)ei(m*z) and obtain that ^(#) *s a 

continuous periodic function and furthermore that 

(60) #(*) - ^(*) ~ 22 e*(«.*>/ | w |2. 

Setting üZ"o(x, 0 = X)™ ô ^i(w'aj)~'m^/| w |2» it now follows immediately 
from Theorem 2 that Hm^oHo(x, t)=H0(x) exists and is finite for 
x in Ek"-Um {2irm} and furthermore that for x in Ek — UTO {27rm}, 
£ToOxO =<£>(x) —\p(x). But ^(x) is a continuous function. Consequently, 
limi^o HQ(X) —&(X) exists and is finite. 

To complete the part of Lemma 8 dealing with HQ(X), we have 
to show that lim^o -Ho(#, t)=H0(x) in the Z^-norm on Tk and that 
Ho(x)-— \x\ 2/2k is harmonic in Ek — Um {27rm}. 

In order to accomplish this, we look at the function P(x% t) 
= ]r)m0*<m»*>-M' for £>0. Using the calculations in Theorem 2, we 
see that 
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(2»)-* f er<c».iO-lirltfy = 5^2 + | ^JIJ-CWD/Î 

and consequently that 

f M ' 2 + | *|*]-t*+«/V<»'*>i* = «H*l«. 

But then by Remark 1, (30), 

h{2ir)H £ [*2 + | * - 27rm |«]-»+i)/i « p(Xy t). 
m 

We conclude that 

(61) P(x, t) ^ 0, 

(62) lim P(x, 0 = 0 uniformly for x in T& - 5(0, e) for € > 0. 

We next establish the following remark: 
REMARK 2. Let ƒ 6e a junction in Ll on Tk end extended by perio­

dicity to all of Eh. For t>0, set At(J, x) = J^mÎMe^^-W. Then 

im f | At(f, x) - f(x) \dx = 0. 
5-K) J 7*1. 
lim 

Observing that At(f, x) = (27r)-kfTJ(x-y)P(y, t)dy and that 
(2Tr)-kfThP(y, t)dy = l, we see that 

At(f, x) -f(x) = (2T)-» f [ƒ(* - y) - f(x)]P(y>0dy 

and consequently that 

(63) â (2*)-* f P(y, o f f | ƒ(* - 3» - ƒ(*) I ̂ 1 ^ 

g (2T)-* f P(y, l)\ f | ƒ(* - y) - ƒ(*) | (tel <*y + o(l) 
•̂  5(0,8) \~J Th J 

by (62) f o r 0 < 8 < l . 
Using the fact that limi^o fTh\f(x—y)—f(x)\dx = 0, Remark 2 

follows immediately from (63). 
Since Ho(x) =<£(x) —yp(x) is in L1 on Th, it follows from Remark 2 

that / r j iïo(#, t) —HQ(X) \ dx->Q as /—>0. 
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Next, let XQ be a point in £& — UM {27rm}. Then there exists €>0 
such tha t HQ(X) is continuous in B(x0, e) since it is equal to <&(#) 
-$(x) in this ft-ball. By Lemma 7 and (62) A*[HQ(x) - \x\ 2/2k] ^ 0 
fmdO^A*[Ho(x)-\x\2/2k] for x in B(x0, e). 

But then by [21, p. 14], HQ(X) — \X\ 2/2k is harmonic in B(x0, e), 
and all the statements concerning HQ(X) in Lemma 8 are established. 

To establish the rest of the statements in Lemma 8, we note that 
for € > 0 and small that \p(x) + \x\ 2/2k is harmonic in J3(0, e) — 0, and 
furthermore that \p(x) + \x\2/2k is continuous in 13(0, e). Conse­
quently, \{/(x) + \x\2/2k is harmonic in J3(0, e), and therefore 
limisi-o d\p(x)/dxj exists and is finite f o r J = l , • • • , ft. But then 

(64) lim dHo(x)/dXj + (2ir)kXj/œk-i \ x \k exists and is finite. 
|a;|-*o 

Also, from what has already been established, we know that 
dHo(x)/dxj is harmonic in Ek — UOT {27rm}. Furthermore from (64), 
we observe that dHo(x)/dxj is in Ll on 7V Consequently, it follows 
from Theorem 2 that we shall have established all of Lemma 8 once 
we show that 

(65) I dH0(x)/dXjdx = 0, 

(66) I e-^m'x>>dHo(x)/dXj = (2ir)kinij \ m \~2 for m ^ 0. 

To establish (65), let v(x) be the vector field defined in 7^ — 0 whose 
jth component is Ho(x) and whose other (ft — 1) components are zero. 
Then by the divergence theorem the left side of (65) is equal to 

lim j (v, n)dS. 

But HQ(X) is a periodic function. Consequently /ar*(v, n)dS = 0. 
Therefore the left side of (65) is majorized by 

lim sup max | Ho(x) \ ê'^k-i-
t-*0 | a ; | « € 

However we already have shown that HQ(X) = o(\ x\ x"~&) as | x\ —»0. 
Consequently, (65) is established. 

To show that (66) holds, we now let v(x) be the vector field defined 
in Tk — 0 whose jth component is e"i(mtX)Ho(x) and whose other 
(ft — 1) components are zero. Then the same reasoning as above shows 
that 
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lim f (v, n)dS = 0. 

On the other hand, the divergence theorem gives 

J (v, n)dS = I dle-i^'^BoWydXjdx. 

We conclude that 

I e^
Hm'x)dHo/dXjdx = I imjHQ(x)e~i(m'x)dx 

J Tk J Tk 

= w»y(2ir)* \ m |~2 for rn 5* 0. 

(66) is established, and the proof of the lemma is complete. 

5. Conjugate Fourier series. In this section, we shall describe some 
results in the theory of conjugate multiple Fourier series and the 
related topic of analyticity in several variables. The conjugate series 
will be defined by means of the Calderón-Zygmund kernel. (Other 
names associated with the development of the singular kernel in­
volved are Beurling, Mihlin, and M. Riesz. See [8, p. 137].) 

In order to place the theory in its proper perspective let us briefly 
review some aspects of the theory of 1-dimensional conjugate Fourier 
series. If g(x) is a function in L1 on Eu then g(x) = P.V. g^x*1 is 
defined to be the Hilbert transform of g where 

ƒ• 0 0 

[g(x — y) — g(x + y)]/y dy. 
- - h 

Now this limit exists almost everywhere, and it is well known that 
if g(x) is in L x OL 2 then g^ (x )= —i sgn xg(x) (where sgn x ~ l if 
# > 0 , —1 if x < 0 , and 0 if x = 0). However, even if g(x) is not in 
LlC\L*, we still obtain [34, p. 147] that for almost every x 

- i sgn yg(y)eixy(\ - | y \ /R)a = g(x) for a > 0. 

To pass from Fourier integrals to Fourier series, we first observe 
that [37, p. 73] 

1 x °° 
— cot — =» X"1 + jy [(x + I-KM)-1 - (27TW)-1] for * 5* 2?rm. 

Next, we observe that if f(x) is in L1 on Ti and extended by periodic-
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ity to all of Ei, then / ( x ) = P . V . f*2~l cot x/2 is defined to be the 
conjugate function of ƒ where 

P.V./*2-i cot x/2 
(67) 

= lim (TT)"1 f [ƒ(* - y) - ƒ (a + y)}2~-1 cot y/2dy. 

Now, it is well known [37, p. 131] that this limit exists almost every­
where, and that if f(x) is in L1, then f^(m) — —i sgn mf(m). However, 
even if fix) is not in L1, we still obtain that for almost every x, 
X^-co —i sgn m}(m)eimx is Cesaro summable of order a, a > 0 , to 

f(x) for almost every x. 
We note also that if the limit on the right side of (67) exists then 

lim f [ƒ(* - y) - ƒ(* + y)]2-1 cot y/2dy 
h->o J h 

— lim lim I \f(x — y) — f(x + y)\y~ldy. 
h-*0 X-»°o J h 

Now the function x~"1 = sgn xlx]""1, and sgn 1+sgn —1=0. We 
generalize this function to Jfe-space by means of the kernel 

(68) K(x) = W(x/ | x | ) | x \-k for x je 0 

where HF(x/|x|) satisfies the additional conditions: 

there is a constant /z such [ JF(£i) — Wfa) | ^ M | £i — £2 K 
(69) 

0 > 0, for £1 and £2 on C(0, 1) the unit (k — 1) sphere in Eh 

and 

(70) f TT(Ö(fc(Ö - 0 
J C(0,1) 

where dc(£) is the natural volume element on C(0, 1). 
A kernel K{x) of this type is called a Calderon-Zygmund kernel 

and is clearly a generalization of the Hilbert kernel x"*1 in 1-dimension. 
The generalization persists in the sense that if g(x) is a function in 
Ll on Ek, then g(x) = (2ir)~k P.V. g*K is defined to be the Calderon-
Zygmund transform of g where 

P.V. g*K(x) = lim { Ek-B(*t<) g(x - y)K(y)dy. 

I t is shown in [8, p. 118] that this limit exists almost everywhere. 
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I t is also shown in [8] that the principal-valued Fourier transform 
K(y) of the Calderón-Zygmund kernel K(x) exists for every y where 

K(y) = lim lim (2TT)~* f e"^^K{y)dy. 

This limit is specifically evaluated in [27, p. 69] where it is shown 
that if W(£) has the surface spherical harmonic expansion 

W(Q ~ £ Yn(Q 
n=»l 

then for y 5^0, 

(71) K(y) = £ (-$*Y%(y/ \ y | ) r (n/2)/2*r[(» + k)/2]^i\ 
n*»l 

where the series in (66) converges absolutely uniformly. 
(The special case of (71) when W(£) = Fw(£) was first evaluated in 

[5]. See also [9, p. 261].) 
Next, we define K*(x) the periodic analogue of K(x) as follows: 

(72) K*(x) = K(x) + £ [K(x + 2m») - K(2*m)] for x ^ 2TTW. 

In [9], it is shown that the series in (72) converges absolutely 
uniformly for x in Tk (with a similar fact holding for x in any bounded 
domain after a finite number of terms of the series are deleted) and 
that for X9£2Trmi K*(x+2irm) =K*(x). 

If f(x) is in L1 on Tk and extended by periodicity to all of £*,, it 
then follows that 

(73) ƒ(*) = lim (2TT)-* f f(x - y)K*(y)dy 
«-•0 J Tk-B(0,€) 

exists and is finite for almost every x. 
I t is easy to see that if fTkf(y)dy = 0 and if the limit on the right 

side of (73) exists and is finite then 

ƒ(*) = lim lim (2*)-* f f(x~y)K(y)dy. 
( 7 4 ) e~*0 X-*oo J J3(0,X)—B(0,e) 

Next, defining the principal-valued rath Fourier coefficient Ê*(m) 
as lime-o (2TykfTk^Bjo,,)e'-'i^x)K*(x)dx it is shown in [9, p. 257] that 
for m?^0, Ê*(m) = K{m). I t is, furthermore, shown in [9, p. 259] that 
if f(x) is in L1 on Tk, then f^(m) =f(m)Ê(m) îormj^O. Consequently, 
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bearing the 1-dimensional situation in mind, it is natural to define 
S[f], the conjugate series of 5[f] , as 

(75) S[f] - £ £0i»)/(m)«'«»*>. 

We shall say x\k is a kernel in class Cn if 
W(£) is a function in class Cn on the (fe — 1) sphere C(0,1). The follow­
ing companion results to Theorems 1 and 2 of this survey were then 
obtained by Shapiro in [27, pp. 43-44]. 

THEOREM 8. Let ƒ be in L1 on Tk and extended by periodicity to all 
of Eh, and let S\f] = ^m /(w)<(m»x). Furthermore let K(x) be a Calderon-
Zygmund kernel in class Ck+4t and let K(y) be its principal-valued 
Fourier transform. Set 

<?*(ƒ> *) = Z Ê(m)Km)e(m-X\l - | * | 7 * Y 
l&\m\$R 

with (k - l ) / 2 < a ^ (Jfe - 1) + 1/2 # jfe w «rc» and (k - l ) / 2 < a 
^ (& — l ) /2 + l if & is 00W. Suppose that 

I £(*o, A) I"1 f I ƒ(*) - ƒ(*<>) \dx->0 as h -> 0. 

lim o£(/, «0) - lim I /(#o — y)K{y)dy = 0. 
#->«> L X->* J JS(0,X)-J5(0,i2-l) J 

For the 1-dimensional analogue of the above theorem, see [37, 
p. 95]. We obtain immediately from Theorem 8, (73), and (74) that 
üfTkf(y)dy = 0, then for almost every x, <r$(fix)-*j(x) f o r a > (& —1)/2. 

The following companion result for Abel summability (Theorem 2) 
is also obtained : 

THEOREM 9. Let ƒ be in L1 on Tk and extended by periodicity to all 
of Ek and let 5 [ / ] = ]C»/(m)ei<m'*). Furthermore, let K(x) be a Cal-
derôn-Zygmund kernel in class Ckl2 or C(k+1)l2 according as to whether 
k is even or odd. Set At(f, x)= X ^ o f(m)Ê(m)e^m^'^* for t>0. 
Suppose that \B(xo, h)\^lfB(xQ,h)\f(x)—f(xo)\dx-^0 as h-~>0. Then 

lim \lt(f, xo) - lim f f(xQ - y)K(y)dy] = 0. 

Actually both Theorems 8 and 9 are proved for a wider class of 
Calderón-Zygmund kernels than indicated. In particular, Theorem 9 
is true for kernels K in class C*a, a> (£ —1)/2. For the definition of 
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the class C*a and for the proofs of the above theorem, we refer the 
reader to [27, Chapter II] . 

Particular cases of what we have called the Calderón-Zygmund 
kernel were as mentioned earlier previously studied by other indi­
viduals. In particular, the kernel Kj(x) = xj/\x\k+l (j~l, • • • , k) 
which clearly satisfies (68), (69), and (70) is referred to as the Riesz 
kernel. (See [32, p. 30].) 

The Riesz kernel is quite useful in studying generalizations of the 
notion of analyticity. In particular if u(x)= [ui(x), • • • , Uk(x)] is a 
^-dimensional vector field in class Cl in a domain D of E&, we call 
u(x) an harmonic vector field in D if 

(76) div u = 0 and curl u == 0 in D 

or otherwise stated 
k 

(77) ^2 duj/dxj = 0 and dujjdx^ = dUjJdx^ j \ ̂  j 2 . 
y-i 

It is clear that if k = 2 and u is an harmonic vector field in D, then 
u2+iui represents an analytic function in D. 

With Kj(x) as above, it follows from (71) that for y 9^0 

(78) Ê,(y) = - iyj/ \ y \ 2*T[(k + 1 ) /2 ]T*-« /» . 

Consequently, if »S= X)m ame*(w'*), it is natural to call 

3 i = - ] C imJ I W h1öm** (m,* ), j = 1, ' * * > k, 

the jth conjugate trigonometric series of S. 
Letting S(x, t) = ]£m ame^m^^m^ and 

we see that the vector field 

u(*, t) = [Si(x, / ) , • • - , 3*(*, 0, S(*, /)] 

is an harmonic vector field in the variables (pci, • • • , %k, t) for J>0. 
We shall say that S given above is a Fourier-Stieltjes series if there 

exist a countably additive set function ix defined on the bounded Borel 
sets of Ek which is of bounded variation on Tk, which is periodic in 
the sense that fx(A +2irm) = \x{A) for every lattice point m and 
bounded Borel set A, and which furthermore satisfies 

dm = (27r)~* I er*^^dfjk(x) for every m. 
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Stein and Weiss [32, p. 55] have succeeded in generalizing the 
classical theorem of F. and M. Riesz in the context of the above 
terminology. It is a valid generalization in the sense that if one sets 
k = 1 and replaces er' by r where 0 <t and 0 Sr < 1, one gets back pre­
cisely the theorem of F. and M. Riesz. (See [37, p. 285].) The theorem 
of Stein and Weiss (though stated in terms of Fourier integrals in 
[32]) is the following: 

THEOREM 10. Let S~ ^2mamei(^m'x) be a Fourier Stieltjes series due 
to the set junction \x and let 5, = — ]Cm^o im3\ m\"~xame^m^ be a Fourier-
Stieltjes series due to the set junction \ij ( i = l , • • • , k). Then fj, and 
juy(j = l , • • • , k) are absolutely continuous set junctions. Furthermore 
ij ƒ and jj are the junctions in L1 on Tk corresponding respectively to 
ix and juy, then there is a constant y depending on k such that jor almost 
every x 

jj(x) = lim lim 7 I f(% — y)y}- \ y \~(k+1)dy. 
«-+0 X-+W J #(0,X)-.B(0,«) 

There are other notions for generalizing the concept of analyticity 
than that mentioned above. In particular, there is a method associ­
ated with the concept of Dirichlet algebras (see for example [15, 
p. 54]). This concept leads to the following theorem of Bochner's 
[4, p. 718] (later reproved by Helson and Lowdenslager [14, 
p. 184] using different techniques) which is also a generalization of 
the F. and M. Riesz theorem: 

THEOREM 11. Let S= 2 j m ame^m'x) be a Fourier-Stieltjes series due 
to the complex-valued set junction JJL. Suppose there exists a y with l > y 
> 0 and an xo^O such that am = 0 ij (m, xo)<y\m\ \xo\. Then /x is 
absolutely continuous. 

6. Riemannian theory. In this section, we shall indicate some of 
the results in what is called the Riemannian theory of trigonometric 
series, i.e. the local aspects of trigonometric series. 

We shall first look at the theory of formal multiplication as de­
veloped by Berkovitz [ l ] and Shapiro [23] in jfe-dimensions (fee2). 
These results generalize the 1-dimensional results obtained by Rajch-
man and others [37, pp. 330-344]. 

Let Si= ^ame^m'x) and S2 = ^2amei(m'x) be two trigonometric series 
with the property that for each m the series ^ w |amû!n~m| < °°« We 
then define the formal product Sz = S\S2 to be the trigonometric series 

(79) Sz = X) Ame*<»>'> where Am = ] £ anam^ 
m m 
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The situation that will occur in the sequel is that the coefficients 
in Sx are "bad" in the sense that they grow large as | m\ —»oo or at 
least do not go to zero very rapidly and the coefficients in 52 are 
"good" in the sense that they go to zero very rapidly. 

Given a closed domain D contained in the interior of Tk, we shall 
say S= ^2m ame^m'x) is a series in class (5^) if 

for every 0 > n, there exists an A depending on 0 such that 

\am\ g A{\m\ + 1)-* forallm; 

E yi jk *(»»,*) 

mi • • • mkame 
= 0 for x in D and/L, • • • ,jk non-negative integers. 

We shall say that K(x) is a spherical harmonic Calderón-Zygmund 
kernel if 

(82) K(x) = P»(*)|*|-<"+*> 

where Pn(x) is a homogeneous polynomial of degree n è 1 and APn(#) 
= 0. I t then follows from (71) that 

(83) K(m) = y(n, k)Pn{m) \ m \~n f or m y* 0 

where y (n, k) = (-~i)nT(n/2)/2kT[(n+k)/2]TrklK In this section, we 
shall deal only with spherical harmonic Calderón-Zygmund kernels. 

The following theorem concerning formal multiplication of trigo­
nometric series then prevails (see [l , p. 326 and p. 330], [23, p. 374]). 

THEOREM 12. Let Si=^2mame^m^ and & = D m « i ( m , J ; ) where 
om = 0( | m\7), y an integer è — (k — 1), and 52 is a series of class (5^), 
Z) a closed domain contained in the interior of Tk. Set Sz = S1S2 
^ ]C>» Ame^m'x) and 5 3 = ^>**o AmÊ(m)ei(m'x> where K(x) is a spheri­
cal harmonic Calderón-Zygmund kernel. Then 

(i) Sz is uniformly (B—R, y+k — 1) summable to zero for x in T). 
(ii) Sz is uniformly (B—R, 7+& — I) summable for x in D. 

As a corollary to the above theorem and method of proof, we ob­
tain the following generalization of the classical theorem of Riemann 
(see [ l ] and [23]): 

THEOREM 13. Let S= X)m ameHm,x) where am = 0{\ m\7), y an integer 
ê - ( * - l ) . Set F(x)=J^fn^(-iy(ci'm/\m\^)ei^^ where j3 is the 
integral part of ( £ + Y ) / 2 + 1. Suppose that F(x) is class CW+W) in a 
domain D contained in Tk. Then 

(0 2islm|*«öme*<»'*>(l- |w| */R*)-r+h-l->MF(x) as i?->«> uni­
formly in every closed subdomain of D, 
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(ü) ]Ci:sl»ls* Ê(m)ame^m'x)(l - \m\ %/R2Y+k~l-> finite limit as 
R-*co uniformly in every closed subdomain of D where K(x) is a 
spherical harmonic Colderôn-Zygmund kernel. 

In the proof of the uniqueness theorem for trigonometric series we 
introduced the notion of generalized Laplacians through the use of 
averages on &-balls. Using averages on (k — 1) spheres we can also 
introduce the notion of generalized Laplacians. (See [22, p. 224].) In 
particular, we now say that f(x) has a generalized rth-Laplacian at 
the point xQ, designated by Ar/(x0), if [using the notation of (70)] 
fXxo+tÇ) is in L1 on C(0, 1) the unit (k — 1) sphere in Ek for all t 
sufficiently small and positive and if 

(* r 

ûto-i I f(xo + tÇ)dc(Ç) = X) *fi T + o(t ' ) . 
J C(0,1) J~0 

We then set Ajf(xQ) = 2^j\Y(j+k/2)aj/T(k/2) for j = 0, 1, • • • , r. 
Using this concept of a generalized rth-Laplacian, Shapiro [22] 

obtained the following result which is a generalization of the classical 
theorem concerning trigonometric series and generalized derivatives 
in 1-dimension [38, p. 69]: 

THEOREM 14. Let S= X)m^o amei(m>x) where am = Ö(| *»!*), 
Y >̂ — (k — 1). A necessary and sufficient condition that there exists an 
a ^ 0 such that 

lim J2 ame^m'x)(l - \m\2/R2)a = p (finite-valued) 

is that there exists an integer r>y+k — 1 such that if 

K*) = E (-ï)r(om/\fn\*')e«~'*> 

then ATF(XQ) exists and is equal to j8. 

For a theorem similar to Theorem 14 for Fourier series generalizing 
a classical theorem of Hardy and Littlewood [38, p. 69] we have the 
following result of Chandrasekharan's [lO]: 

THEOREM IS. Let f(x) be in Ll on Tk and extended by periodicity to 
all of Ek, and let S\f] = ^ m f(m)eHm>x). Then a necessary and sufficient 
condition that there exists an a ^ 0 such that 

lim X) }(ni)eHm>x)(l - \m\2/R2)a = 0 (finite-valued) 

is that there exists a p>0 such that 
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A (k, p)fk f f(x0 + y)(1 - | y |H-^y-Hy -> p ast-*0 

where A(k, p) is the constant [œk^iJo(i- — h2)p~1hk~1dh]~'1. 

7. Geometric integration. In this section, we shall look at some of 
the applications of multiple trigonometric series to geometric integra­
tion theory and potential theory. The future will see many such ap­
plications (see the comments in [37, p. 811]). 

We shall first discuss an application of multiple trigonometric 
series to the intrinsic divergence of a vector field. (This result is due 
to Shapiro [26].) 

Let v(x) = [^i(x), • • • , Vk(x)] be a continuous vector field defined 
in a neighborhood of the point Xo. As before let B(XQ, t) represent the 
&-ball with center xo and radius t, let C(xo, t) represent the (& —1)-
sphere which is its boundary, let dc(x) represent the natural (& — 1)-
dimensional volume element on C(xo, t), and let ti(x) represent the 
outward pointing unit normal vector. 

Define 

div* v(x0) = limsup j B(x0) t) \~l I [v(#); n(x)]dc(x). 

Define div*v(#o) similar using lim inf^o. In case div*v(#o) = div*v(#û) 
is finite, call this common limit divv(xo). In case, divv(xö) exists, 
we see that it coincides with the usual definition of the divergence of 
a vector field defined from an intrinsic point of view. It is further­
more clear that if v(x) is in class C1 in a neighborhood of the point 
Xo, div v(xo) = ]C*-i dVj(xo)/dxj. 

Let Q be an open &-cube in Ek and let dQ designate its boundary 
considered as a point set. The divergence theorem in its simplest 
classical form states that if v(x) is continuous in Q, in class C1 in 
Q and if div v(x) is in Ll on Ç, then 

(84) I [v(x), n(x)]dc(x) — I divv(x)dx. 
J dQ J Q 

Let Z be a closed set of measure zero which lies in Q. We define a 
class Cz of vector fields as follows: 

v(x) is in Cz if 
(i) v(x) is continuous in Q — Z, 
(ii) v(x) is in L2 on Q, 
(Hi) div* v(x) and div* v(x) are finite in Q — Z, 
(iv) div v(x) exists almost everywhere in Q and is in L1 on Q. 
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Because of (i) and (iv), both the left and right sides of (84) are 
defined. We shall call Z a negligible set for the divergence theorem, 
if the divergence theorem holds for every v in Cz, i.e. if v(x) is in Cz) 
then (84) is true. 

In [26], the following result is obtained: 

THEOREM 16. A necessary and sufficient condition that Z be a negligi­
ble set for the divergence theorem is that Z be of capacity zero. 

By capacity zero is meant logarithmic capacity zero in the plane 
and capacity zero with respect to |# | - (*~ 2 ) in Ek for k^S. 

Condition (ii) above is not artificial because the above theorem is 
false in E2 if we widen Cz by replacing (ii) with "v(x) is in Lp on Q 
with l^p<2." To see this fact, set v(x)=grad log \x\~l in £2 — 0 
and take Q= {x; \xj\ < 1 , j = l , 2} . Then both sides of (84) are de­
fined but are not equal, and v(x) is in Lp on Q for 1 ^p <2 but is not 
in L2 on Q. Furthermore (i), (iii), and (iv) holds with Z== {o}. 

The theorem in multiple trigonometric series which is the key to 
establishing Theorem 16 is the following [26, p. 611]. 

THEOREM 17. Given S=Ylmame^m'x) where âm~a-m. Let Z be a 
closed set of capacity zero contained in the interior of Tk. Suppose that 
the following holds : 

(i) ]Cm*o I am 121 m I ~2 is finite. 
(ii) There is a function F(x) continuous in the torus sense in Tk~-Z 

and in L1 on Tk whose Fourier series is given by 

S[F] = £ am|m|-V<«'*>. 

(iii) f*(x) and f*(x) are finite in Tk — Z and in L1 on Tk where 
f*(x) = limsnpuQ^m amei(-m»x)'-^t and ƒ*(#) is the corresponding 
lim inf^o. 

Then f*(x) =ƒ*(#) almost everywhere and S is the Fourier series of 

ƒ•(*). 
Theorem 17 is a ^-dimensional generalization and extension of a 

1-dimensional theorem of Beurling [2]. (For further 1-dimensionai 
results and comments along these lines, see [38, p. 194].) 

We next look at an application of multiple trigonometric series to 
the curl of a vector field defined from an intrinsic point of view and 
obtain a result which can be viewed as a three-dimensional vector 
analogue of the classical theorem of Rademacher for functions in 
Lip 1. (See [20] and [36, p. 371].) 

Let v(x) be a three-dimensional vector field defined in a neighbor­
hood of a point xQ in E3. Let Cn(#o, f) designate the circle with center 
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XQ and radius r lying in the plane through xo normal to the unit vector 
n and oriented by the usual right hand rule. Define the upper cir­
culation per unit area of v at Xo in the direction n, designated by 
Dtv(xo), as follows: 

D$v(xo) = lim sup (TTT2)'1 I (v, t)ds 
r-0 J Cn(x0,r) 

where t designates the unit tangent vector and ds the differential of 
arc length. Similarly, define the lower circulation per unit area, 
D*nv(xo), using lim infr-o. If D*nv(xo) =D*v(xo) and both expressions 
are finite, designate this common value by Dnv(xo) and call it the 
circulation per unit area of v at XQ in the direction n. 

The curl of v is said to exist at XQ if Dnv(xo) exists for every unit 
vector n and if, furthermore, there exists a vector w such that 
(w, n) = Aiv(#o) for every unit vector n. w is then called curl v(#o). 

The curl of v will be said to exist uniformly at XQ if curl V(XQ) exists 
and if, furthermore, 

lim (wr2)~l I (v, t)ds = n«curl v(x0) 
r-K> ^Cn(x 0 , r ) 

uniformly in n. 
I t is clear that if v(x) is in class Cl in a neighborhood of the point 

Xo, then the curl of v exists uniformly at the point #o. The above 
definitions are classical and can be found in most of the standard 
books on advanced calculus or vector analysis. 

The following theorem was then established by Shapiro [29]: 

THEOREM 18. Let v(x) be a continuous vector field defined in an open 
set R contained in E%. Suppose there exists three mutually orthogonal unit 
vectors ex, e2, e3 and a constant K such that \ D*.v(x) | ^ K and \ D*ejv(x) \ 
^Kfor x in R andj= 1 ,2,3. Then curl v exists uniformly almost every­
where in R. 

One of the theorems in multiple trigonometric series on which 
Theorem 18 depends is the following [26, p. 606]: 

THEOREM 19. Let v(x) = [vi(x), • • • , Vk(x)] be a continuous periodic 
real vector field defined in Eh with S[vt\= X)™ a3

me^m'x). Let f*(x) 
= lim supf_o X ) w ( ^ * - i ^ a m ) ^ l ( w , x ) ~ , w , < and let /*(x) be the corre­
sponding lim inf ^o. Then for every x, 

div*v(x) ^ ƒ*(*) ûf*(x) S div*v(s). 

For other applications of the theory of multiple trigonometric 
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series to geometric integration theory, we refer the reader to [27] 
and [28]. 

We close this survey with the comment that the theory of multiple 
trigonometric series is yet in its infancy. 
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