DUALITY AND RADON TRANSFORM FOR SYMMETRIC SPACES

BY S. HELGASON¹

Communicated by G. D. Mostow, July 3, 1963

1. The dual space of a symmetric space. Let S be a symmetric space (that is a Riemannian globally symmetric space), and let $I_0(S)$ denote the largest connected group of isometries of S in the compact open topology. It will always be assumed that S is of the noncompact type, that is $I_0(S)$ is semisimple and has no compact normal subgroup $\neq \{e\}$. Let l denote the rank of S; then S contains flat totally geodesic submanifolds of dimension l. These will be called planes in S.

Let o be any point in S, K the isotropy subgroup of $G = I_0(S)$ at o and \mathfrak{f}_0 and \mathfrak{g}_0 their respective Lie algebras. Let $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ be the corresponding Cartan decomposition of \mathfrak{g}_0 . Let E be any plane in S through o, \mathfrak{a}_0 the corresponding maximal abelian subspace of \mathfrak{p}_0 and A the subgroup $\exp(\mathfrak{a}_0)$ of G. Let G be any Weyl chamber in \mathfrak{a}_0 . Then the dual space of \mathfrak{a}_0 can be ordered by calling a linear function A on \mathfrak{a}_0 positive if A(H) > 0 for all $H \subseteq G$. This ordering gives rise to an Iwasawa decomposition of G, G = KAN, where N is a connected nilpotent subgroup of G. It can for example be described by

$$N = \left\{ z \in G \middle| \lim_{t \to \infty} \exp(-tH)z \exp(tH) = e \right\},\,$$

H being an arbitrary fixed element in C. The group N depends on the triple (o, E, C). However, well-known conjugacy theorems show that if N' is the group defined by a different triple (o', E', C') then $N' = gNg^{-1}$ for some $g \in G$.

DEFINITION. A horocycle in S is an orbit of a subgroup of the form gNg^{-1} , g being any element in G.

Let $t \rightarrow \gamma(t)$ (t real) be any geodesic in S and put $T_t = s_{t/2}s_0$ where s_τ denotes the geodesic symmetry of S with respect to the point $\gamma(\tau)$. The elements of the one-parameter subgroup T_t (t real) are called transvections along γ . Two horocycles ξ_1 , ξ_2 are called parallel if there exists a geodesic γ intersecting ξ_1 and ξ_2 under a right angle such that $T \cdot \xi_1 = \xi_2$ for a suitable transvection T along γ . For each fixed $g \in G$, the orbits of the group gNg^{-1} form a parallel family of horocycles.

Let M and M', respectively, denote the centralizer and normalizer of A in K. The group W = M'/M, which is finite, is called the Weyl group.

¹ This work was supported in part by the National Science Foundation, NSF GP-149.

PROPOSITION 1.1. The group G acts transitively on the set of horocycles in S. The subgroup of G which maps the horocycle $N \cdot o$ into itself equals MN.

Let \hat{S} denote the set of horocycles in S. Then we have the natural identifications

$$S = G/K, \qquad \hat{S} = G/MN$$

the latter of which turns \hat{S} into a manifold, which we call the *dual space of S*.

Proposition 1.2.

(i) The mapping

$$\phi: (kM, a) \to kaK$$

is a differentiable mapping of $(K/M) \times A$ onto S and a regular w-tc-one mapping of $(K/M) \times A'$ onto S'.

(ii) The mapping

$$\hat{\phi}: (kM, a) \rightarrow kaMN$$

is a diffeomorphism of $(K/M) \times A$ onto \hat{S} .

In statement (i) which is well known, w denotes the order of W, A' is the set of regular elements in A and S' is the set of points in S which lie on only one plane through o.

PROPOSITION 1.3. The following relations are natural identifications of the double coset spaces on the left:

- (i) $K \setminus G/K = A/W$;
- (ii) $MN\backslash G/MN = A \times W$.

Statement (i) is again well known; (ii) is a sharpening of the lemma of Bruhat (see [6]) which identifies $MAN\backslash G/MAN$ with W. The proofs of these results use the following lemma.

LEMMA 1.4.

(i) Let s_0 denote the geodesic symmetry of S with respect to o and let θ denote the involution $g \rightarrow s_0 g s_0$ of G. Then

$$(N\theta(N)) \cap K = \{e\}.$$

(ii) Let C and C' be two Weyl chambers in a_0 and G = KAN, G = KAN' the corresponding Iwasawa decompositions. Then

$$(NN') \cap (MA) = \{e\}.$$

2. Invariant differential operators on the space of horocycles. For any manifold V, $C^{\infty}(V)$ and $C_c^{\infty}(V)$ shall denote the spaces of C^{∞}

functions on V (respectively, C^{∞} functions on V with compact support). Let D(S) and $D(\hat{S})$, respectively, denote the algebras of all G-invariant differential operators on S and \hat{S} . Let $S(\mathfrak{a}_0)$ denote the symmetric algebra over \mathfrak{a}_0 and $J(\mathfrak{a}_0)$ the set of W-invariants in $S(\mathfrak{a}_0)$. There exists an isomorphism Γ of D(S) onto $J(\mathfrak{a}_0)$ (cf. [7, Theorem 1, p. 260], also [9, p. 432]). To describe $D(\hat{S})$, consider \hat{S} as a fibre bundle with base K/M, the projection $p: \hat{S} \rightarrow K/M$ being the mapping which to each horocycle associates the parallel horocycle through 0. Since each fibre F can be identified with A, each $U \in S(\mathfrak{a}_0)$ determines a differential operator U_F on F. Denoting by $f \mid F$ the restriction of a function f on \hat{S} to F we define an endomorphism D_U on $C^{\infty}(\hat{S})$ by

$$(D_U f) \mid F = U_F(f \mid F) \quad f \in C^{\infty}(\widehat{S}),$$

F being any fibre. It is easy to prove that the mapping $U \rightarrow D_U$ is a homomorphism of $S(\mathfrak{a}_0)$ into $D(\hat{S})$.

THEOREM 2.1. The mapping $U \rightarrow D_U$ is an isomorphism of $S(\mathfrak{a}_0)$ onto $D(\hat{S})$. In particular, $D(\hat{S})$ is commutative.

Although G/MN is not in general reductive, $D(\hat{S})$ can be determined from the polynomial invariants for the action of MN on the tangent space to G/MN at MN (cf. [8, Theorem 10]). It is then found that the algebra of these invariants is in a natural way isomorphic to $S(\mathfrak{a}_0)$, whereupon Theorem 2.1 follows. Let $\hat{\Gamma}$ denote the inverse of the mapping $U \rightarrow D_U$.

3. The Radon transform. Let ξ be any horocycle in S, ds_{ξ} the volume element on ξ . For $f \in C_c^{\infty}(S)$ put

$$\hat{f}(\xi) = \int_{\xi} f(s)ds_{\xi}, \quad \xi \in \hat{S}.$$

The function \hat{f} will be called the Radon transform of f.

THEOREM 3.1. The mapping $f \rightarrow \hat{f}$ is a one-to-one linear mapping of $C_c^{\infty}(S)$ into $C_c^{\infty}(\hat{S})$.

Now extend \mathfrak{a}_0 to a Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0 ; of the corresponding roots let P_+ denote the set of those whose restriction to \mathfrak{a}_0 is positive (in the ordering defined by C). Put $\rho = \frac{1}{2} \sum_{\alpha \in P_+} \alpha$ and let $\rho \rightarrow p$ denote the unique automorphism of $S(\mathfrak{a}_0)$ given by $H = H - \rho(H)$ $H = \mathfrak{a}_0$ (cf. [7, p. 260]).

THEOREM 3.2. Let $D(\hat{S})$ be given by

$${}^{\backprime}D(\hat{S}) = \{ E \in D(\hat{S}) \mid {}^{\backprime}(\hat{\Gamma}(E)) \in J(\mathfrak{a}_0) \},$$

and let $D \rightarrow \hat{D}$ denote the isomorphism of D(S) onto $D(\hat{S})$ such that

$${}^{\backprime}(\hat{\Gamma}(\hat{D})) = \Gamma(D), \qquad D \in \mathcal{D}(S).$$

Then

$$(Df)^{\hat{}} = \hat{D}f \quad for \quad f \in C_c^{\infty}(S).$$

In view of the duality between points and horocycles there is a natural dual to the transform $f \rightarrow \hat{f}$. This dual transform associates to each function $\psi \in C^{\infty}(\hat{S})$ a function $\check{\psi} \in C^{\infty}(S)$ given by

$$\check{\psi}(p) = \int_{\xi \cap p=p} \psi(\xi) \ dm(\xi), \qquad p \in S,$$

where the integral on the right is the average of ψ over the (compact) set of horocycles passing through p. We put

$$I_f = (\hat{f})^{\check{}}, \quad f \in C_c^{\infty}(S)$$

and wish to relate f and I_f .

THEOREM 3.3. Suppose the group $G = I_0(S)$ is a complex Lie group. Then

$$\Box I_f = cf, \quad f \in C_c^{\infty}(S),$$

where c is a constant $\neq 0$ and \square is a certain operator in D(S), both independent of f.

We shall now indicate the definition of \square . Let J denote the complex structure of the Lie algebra \mathfrak{g}_0 . Then the Cartan subalgebra \mathfrak{h}_0 above can be taken as $\mathfrak{a}_0 + J\mathfrak{a}_0$ and can then be considered as a complex Cartan subalgebra of \mathfrak{g}_0 (considered as a complex Lie algebra). Let Δ' denote the corresponding set of nonzero roots and for each $\alpha \in \Delta'$ select H_α' in \mathfrak{h}_0 such that $B'(H_\alpha', H) = \alpha(H)$ ($H \in \mathfrak{h}_0$) where B' denotes the Killing form of the complex algebra \mathfrak{g}_0 . Then $H_\alpha' \in \mathfrak{a}_0$ and the element $\prod_{\alpha \in \Delta'} H_\alpha'$ in $S(\mathfrak{a}_0)$ is invariant under the Weyl group W. Then \square is the unique element in D(S) such that

$$\Gamma(\square) = \prod_{\alpha \in \Delta'} H'_{\alpha}$$
.

The proof of Theorem 3.3 is based on Theorem 3 in Harish-Chandra [5] (see also Gelfand-Naı̆mark [4, p. 156]), together with the Darboux equation for S ([9, p. 442]). In the case when S is the space of positive definite Hermitian $n \times n$ matrices a formula closely related

- to (1) was given in Gelfand [1]. Radon's classical problem of representing a function in \mathbb{R}^n by means of its integrals over hyperplanes was solved by Radon [13] and John [10]. Generalizations to Riemannian manifolds of constant curvature were given by Helgason [8], Semyanistyi [15] and Gelfand-Graev-Vilenkin [3].
- 4. Applications to invariant differential equations. We shall now indicate how Theorem 3.3 can be used to reduce any G-invariant differential equation on S to a differential equation with constant coefficients on a Euclidean space. The procedure is reminiscent of the method of plane waves for solving homogeneous hyperbolic equations with constant coefficients (see John [11]).

DEFINITION. A function on S is called a *plane wave* if there exists a parallel family Ξ of horocycles in S such that (i) $S = \bigcup_{\xi \in \Xi} \xi$; (ii) For each $\xi \in \Xi$, f is constant on ξ .

Theorem 3.3 can be interpreted as a decomposition of an arbitrary function $f \in C_c^{\infty}(S)$ into plane waves.

Now select $g \in G$ such that Ξ is the family of orbits of the group gNg^{-1} . The manifold $gAg^{-1} \cdot o$ intersects each horocycle $\xi \in \Xi$ orthogonally. A plane wave f (corresponding to Ξ) can be regarded as a function f^* on the Euclidean space A. If $D \in D(S)$, then Df is also a plane wave (corresponding to Ξ) and $(Df)^* = D_A f^*$, where D_A is a differential operator on A. Using the fact that $aNa^{-1} \subset N$ for each $a \in A$ it is easily proved (cf. [7, Lemma 3, p. 247] or [12, Theorem 1]) that D_A is invariant under all translations on A. Thus an invariant differential equation in the space of plane waves (for a fixed Ξ) amounts to a differential equation with constant coefficients on the Euclidean space A. Using Theorem 3.3, and the fact that \square commutes elementwise with D(S), an invariant differential equation for arbitrary functions on S can be reduced to a differential equation with constant coefficients (and is thus, in principle, solvable).

EXAMPLE: THE WAVE EQUATION ON S. For an illustration of the procedure above we give now an explicit global solution of the wave equation on S ($I_0(S)$ assumed complex).

Let Δ denote the Laplacian on S and let $f \in C_c^{\infty}(S)$. Consider the differential equation

$$\Delta u = \frac{\partial^2 u}{\partial t^2}$$

with initial data

(2)
$$u(p,0) = 0; \quad \left\{ \frac{\partial}{\partial t} u(p,t) \right\}_{t=0} = f(p) \qquad (p \in S).$$

Let Δ_A denote the Laplacian on A (in the metric induced by E), $\|\rho\|$ the length of the vector ρ in §3. Given $a \in A$, let $\log a$ denote the unique element $H \in \mathfrak{a}_0$ for which $\exp H = a$. For simplicity, let e^{ρ} denote the function $a \rightarrow e^{\rho(\log a)}$ on A. Let ξ denote the horocycle $N \cdot o$.

Given $x \in G$, $k \in K$, consider the function

$$F_{k,x}(a) = \int_{\xi} f(xka \cdot s) ds_{\xi} \quad (a \in A)$$

and the differential equation on $A \times R$,

$$(3) \qquad (\Delta_A - \left\|\rho\right\|^2) V_{k,x}^t = \frac{\partial^2}{\partial t^2} V_{k,x}^t,$$

with initial data

$$V_{k,x}^0 = 0;$$
 $\left\{ \frac{\partial}{\partial t} V_{k,x}^t \right\}_{t=0} = e^{\rho} F_{k,x}.$

Equation (3) is just the equation for damped waves in the Euclidean space A and is explicitly solvable (see e.g. [14, p. 88]). The solution of (1) is now given by

$$u(p, t) = c \quad \Box_p(V(p, t)),$$

where

$$(4) V(xK, t) = \int_{K} V_{k,x}^{t}(e) dk.$$

Here dk is the normalized Haar measure on K and c is the same constant as in Theorem 3.3. It is not hard to see that the integral in (4) is invariant under each substitution $x \rightarrow xu$ ($u \in K$) so the function V(p, t) is indeed well defined.

References

- 1. I. M. Gelfand, Integral geometry and its relation to the theory of group representations, Uspehi Mat. Nauk 15 (1960), 155-164 = Russian Math. Surveys, 1960.
- 2. I. M. Gelfand and M. I. Graev, The geometry of homogeneous spaces, group representations in homogeneous spaces and questions in integral geometry related to them. I, Trudy Moskov. Mat. Obšč. 8 (1959), 321-390. (Russian)
- 3. I. M. Gelfand, M. I. Graev and N. Vilenkin, Integral geometry and its relation to problems in the theory of group representations, Vol. 5, Generalized Functions, Moscow, 1962
- 4. I. M. Gelfand and M. A. Naïmark, *Unitary representations of the classical groups*, Trudy Mat. Inst. Steklov. 36 (1950); German transl., Akademie Verlag, Berlin, 1957.

- 5. Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485-528.
 - 6. —, On a lemma of Bruhat, J. Math. Pures Appl. 35 (1956), 203-210.
- 7. ——, Spherical functions on a semisimple Lie group. I, II. Amer. J. Math. 80 (1958), 241-310, 553-613.
- 8. S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
- 9. ——, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- 10. F. John, Bestimmung einer Funktion aus ihren Integralen über gewisse Mannigfaltigkeiten, Math. Ann. 100 (1934), 488-520.
- 11. ——, Plane waves and spherical means, applied to partial differential equations, Interscience, New York, 1955.
- 12. F. I. Karpelevič, Orispherical radial parts of Laplace operators on symmetric spaces, Dokl. Akad. Nauk SSSR 143 (1962), 1034-1037 = Soviet Math. Dokl. 3 (1962), 528-531.
- 13. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Nat. Kl. 69 (1917), 262-277.
- 14. M. Riesz, L'integrale de Riemann-Liouville et le problème des Cauchy, Acta Math. 81 (1948), 1-223.
- 15. V. I. Semyanistyi, Homogeneous functions and some problems of integral geometry in spaces of constant curvature, Dokl. Akad. Nauk SSSR 136 (1961), 288-291 = Soviet Math. Dokl. 2 (1961), 59-62.

Massachusetts Institute of Technology