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1. The dual space of a symmetric space. Let S be a symmetric 
space (that is a Riemannian globally symmetric space), and let Io(S) 
denote the largest connected group of isometries of S in the compact 
open topology. It will always be assumed that S is of the noncompact 
type, that is Io(S) is semisimple and has no compact normal subgroup 
7* {e}. Let I denote the rank of S; then 5 contains flat totally geodesic 
submanifolds of dimension /. These will be called planes in S. 

Let o be any point in 5, K the isotropy subgroup of G = Io(S) at o 
and ïo and $o their respective Lie algebras. Let 8o = fo+po be the cor­
responding Cartan decomposition of go. Let E be any plane in S 
through ot cto the corresponding maximal abelian subspace of fto and 
A the subgroup exp(cto) of G. Let C be any Weyl chamber in cto. Then 
the dual space of cto can be ordered by calling a linear function X on 
cto positive if X(iüT)>Q for all HÇzC. This ordering gives rise to an 
Iwasawa decomposition of G, G = KAN, where N is a connected nil-
potent subgroup of G. It can for example be described by 

N = < z G G lim exp(-tH)z exp(tf#) = e > , 

H being an arbitrary fixed element in C. The group N depends on the 
triple (o, Et C). However, well-known conjugacy theorems show that 
if N' is the group defined by a different triple (</, E', C') then 
N' = gNg~l for some gEG. 

DEFINITION. A horocycle in S is an orbit of a subgroup of the form 
gNg"1, g being any element in G. 

Let t—>y(t) (t real) be any geodesic in 5 and put Tt^s^so where sT 

denotes the geodesic symmetry of S with respect to the point Y(T). 
The elements of the one-parameter subgroup Tt (t real) are called 
transvections along y. Two horocycles £i, £2 are called parallel if there 
exists a geodesic 7 intersecting $1 and £2 under a right angle such that 
2n,5i = ?2 for a suitable transvection T along 7. For each fixed g EG, 
the orbits of the group gNg~l form a parallel family of horocycles. 

Let M and M', respectively, denote the centralizer and normalizer 
of A in K. The group W=M,/M1 which is finite, is called the Weyl 
group. 

1 This work was supported in part by the National Science Foundation, NSF 
GP-149. 
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PROPOSITION 1.1. The group G acts transitively on the set of horocycles 
in S. The subgroup of G which maps the horocycle N-o into itself equals 
MN. 

Let S denote the set of horocycles in S. Then we have the natural 
identifications 

S = G/K, Ê = G/MN 

the latter of which turns Ê into a manifold, which we call the dual 
space of S. 

PROPOSITION 1.2. 

(i) The mapping 
<j>\ (kM, a) ->kaK 

is a differentiable mapping of (K/M)XA onto S and a regular w-to-
one mapping of (K/M) XA' onto S'. 

(ii) The mapping 

$: (kM, a)-*kaMN 

is a diffeomorphism of (K/M) XA onto S. 

In statement (i) which is well known, w denotes the order of W, 
A' is the set of regular elements in A and S' is the set of points in S 
which lie on only one plane through o. 

PROPOSITION 1.3. The following relations are natural identifications 
of the double coset spaces on the left : 

(i) K\G/K = A/W; 
(ii) MN\G/MN=AXW. 

Statement (i) is again well known; (ii) is a sharpening of the 
lemma of Bruhat (see [ô]) which identifies MAN\G/MAN with W. 

The proofs of these results use the following lemma. 

LEMMA 1.4. 

(i) Let so denote the geodesic symmetry of S with respect to o and 
let 6 denote the involution g—>sogso of G. Then 

(N6(N))r\K = {e}. 

(ii) Let C and C' be two Weyl chambers in cto and G = KAN> 
G = KA N' the corresponding Iwasawa decompositions. Then 

(NN')n(MA) = {e}. 

2. Invariant differential operators on the space of horocycles. For 
any manifold V, C°°(V) and C"(V) shall denote the spaces of C°° 
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functions on V (respectively, C°° functions on V with compact sup­
port). Let D(S) and D(S), respectively, denote the algebras of all G-
invariant differential operators on S and Ê. Let S(cto) denote the 
symmetric algebra over cto and /(cto) the set of W-'mvariants in 5(cto). 
There exists an isomorphism T of D(S) onto J (do) (cf. [7, Theorem 1, 
p. 260], also [9, p. 432]). To describe D(S), consider S as a fibre bun­
dle with base K/M, the projection p: Ê—>K/M being the mapping 
which to each horocycle associates the parallel horocycle through 0. 
Since each fibre Fcan be identified with A, each £/£S(ao) determines 
a differential operator UF on F. Denoting by ƒ | F the restriction of a 
function ƒ on S to F we define an endomorphism Du on C°°(S) by 

(Duf) | F = UF(f \F) fEC*(S), 

F being any fibre. I t is easy to prove that the mapping U~*Du is a 
homomorphism of S(cto) into D(S). 

THEOREM 2.1. The mapping U—^Du is an isomorphism of 5(cto) onto 
D(§). In particular, D(S) is commutative. 

Although G/MN is not in general reductive, D(S) can be deter­
mined from the polynomial invariants for the action of MN on the 
tangent space to G/MN at MN (cf. [8, Theorem 10]). It is then 
found that the algebra of these invariants is in a natural way iso­
morphic to S(cto), whereupon Theorem 2.1 follows. Let f denote the 
inverse of the mapping U—*Du-

3. The Radon transform. Let £ be any horocycle in S, ds$ the vol­
ume element on £. For ƒ £ Cc°° (5) put 

ƒ « ) - ff(s)dsh ses. 

The function ƒ will be called the Radon transform of ƒ. 

THEOREM 3.1. The mapping ƒ—>ƒ is a one-to-one linear mapping of 
C?{S) into C:(S). 

Now extend cto to a Cartan subalgebra f)o of goi of the corresponding 
roots let P+ denote the set of those whose restriction to do is positive 
(in the ordering defined by C). Put p = $][[)«ep+a and let p-*sp de­
note the unique automorphism of S(cto) given by sH~H—p(H) 
(HGao) (cf. [7, p. 260]). 

THEOREM 3.2. Let \D(S) be given by 

>D($) = {EED(S)\ \ f (£)) E /(ao)}, 
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and let D-~>f) denote the isomorphism of D(S) onto ^D(S) such that 

\t(D)) = T(D), D E DCS). 

Then 

(D/y = D? M fedtiS). 
In view of the duality between points and horocycles there is a 

natural dual to the transform ƒ—>ƒ. This dual transform associates to 
each function \[/Ç.C°°(Ê) a function ypÇzC°°(S) given by 

kp) = f iKÖ dm®, PES, 

where the integral on the right is the average of \p over the (compact) 
set of horocycles passing through p. We put 

// = (/r, fec:(s) 
and wish to relate ƒ and // . 

THEOREM 3.3. Suppose the group G = IQ(S) is a complex Lie group. 
Then 

(i) D //-<ƒ, fec'iS), 
where c is a constant T^O and • is a certain operator in D(S), both inde­
pendent of f. 

We shall now indicate the definition of • • Let J denote the com­
plex structure of the Lie algebra 90. Then the Cartan subalgebra ï)o 
above can be taken as cto+/cto and can then be considered as a com­
plex Cartan subalgebra of go (considered as a complex Lie algebra). 
Let A' denote the corresponding set of nonzero roots and for each 
a<EA' select HI in ï)0 such that B'(HJl, H)=a(H) (H^h) where B' 
denotes the Killing form of the complex algebra go. Then HJ £cto and 
the element H«6A' -̂ "« m S(do) is invariant under the Weyl group W. 
Then • is the unique element in D(S) such that 

r(D) = HE:. 
a G A ' 

The proof of Theorem 3.3 is based on Theorem 3 in Harish-Chandra 
[5] (see also Gelfand-Naïmark [4, p. 156]), together with the Dar-
boux equation for S ([9, p. 442]). In the case when S is the space of 
positive definite Hermitian nXn matrices a formula closely related 
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to (1) was given in Gelfand [ l ] . Radon's classical problem of repre­
senting a function in Rn by means of its integrals over hyperplanes 
was solved by Radon [13] and John [lO]. Generalizations to Rie-
mannian manifolds of constant curvature were given by Helgason 
[8], Semyanistyi [15] and Gelfand-Graev-Vilenkin [3]. 

4. Applications to invariant differential equations. We shall now 
indicate how Theorem 3.3 can be used to reduce any G-invariant 
differential equation on S to a differential equation with constant 
coefficients on a Euclidean space. The procedure is reminiscent of the 
method of plane waves for solving homogeneous hyperbolic equations 
with constant coefficients (see John [ l l ] ) . 

DEFINITION. A function on 5 is called a plane wave if there exists a 
parallel family S of horocycles in S such that (i) 5 = U^es £; (ii) For 
each ÇG S, ƒ is constant on £. 

Theorem 3,3 can be interpreted as a decomposition of an arbitrary 
function ƒ G C<T (5) into plane waves. 

Now select g(~G such that S is the family of orbits of the group 
gNg~l. The manifold gAg~l-o intersects each horocycle £GE orthog­
onally. A plane wave ƒ (corresponding to S) can be regarded as a 
function ƒ* on the Euclidean space A. If DÇzD(S), then Df is also a 
plane wave (corresponding to S) and {Df)* — DAf*, where DA is a 
differential operator on A. Using the fact that aNa~lQN for each 
aÇzA it is easily proved (cf. [7, Lemma 3, p. 247] or [12, Theorem l ] ) 
that DA is invariant under all translations on Â. Thus an invariant 
differential equation in the space of plane waves (for a fixed S) 
amounts to a differential equation with constant coefficients on the 
Euclidean space A. Using Theorem 3.3, and the fact that • com­
mutes elementwise with D(S), an invariant differential equation for 
arbitrary functions on S can be reduced to a differential equation 
with constant coefficients (and is thus, in principle, solvable). 

EXAMPLE: THE WAVE EQUATION ON S. For an illustration of the 
procedure above we give now an explicit global solution of the wave 
equation on 5 (Io(S) assumed complex). 

Let A denote the Laplacian on 5 and let /GCC°°(5). Consider the 
differential equation 

d*u 
(1) Au = 

dt2 

with initial data 

(2) u(p,0) = 0; ilu(p,t)\ = f(p) (PES). 
Kat ) t-o 
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Let AA denote the Laplacian on A (in the metric induced by £ ) , ||p|| 
the length of the vector p in §3. Given aÇzA, let log a denote the 
unique element iJGcto for which exp H=a. For simplicity, let ep de­
note the function a—»^(log a) on A. Let £ denote the horocycle N-o. 

Given x £ G , k&K, consider the function 

Fk*(a) =* J f(xka-s)dsz (a E A) 

and the differential equation on A XR, 

(3) (AA-H'WI^^-VU 
or 

with initial data 

Vl,x = 0; \— Vl,x \ = e?Fk,,. 
\dt ) M 

Equation (3) is just the equation for damped waves in the Euclidean 
space A and is explicitly solvable (see e.g. [14, p. 88]). The solution 
of (1) is now given by 

u(p, t) = c nP(V(p, 0), 

where 

(4) V(xK, t)= f Vl,x(e)dk. 

Here dk is the normalized Haar measure on K and c is the same con­
stant as in Theorem 3.3. I t is not hard to see that the integral in (4) 
is invariant under each substitution x—>xu (u(~K) so the function 
V(p, t) is indeed well denned. 
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