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1. Results. An inversive plane is an incidence structure of points 
and circles satisfying the following axioms: 

I. Three distinct points are connected by exactly one circle. 
II. If P, Q are two points and c a circle through P but not Q, then 

there is exactly one circle c' through P and Q such that cC\c'~ [P]. 
III. There are at least two circles. Every circle has at least three 

points. 
For any point P of the inversive plane 3 , the points 5̂  P and the 

circles through P form an affine plane 31 (P). If 3 is finite, all these 
affine planes have the same order (number of points per line); this 
integer is also termed the order of 3 . An inversive plane of order n 
consists of n2 + l points and n(n2 + l) circles; every circle contains 
n + 1 points, and any two points are connected by n + 1 circles. 

Let ^ be a projective space of dimension d>\ (we shall only be 
concerned with d = 2, 3, and we do not assume the theorem of Des-
argues if d = 2). A point set ® in $ is called an ovoid if 

I'. Any straight line of ty meets S in at most two points; 
IV. For any P£(5, the union of all lines x with xP\Ë= {P} is a 

hyperplane. 
(This is called the tangent hyperplane to S in P.) It is straight­

forward to prove that the points and the nontrivial plane sections of 
an ovoid in a three-dimensional projective space form an inversive 
plane. The purpose of the present note is the announcement, and an 
outline of proof, of the following partial converse: 

THEOREM 1. Every inversive plane of even order n is isomorphic to the 
system of points and plane sections of an ovoid in a three-dimensional 
projective space over GF(w). 

We list three immediate corollaries: If 3 is an inversive plane of 
even order n, then (i) n is a power of 2, (ii) for any PÇzS, the affine 
plane Sl(P) is desarguesian, and (iii) 3? satisfies the bundle theorem 
("Büschelsatz," cf., e.g., [2]). 

The proof of Theorem 1, to be outlined in §2 below, shows also that 
every automorphism (incidence preserving permutation) of an inver­
sive plane of even order can be extended to a coUineation, leaving the 
representing ovoid invariant, of the appropriate projective space. To­
gether with recent results of Tits [9], [lO], this leads to a complete 
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classification of all inversive planes of even order whose automor­
phism group is at least doubly transitive. 

An inversive plane represented by points and plane sections of a 
nonruled quadric can be internally characterized by the validity of 
Miquel's theorem, see [2], [5], [ i l ] , and will therefore be called 
miquelian. 

THEOREM 2. An inversive plane of even order admits a triply transi­
tive automorphism group if, and only if, it is miquelian. 

The only known non-miquelian finite inversive planes are of order 
n = 22m"1, m>\\ the corresponding ovoids are the point sets defined by 

(*) z = xy + x?+2 + yu 

in a suitable affine space over GF(^), with the plane at infinity a 
tangent plane; here co is the automorphism x—>x2tn of GF(n), see 
[8], [lO]. The automorphism groups of these inversive planes are 
essentially the Suzuki groups Sz(n), see [6], [lO]. In view of another 
result of Tits, announced in [9], we have 

THEOREM 3. The full automorphism group of an inversive plane of 
even order is doubly, but not triply transitive if, and only if, the plane is 
represented by an ovoid of type (*)• 

Thus the known inversive planes of even order are precisely the 
doubly transitive ones. 

2. Proof of Theorem 1. Let 3 be an inversive plane of even order n. 
We define a new incidence structure $ of points and planes as follows: 
Points are (a) the points of 3» (real points), and (b) the circles of 3 
(ideal points] if c is a circle, the corresponding ideal point will be de­
noted by £*). Planes are (a) the circles of 3 (real planes), and (b) the 
points of 3 (ideal planes; if P is a point, the corresponding ideal 
plane is denoted by PT). Incidence in ty, denoted by the symbol I, 
is defined among real points and planes as in 3 , and otherwise by the 
following rules : 

(i) PIQ**=>P = Q, 
(ii) c*IQ*t=*cIQ, 
(iii) c*Id<^>c = d or |cP\d| = 1 . 

The incidence structure $ so defined consists of (n + l)(n2 + l) points 
and equally many planes. In fact, $ is self-dual, for the mapping 
P—>PT, c-*£* can be extended in a natural way to a null polarity of 
$ . In view of a characterization of finite projective spaces given in 
[3] (see also [12]), the condition that $ be a projective space is 
equivalent to the following conditions: 



852 PETER DEMBOWSKI [November 

(A) Every plane is incident with n2+n + l points. 
(B) Two distinct points are connected by n + 1 planes. 
(C) The intersection of all planes containing two distinct points con­

sists of n + 1 points. 
In order to prove Theorem 1 it suffices to verify conditions (A)-

(C) for the incidence structure $ defined above. The complete proof 
of this requires the separate treatment of several different cases and 
will not be given here. We carry the argument only to a point from 
which the remainder is a matter of straightforward checking. 

We call two circles of 3 tangent if they have precisely one common 
point. 

(1) If P, c is a nonincident point-circle pair in 3 , then the circles 
through P which are tangent to c are precisely the n + 1 circles connecting 
P with some other point. 

For in the projective plane corresponding to the affine plane 3t(P), 
the circle c is an ovoid, not meeting the line at infinity, and the circles 
tangent to c through P are the tangent lines of this ovoid. It is well 
known (see, e.g., [5]) that the tangents of an ovoid in a projective 
plane of even order are exactly the lines through some point Q. As Q 
is not on the line at infinity, we have PT^Q, and (1) follows. We note 
an immediate corollary: 

(2) Three mutually tangent circles of 3 pass through one point. 
Next, we prove two other consequences of (1). 
(3) If P, Q1 R are three distinct points of 3 , then there is exactly one 

circle c through R which is tangent to each of the n + 1 circles through P 
and Q. 

The uniqueness of c follows from (2) : two distinct circles c, c' of the 
required sort would be tangent to each other (since they are both tan­
gent to PQR) and to any circle 9*PQR through P , Q. 

Existence.1 Let x be any one of the n2 — 1 circles which pass through 
R but not through P , and denote by Q(x) the second common point 
of all the circles through P and tangent to x, given by (1). By the 
uniqueness already established, the mapping x—>Q(x) is one-one. 
Hence Q(x) ranges over all the n2 — l points different from P and P , 
and there is an x for which Q(x) = Q. 

(4) If c, d are two disjoint circles of 3 , then the common tangents of c 
and d are exactly the n + 1 circles through two uniquely determined points 
P and Q. 

PROOF. Through any point l o n e there is at most one common 

1 My original proof of this part was more complicated. For the present improve­
ment I am indebted to D. R. Hughes. 
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tangent to c and d, by (2). As the number n + 1 of points on d is odd, 
and since every point on d is on some tangent to c through X (Axiom 
II) , one of these tangents must also be tangent to d\ hence there is 
precisely one common tangent through X. This shows that n + 1 is 
the total number of common tangents of c and d, and therefore there 
is at most one point pair P , Q of the required kind. The existence of 
P , Q is then proved by an argument similar to that of the correspond­
ing part of the proof of (3). 

From here on, the verification of conditions (A)-(C) presents no 
more difficulties. Instead of giving the details, we only say what the 
straight lines of *$ are: An external line consists of n + 1 ideal points 
xT corresponding to the circles x through two real points P , Q\ and 
it is contained in the two ideal planes P71", Q* and the n — 1 real planes 
[(3) is used] tangent to all circles through P and Q. A tangent line 
consists of one real point P and n ideal points corresponding to a 
maximal set of mutually tangent circles through P ; it is contained 
in these real planes and the ideal plane P71". And a secant line consists 
of two real points P , Q and the n — 1 ideal points xT corresponding to 
the circles tangent to every circle through P and Q; it is contained 
in the n + 1 real planes through P and Q. 

It is clear from these remarks that the set of real points is an ovoid 
in the projective space $ , so that Theorem 1 is established. The defini­
tions (i)-(iii) of incidence in $ show that any automorphism of 3 
can be extended to a collineation of $ , so that Theorems 2 and 3 may 
be deduced as indicated in §1. 

We conclude with a few remarks on the hypotheses of Theorem 1. 
There are infinite inversive planes which cannot be represented by 
ovoids [4]; hence the finiteness condition in Theorem 1 is essential. 
I t is, however, an open question whether Theorem 1 is also true for 
inversive planes of odd order (by a result of Barlotti [l ], such a theo­
rem would imply that all inversive planes of odd order are miquelian). 
The idea of the proof of Theorem 1 can be utilized to give necessary 
and sufficient conditions for an arbitrary finite inversive plane 3 to 
be representable by an ovoid : 3 must admit an "orthogonality rela­
tion" (of a kind similar to that discussed in [2]) among its circles. 
I t would lead too far to give more details here; a complete discussion, 
together with a full proof of Theorem 1, will be given elsewhere. 
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MICROBUNDLES ARE FIBRE BUNDLES1 

BY J. M. KISTER 

Communicated by Deane Montgomery, June 10, 1963 

Introduction, In [ l] , Milnor develops a theory for structures, 
known as microbundles which generalize vector bundles. It is shown 
there that this is a proper generalization; that some microbundles 
cannot be derived from any vector bundle. It is then possible, for 
instance, to find a substitute (tangent microbundle) for the tangent 
bundle over a manifold M even though M admits no differential 
structure. 

A well-known and more general class of structures than vector 
bundles (but less general than microbundles) is the class of fibre 
bundles with a Euclidean fibre and structural group the origin-
preserving homeomorphisms of Euclidean space topologized by the 
compact-open topology (cf. [2]). In this note such structures will be 

1 This work was supported by a grant from the Institute for Advanced Study and 
by NSF grant G-24156. 


