
INTEGRALS DEVISED FOR SPECIAL PURPOSES 

E. J, MCSHANE 

About forty-five years ago Professor T. H. Hildebrandt wrote a 
paper (Hildebrandt [l ]) on integrals related to and extensions of the 
Lebesgue integral. At that time the Lebesgue integral, first invented 
in the preceding decade, had already displaced the Riemann integral 
from the monarchial position that it had occupied for over a genera­
tion. However, the subject was still new enough so that it was pos­
sible for Professor Hildebrandt to give an intelligible account of each 
one of the generalizations or extensions of the Lebesgue integral then 
extant, and to finish the job within a reasonable space of time. To do 
this today for the whole field of integration, covering all topics ade­
quately, and still remaining within the bounds of a one hour talk, 
would be an impossible task. I have therefore chosen to confine my­
self to one particular line of integration theory. I shall pass by all 
developments of new types of integral for the sake of increasing the 
generality of the process of integration. Likewise, I shall pass by all 
research designed to increase our knowledge of already existent forms 
of integrals. The research that I intend to report on is extremely di­
verse in nature, but all the developments that I shall mention have 
one aspect in common. In each case a mathematician needed an 
integration process to attain some goal, found that none of the tradi­
tional types of integration did exactly what he wanted and proceeded 
to invent an integration method capable of producing the results 
that he wished. 

A common feature of the integrals about which I wish to speak 
is that they are all what might be called "second growth" integrals. 
Probably none of them would have been thought of at all if the man 
who defined it had not been thoroughly familiar with an assortment 
of standard integration procedures, and a number of them in fact 
cannot even be defined without using concepts that themselves would 
never have arisen if it had not been for the development of the theory 
of the Lebesgue integral. This means that the one-time dominance 
of the Riemann integral has not been replaced by a similar dominance 
of any other integral. Competence in this field demands familiarity 
with a large assortment of concepts connected with procedures that 
might be called integration. 

A compact example of the sort of theory that I am speaking of 
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occurs in a paper on conditional probability operators by Professor 
Robert Cogburn (Cogburn [l ]). Let G denote the space of all bounded 
real-valued Borel functions on the Borel line. I now quote from Cog­
burn. "For functions £ on R to G we introduce the order Riemann 
integral on [a, b], denoted fl^(x)dx1 and defined to be the order limit 
of the usual Riemann sums, provided this limit exists in G. It is easily 
seen that the integral does exist whenever £ is order continuous in G 
on the interval [a, b].99 

Tfiis example shows in a small space the peculiarities that I have 
mentioned. First, Cogburn needs an integral which is not one of the 
standard integrals. Nevertheless, anyone familiar with the concept of 
order limit and also familiar with ordinary Riemann integration 
procedure can put the two concepts together in the manner indicated 
by Cogburn, and thus produce a new integral. The relevant portion 
of the theory is very briskly developed, under the assumption that 
the reader is already thoroughly familiar with ordinary integration 
processes and can furnish the details without too much trouble; and 
the theory is carried just exactly as far as the author needs for the 
purposes of the research being carried out. 

One technical difficulty that has given me some trouble in the 
preparation of this talk is that it is no longer perfectly clear just 
what an integral is. The classical integrals have a multitude of differ­
ent properties. The integrals devised for special purposes frequently 
are designed so as to be stronger than the classical integration pro­
cedures with regard to some chosen property, but in emphasizing 
one property heavily it frequently happens that others are lost. We 
shall see this in several instances. However, the vagueness of what 
an integral is can be shown to you fairly easily by a theorem on 
averaging operators which I wish to present to you in its own right. 

Let (0, Œ, /x) be a probability triple; that is, 0 is a set, G, is a cr-
algebra of subsets of Ö, and /x is a countably additive (non-negative) 
measure on Cfc with jufi=l. Investigations in turbulence led to the 
study of operators with the following three properties. 

(1) For some p in [l, oo ], A is a linear operator on LP(Q, /x) such 
that for all ƒ in LP(fi, JJ) 

f i (4/)(W) i*Ai(«k) ^ r i/(«) b*(<k). 

(2) If/GLj,(0, /x) and g is essentially bounded and measurable on 
0, then 

A(gAf) = (Ag)-(Af) 
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{sotha.t(Ag)-(Af)eLp(Q,ri). 
(3) If I is the function identically 1 on 0, -41= J. 
In 1960 Professor Gian-Carlo Rota proved (Rota [l]) that every 

averaging operator is necessarily a conditional probability operator; 
that is, there is a cr-subalgebra (fc of Ct such that whenever/£Lp(Q, M)» 
Af is (B-measurable and satisfies 

f (AfKœMfa) = f f(f*Mdv) 
JB J B 

for every set B in (B. Earlier, this had been proved by Mrs. Shu-Teh-
Chen Moy (Moy [l]) under the stronger hypothesis that A satisfies 
(1) for p = 1 and for p = 00, hence for all p in [l, 00 ]. 

The averaging operators A do not at a glance look much like inte­
grals. They possess stronger algebraic properties than ordinary inte­
grals do, for in addition to linearity they have the multiplicative 
structure shown in (2). When exhibited as conditional probabilities 
they come closer to the usual types of integrals, for in some instances 
we can write conditional probabilities as Lebesgue-Stieltjes integrals, 
and when (B consists of just two sets, 0 and the empty set, Af is a 
constant, the integral of ƒ with respect to ju. I therefore do not feel 
completely certain as to whether or not a theorem about averaging 
operators can justly be called a theorem about integration. However, 
quite apart from classification, I feel that the theorems by Mrs. Moy 
and Professor Rota are interesting and important, and I have not the 
slightest hesitancy about presenting them. 

One of the most conspicuous advantages of the Lebesgue integral, 
as contrasted with the Riemann integral, is the superiority of the 
convergence theorems associated with it. These theorems in turn rest 
on the countable additivity of Lebesgue measure, as contrasted with 
the finite additivity of Jordan content. It would not have been un­
reasonable to believe that with the invention of the Lebesgue integral, 
finitely additive measures would have lost all interest and importance. 
In spite of this, finitely additive measures have in recent years re­
turned from limbo and proved useful in many cases. One of the 
simplest cases is given in full detail in the third chapter of Dunford 
and Schwartz (Dunford and Schwartz [l]). Although this is very 
well known, I shall give a brief sketch of it to refresh your memories 
and to provide a starting point for a later discussion. For simplicity, 
we shall suppose that Ct is a field of subsets of a set 5, that m is a 
non-negative bounded finitely additive measure defined for all sets 
in Ct, and that all functions/, etc., mentioned are finite real-valued 
functions. A function ƒ is simple if it assumes finitely many values, 
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each on a set belonging to Ct. The integral of such a function is de­
fined in the obvious way; it is obtained by multiplying each value of 
the function by the m-measure of the set on which it has that value, 
and adding the products. A sequence of functions /i, ƒ2, • • • will be 
said to converge in measure to a function /o if for each positive e 
there is an ne such that whenever n is greater than ne, there exists a 
set En with m En<e such that 

I f nix) — fo(x) I < € for all x in S — En. 

Now suppose that /o is a function for which it is possible to find a 
sequence/i,/2, • • • of simple functions with the following two prop­
erties : 

1. fn converges to/o in measure; 
2. limmtn^00fs\fm(x) —ƒ»(#) I m(dx) «0 . 

From the second of these properties it is easily seen that the integrals 
of the fn converge to some real number as limit, and in view of the 
first of these properties it is reasonable to assign this limit as the 
integral of /o with respect to the measure rn. 

The integral thus defined is in fact a generalization of the Lebesgue 
(or Lebesgue-Stieltjes) integral, since it reduces to that integral if 
the measure m happens to be countably additive. The reason for the 
generalization, however, is not merely a wish for greater generality 
in itself. When the Lebesgue integral is thus extended, the integral 
as just defined serves to express the most general form of linear func­
tional on spaces L* (Dunford and Schwartz [l, p. 296]). 

Our next integration procedure has its roots in the observation, in 
1827, by the British biologist, Robert Brown, that a microscopic 
particle in a fluid underwent erratic changes of position. This in­
cessant motion is now known as the Brownian motion and is recog­
nized as being caused by the impact of molecules against the micro­
scopic particle. A. Einstein and M. V. Smoluchowski provided a 
mathematical-physical model for this motion. Einstein (Einstein [l]) 
remarked that the microscopic particles constituted essentially a 
population of large molecules among the gas molecules, so that the 
theory of diffusion should be applicable to them. After a time inter­
val A£, the displacements, say in the direction of the #-axis, of a large 
aggregate of particles should be distributed as though the particles 
had all diffused for time At from an original concentration at # = 0. 
This implies that the distribution is normal, with a variance propor­
tional to At. (Einstein of course realized that this is applicable only 
when At is much larger than the mean time between molecular im­
pacts.) In 1922 Norbert Wiener (Wiener [l] , [2], [3]) provided the 
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mathematical model that was needed to support this physical theory. 
If we observe a particular particle starting at the origin at time J = 0 
its x coordinate at all future times will be given by a function 
x(t) (2^0). This function x is determined by chance ; the details of the 
motion depend upon the unpredictable impact of molecules against 
the particle. Thus the functions (x(t): 0^t< oo) may reasonably be 
looked upon as the points of a probability space; events will be sets of 
points (that it to say, sets of functions) in this space. Let £2 be a set of 
labels sufficient to distinguish the functions on [0, oo) from each 
other; it would be quite satisfactory to let the members of £2 be the 
names of the functions themselves. If co is any point of £2, the function 
labeled by it will be denoted by the symbol #(•, co), or (x(t, œ):0St). 
I t is the set of functions x} or alternatively the set £2 of labels for 
these functions, that should serve as the points of our probability 
space. Thus our problem is to introduce a probability measure into 
the space £2 in such a way as to retain the properties required of a 
physical model of the Brownian motion. That is, corresponding to 
each interval [fa, £2] in the positive real axes, the increment x(fa, •) 
~-x(tu •) should be a normally distributed random variable, and its 
mean should be 0 and its variance should be a constant multiple of 
fa —1\. Also, the increments corresponding to nonoverlapping inter­
vals should be statistically independent random variables. Wiener 
showed, not merely that this could be done, but that it could be done 
in such a way that the continuous functions had probability measure 
1. That is, as a physical model would essentially demand, the proba­
bility of discontinuous motion was 0. In fact, he even showed that 
for every positive number a < l / 2 , the set of functions satisfying a 
Holder condition with exponent a is a set of probability measure 1. 

Instead of giving you any of the details of Wiener's original method 
of denning this measure in function space, I would like to give a 
sketch of a somewhat different definitional procedure recently worked 
out by S. H. Coleman (Coleman [ l ]) . This is based on an extension 
(Stone [ l ] , McShane [l]) of the Daniell integral (Daniell [ l ] ) . In­
stead of real-valued functions, let us consider a compact set X and 
the set XT of all functions on the set T== [O, 00) to the set X. For the 
set £2 of labels to distinguish these functions we use XT itself, and we 
topologize it with the usual product-space topology. If A is a subset 
of T, a function ƒ on £2 will be said to be based on A if whenever co 
and co' are any two points of £2 such that the equation x(t, co) =x(/ , co') 
is satisfied for all points t in A, then the equation ƒ (co) = ƒ (co') also is 
satisfied. Instead of assuming the existence of a joint distribution 
function for any finite set of increments, we shall equivalently assume 
that whenever A is a finite subset of T there is an integral I A defined 
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on the class of all continuous functions based on A and having 
J<i(l) = l. We assume also that these integrals I A satisfy a rather 
evident consistency condition, so that the subscript A may be 
dropped. Let us now say that a function u on B is a [/-function if 
there is a set 5, directed by à , of continuous finitely based functions 
such that u= V»S= (sup/G,s/(co): co£î2). We can then define I(u) to 
be sup {/(ƒ):ƒ£S}. The U-lunctions turn out to be exactly those 
functions that are lower semi-continuous and bounded below on Î2. 
From their integrals we can proceed to the integrals of a much larger 
class of functions, including all Borel functions, by the usual Daniell 
technique. There is however one useful by-product. It can be shown 
(McShane [l]) that if 5 is a set of [/-functions directed by è and if 
ƒ is bounded on S, then the supremum sup{^0): uÇiS} is itself an 
integrable [/-function, and its integral is the supremum of the 
integrals I(u) for all u in 5. Herein there is no assumption of denumer-
ability. This makes it possible to prove that certain important and 
self-suggesting sets of functions are in fact measurable sets. For in­
stance, for each positive a the set of functions which satisfy a Holder 
condition of exponent a is a measurable set. Similarly, the set of all 
functions of bounded variation is a measurable set. 

Although the definition just given puts only extremely mild hypoth­
eses on the behavior of the distributions of the random variables 
x(t, • ) for various fixed /, the case that has received by far the greatest 
amount of attention is that of the Wiener integral, in which the incre­
ments are independent, normally distributed, and have variances 
proportional to the length of the /-interval. The theory of this integral 
has been studied in considerable detail by R. H. Cameron, W. T. 
Martin, and their students (Cameron [l]-[ö], Cameron and Fagan 
[l] , Cameron and Hatfield [l] , [2], Cameron and Martin [l]-[5]). 
The importance of functional integrals in modern physics will be 
clearly demonstrated by a glance at a recent article by S. G. Brush 
(Brush [l]). Also, Wiener integrals can be used to write explicit 
formulas for the solutions of certain partial differential equations. 
The first use of the symbolism of functional integration to express 
the solution of the Schrödinger equation was in the Princeton dis­
sertation of R. P. Feynman. This was developed extensively and 
rigorously by Kac, Feynman, Cameron and others (Cameron [4], 
Friedrichs, Schwartz et al. [ l] , Kac [l], [2], Montroll [l] , Rosen­
blatt [l]). As an indication of the type of theorem found in these 
investigations we cite from Cameron [4]. Let R be the strip 
{(t, £) : 0 <t </0, — °° <£ < °° }, where h is either a positive real num­
ber or + °° • Let <r(£) be defined for all real £, let 0 be defined on i?, 
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and let a be a positive number. Under certain conditions on a and 0, 
which we shall not specify, the boundary value problem 

d2G dG 
a + e{ty Ö G . o, (t, Ö G R, 

lim G(t, £) = <K£) for almost all £ 
«-•0-f 

has a unique solution, and that solution is given by the Wiener 
integral 

G(t, Ö « f exp U f \[t{\ - s), 2V(t/a)x(s) + t]ds} 
J \ a J 0 

•<r[2\/(0d*(l) + S]dwx. 

Wiener measure is one particularly important example of a meas­
ure in an infinite dimensional space. Another, and at first glance quite 
different, type of measure in function space is called for in the study 
of quantum field theory. To gain at least a vague idea of why this is 
so, let us go back to ordinary quantum mechanics. Given a system 
which in classical terms contains N particles, each of these particles 
will have three coordinates of momentum, so the whole system will 
have 3N coordinates of momentum, which we can number in some 
selected order as pi, • • • , p$N. In classical quantum mechanics, to 
each state of this system there will correspond a square integrable 
complex function tyipu • • • , PZN)' — °° <P$< °°, J = l, • * * » 3N). 
To each physical observable there will correspond an operator, say 
A, which is self-adjoint on L2(K

3JN0, such that if we measure this ob­
servable on the system in the state given by ^, the expected value of 
the result will be the inner product (Ax//, \f/). For example, the ex­
pected value of the component pi of momentum will be 

/
Pi\Hph • * ' > PIN) \2dpi • • • dpur. 

RZN 

The dimensionality of the space over which we integrate is three times 
the number of particles. But in quantum field theory, there is no 
finite upper bound on the number of particles that may be present. 
Even if we consider only a bounded part of space, the field in it is 
made up of superposed oscillations having infinitely many possible 
frequencies and correspondingly having infinitely many possible 
energies and momenta. The analog of the integral just above would 
be the integral over some space of infinitely many dimensions. This 
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is a clear indication of a need for study of integration over Banach 
spaces, in particular over Hubert space. 

Here, however, we meet with serious trouble. In the applications 
for which we wish to have such an integral, it is frequently the case 
that the nature of the situation being studied is such that we clearly 
wish to have an integral which is invariant under unitary trans­
formations. Suppose that H is a Hilbert space of countably infinitely 
many dimensions, and that in it we have a countably additive meas­
ure defined, with the property that each point of the space is interior 
to measurable sets having arbitrarily small diameter and finite meas-
sure. If this measure is unitarily invariant, the measure of the set 
consisting of all of H except the origin can easily be shown to be 
zero. This means that if we wish to hold to the requirement of 
unitary invariance, we must abandon the requirement of countable 
additivity. 

For the sake of simplicity let us restrict ourselves to integration 
in Hilbert spaces. A f unction ƒ will be said to be based on a subspace 
A of the Hilbert space H if for all points x in H, f(x) —f(pAx)f where 
PA is the operation of projection on A. A function ƒ based on a finite 
dimensional subspace of H will be called a cylinder function. If we 
introduce a measure in each finite dimensional subspace, we can 
define the integral of ƒ over the whole Hilbert space to be the integral 
of f(pA%) over the finite dimensional subspace A} whenever ƒ is 
based on A. (Of course we assume the obviously necessary con­
sistency relations between these integrals.) The most important single 
case is that of the Gaussian normal distribution with a parameter c; 
tha t is, if { X\y , Xk } is an orthonormal basis for the subspace A, 
the measure in A is given by 

li(dx) = (27r) C exp([—#1 — . . . — Xk]/2c)dxi • • • dxk* 

This has the required consistency properties; if a function ƒ can be 
regarded as based either on A or on B, its integral as a function based 
on A is the same as its integral considered as a function based on B. 
From this integral we can deduce a finitely additive measure, apply­
ing however only to sets whose indicator functions are finitely based 
cylinder functions. We could use this measure to define a finitely 
additive integral in the way described earlier (Dunford and Schwartz 
[l ]). However, it turns out that this integral is not sufficiently power­
ful. The definition that we outlined in discussing the Wiener integral 
suggests that we might try to define [/-functions as the limits of ris­
ing sequences of finitely based continuous functions, the integral of 
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the {/-function being defined as the limit of the integrals of the 
finitely based functions. This would lead to a Daniell type of integral. 
This attempt fails completely. Everything has integral zero. How­
ever, J. Schwartz devised something somewhat related to this that 
does succeed in producing an interesting integral (Dunford and 
Schwartz [l, p. 402]). Let ƒ be any real-valued function defined on 
the Hilbert space if, and let 81 be the set of all the bounded linear 
maps of H into itself that have finite-dimensional ranges. Then for all 
F in 81, f(F*(-)) is a cylinder function based on the range of F. Let 
$ be the class of all real functions ƒ on H such that (i) ƒ(/**(•)) is 
/^-measurable for all Fin 81 (so that its absolute value has an integral, 
finite or infinite) and (ii) the infimum ||/||, for all projections P in 81 
and all positive €, of the quantity 

sup i f |/(F*(*)) \ii(dx) : F E 81 and | P - FP \ < X 

is finite. It can be shown that this function || -|| indeed possesses the 
properties of a norm. Also, if ƒ happens to be a cylinder function and 
is integrable, ||/|| is the same as the integral of the absolute value of/. 
So if g is any function which is the limit of a sequence / i , /2, • • • of 
integrable cylinder functions for which ||/«»—/n|| tends to zero, then 
necessarily the integrals JHfn{oc)ix{dx) tend to a limit, which we natu­
rally define to be the integral of g. The integral thus defined is linear 
and can without too much trouble be shown to have most of the 
properties of integrals defined in terms of finitely additive measures. 
Moreover, it is quite easily seen to be unitarily invariant. It has the 
virtue that the definition of the integral involves only the original 
Hilbert space and functions defined on it without any extension of 
the Hilbert space to a larger space or extension of the concept of 
functional on the Hilbert space. However, in spite of these virtues, its 
theory has not thus far been very extensively developed. 

Another method of introducing integration into Hilbert spaces is 
to imbed them first in some larger space over which some completely 
additive integral can be defined (Friedrichs and Shapiro [l ] ; Fried-
richs, Schwartz et al. [l]). Suppose that H is a separable real Hilbert 
space. If eu e%, • • • is any orthonormal sequence in H, every point 
x in H determines a sequence of real numbers, namely (x, e\)t 

(x, 02), • • • , where {x, y) denotes the inner product of x with y. 
Thus the Hilbert space is mapped linearly into a subset of the space 
Û of all sequences of real numbers; the mapping, however, depends 
on the choice of orthonormal basis. The space Ê can be regarded 
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as the cartesian product space RJ
t where J is the set of positive 

integers. To introduce Gaussian measure on Ê all that we have to do 
is to introduce Gaussian measure on each factor space (using the 
same variance parameter for each factor) and then form the product 
measure in the usual way. Since H may be regarded as a subset of Ê 
this immediately gives us a countably additive measure in H. But 
this measure in H is quite useless, since it turns out at once that the 
measure of H is zero. To get any use out of the measure in Ê, we 
must be more ingenious. 

First, let us at least diminish the dependence of the theory on the 
choice of the orthonormal basis. Suppose that eu e2l • • • and 
e{, el, • • • are two orthonormal bases for H. Every point x in the 
Hubert space H determines two sequences, namely its coordinates in 
the ^-system and its coordinates in the ej -system, and thus provides 
a one-to-one mapping of a portion of Ê onto itself. We extend this as 
follows. For every sequence £1, £2, • * • of real numbers we first form 
the finite sums Sn = £i£i+ • * • +£w0n (« = 1, 2, • • • )• The sequence 
corresponding to £1, £2, • • • under the change of orthonormal basis 
could then reasonably be taken to be the sequence lining (Snt ei), 
limnH>00 (Sn, 02), • • • , provided that all of these limits exist. Fried-
richs and Shapiro showed (Friedrichs et al. [l, Chapter 12]) that this 
process indeed provides a one-to-one mapping for almost all of Ê 
onto almost all of Ê, the mapping being measure preserving. They 
did more than this; given any countable aggregate of orthonormal 
bases, they showed that there exists a subset of Ê consisting of al­
most all of Ê on which the mappings just described are all 1^1 and 
measure preserving. This is called the "corona" corresponding to the 
system of orthonormal bases used. Since we cannot successfully inte­
grate f unctionals on H by contracting the measure from Ê down into 
H, we work in the opposite direction. Given a functional ƒ defined on 
H, we try to extend it to Ê, or rather to the corona of H, and inte­
grate the extension. In order to do this, the functional ƒ must have 
sufficiently good behavior so that by some process of continuous ex­
tension of its domain from H to the corona we obtain an extended 
function uniquely determined at least almost everywhere on Ê and 
integrable over Ê. As one might reasonably expect, the cylinder func­
tions are of this type. Determining larger classes of extendable func­
tions is far from trivial. Gross succeeded in showing (Gross [l]) that 
if we introduce the topology H2y which is the weakest topology on the 
Hilbert space H such that all Hilbert-Schmidt operators on H are 
continuous from H with topology H% to H with the usual topology, 
and if ƒ is a bounded complex-valued functional that is uniformly con-
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tinuous near the origin in the topology H2, then this function ƒ can 
be integrated over H by the procedure that we have just mentioned. 

I. E. Segal has defined a different type of integration over Hubert 
space, in which countable additivity is abandoned in favor of the 
preservation of unitary invariance. His definition applies to general 
Banach spaces and not merely to Hubert space; also he considers a 
noncommutative extension of integration, which we intend to talk 
about later. For simplicity we shall still confine ourselves to separa­
ble Hubert spaces and to real-valued functions on them. Whenever 
we are given a probability measure on H, each point x determines a 
random variable ((#, £):££iî) î this is a linear mapping of H into 
the space of random variables on H> and the probability measure in 
H determines the joint distributions of all finite sets of such random 
variables. Now (as in Segal [S]) without assuming that any probabil­
ity measure in H has been specified, let us suppose that we are given 
a linear mapping of H into some space of random variables. Any two 
such mappings will be called equivalent if for each finite set 
Xi, • • • , Xk of points of iJ, the joint distribution of the random vari­
ables corresponding to these xj in one mapping is the same as the 
joint distribution of the corresponding random variables in the other 
mapping. By a weak distribution on H we shall mean an equivalence 
class of linear mappings of H into random variables. As a special case, 
the (isotropic) normal distribution is obtained by assigning a nor­
mally distributed random variable with variance ||x|| to each vector x, 
orthogonal vectors corresponding to independent random variables. 
Now let C denote the set of all complex-valued cylinder functions u 
such that u is based on a finite-dimensional subspace of H and is 
bounded and Borelian on that subspace. Each such u can be 
integrated with respect to the joint distribution function of the ran­
dom variables corresponding to a basis xif • • • , Xk of a finite-dimen­
sional subspace on which u is based; its integral, or expected value, 
will be denoted by E(u). If we denote the complex conjugate of a 
complex number a by a*, we find readily that whenever u and v dite 
in C, the function E(uv*) has all the properties of an inner product 
except that E(uu*) can be zero when u is not identically zero. Such 
functions u are called null-functions, and as usual we regard as 
equivalent any two functions that differ only by a null-function. The 
space of equivalence classes resulting is an inner-product or pre-
Hilbert space, and can be completed in the usual way to form a 
Hubert space H. Each u in C determines a transformation Tu: v—*uv 
in C, hence in the completion H. This transformation is bounded 
(since u is bounded) and is self-adjoint for real u, hence the set of 
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all such Tu is a commutative algebra of bounded self-adjoint oper­
ators over H. We can choose a subset { TUa: aÇzA } whose algebraic 
combinations include all the Tu. Now we use the multiplicative 
representation of the operators (see, for example, McShane [5] or 
Segal [2]). There is a set {/«: a G 4 } of bounded closed intervals of 
reals, a set B and a measure m on the cartesian product 
II: (X<*€U Ja)XB such that H is isomorphic with £2(11, ra), each 
operator TUa (a(~A) in H corresponding to the operation of multi­
plication by the coordinate za in 1/2(11, m). Thus if w£C, by hypoth­
esis there is a polynomial p such that Tu~p(TUa, Tu<x„ • • • ), and 
this corresponds in £2(11, m) to multiplication by p(zay Za>, • • • ). C 
is thus mapped isomorphically onto the polynomial functions on II. 
This latter set we close in £2(11, m)\ the new elements are called 
"ideal functionals" (on H). They may fail to correspond to any true 
functional on H. The problem is to establish a correspondence be­
tween some set of functionals on H and a subset the "ideal func­
tionals" in £2(11, m) that will permit a useful interpretation of the 
integrals (with respect to m) of the "ideal functionals" as the inte­
grals of the functionals over H. 

The difficulty in establishing such a correspondence by limit 
processes arises from the poor convergence properties of the integral 
over H. It is possible for each positive e to define a sequence Uu Ui, • • • 
of cylinder functions such that OSui^u^ • • • ~*1 everywhere but 
the integrals of the un are all less than e. If we are to establish a corre­
spondence between a class of functionals on H and a subset of the 
class of ideal functionals just defined, in such a way as to permit us 
to interpret the integral of the ideal functional over £2(11, m) as 
the integral of the true functional over H, we must restrict ourselves 
to functionals with strong continuity properties. A partial solution 
of this problem has been given by Gross (Gross [l]). 

The rôle played by the Fourier transform in ordinary quantum 
mechanics is so important that we may feel confident that in order 
to be of any use in quantum field theory, the integrals over Hubert 
space that we have been discussing must permit some sort of exten­
sion of the Fourier transform. To establish such a transform (follow­
ing Segal [4]), we restrict our attention to Gaussian measures on 
Hilbert space, denoted by dN. If ƒ is a cylinder function based on a 
finite dimensional subspace of H, and is a polynomial in the coordi­
nates of points on that subspace, it is integrable with respect to 
Gaussian measure, and for each y in H the integral 

P(y) « f /(21/2s + iy)dN(x) 
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exists. This may not look much like a Fourier transform, but Gaus­
sian measure has an exponential in it, and if (merely to keep the 
notation simpler) we take ƒ to be based on a one-dimensional sub-
space, in which the one coordinate is x, we find that dN(x) 
= exp(—#2/2c)d#, and by means of an easy calculation we learn that 
F(y) exp (—y2/4=c) is the ordinary Fourier transform of 
f(x) exp (—#2/4c). For every polynomial/, the mapping just defined 
is an isometry in the norm of L%{Ht dN), and it extends to a unitary 
map of all of L%(H, dN) onto itself. This unitary map is called the 
Wiener transform. Its inverse is given by 

f(y) = f F(2U*x - iy)dN(x). 

Although I have mentioned this Wiener transform first, it is not 
chronologically the first extension of the Fourier transform to a func­
tion space. Several years earlier, Cameron and Martin had defined a 
Fourier-Wiener transform (Cameron and Martin [3], [4]) of the 
function class L2(C, dwx), where C is the set of all continuous func­
tions (or, equivalently, of all real-valued functions) on [0, l ] , and dwx 
is Wiener measure. The formula given above for the Wiener trans­
form bears a very close resemblance to that given by Cameron and 
Martin. This is of course not at all a coincidence. There is a transfer 
between the standard Wiener measure dwx and the Gaussian measure 
dN on a separable Hubert space. Let H be the Hilbert space consist­
ing of all absolutely continuous functions on the interval [0, l ] that 
vanish at 0 and have square integrable derivatives; for each two such 
functions/, g we define the inner product to be the integral from 0 to 
1 of f(g')** This includes the piecewise linear continuous functions 
with finitely many corners, and we can choose an orthonormal basis 
e%, e%, • • * composed of such functions. By use of this orthonormal 
basis, we can extend fftoa corona Û. But the extension from H to 
Ê corresponds to the extension in function space from the set H to 
the set of real functions on [0, l ] with Wiener measure. Moreover, 
this correspondence is such that for almost all the points of H, the 
corresponding function on [0, l ] is a continuous function. We thus 
have a method of effecting a transition between the theory of Wiener 
measure and that of measure on Hilbert spaces. However, it does not 
follow that either one of them is thereby made obsolete. If for no other 
reason, we would be prevented from abandoning either one of these 
two integration processes because of the widely different nature of 
the generalizations of them. 

As I mentioned in describing Segal's theory of integration on Hil­
bert spaces, Segal (Segal [3]) has also studied a process which he 
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calls a "noncommutative extension of abstract integration." Although 
similar extensions have also been considered by other people, I shall 
report only on what Segal has done, for a reason which I will mention 
later. In order to give some comprehension of this rather sophisticated 
mathematical theory, let us first start out with a space S, a cr-algebra 
(B of subsets of S and a finite countably additive non-negative meas­
ure m on (B. Define H to be L2(S, m). For each bounded measurable 
function ƒ we define Mf to be that operator which carries h into f'h 
for all functions h in iT. The operators thus defined thus constitute 
a commutative self-adjoint algebra (X of bounded operators on H. If 
ƒ is the indicator function of a set E in (B (that is, ƒ(/) = 1 if £ £ £ , 
f(t)=0 if t&E) then Mf is a projection belonging to Ct. Moreover, 
every projection in a has this form. Thus to the measure m corre­
sponds a real-valued function on the projections in <$; namely, if Mf 

is a projection in Ct, ƒ being the indicator function of a set E, the num­
ber corresponding to the projection Mf is mE. On the other hand, 
suppose that we know the set S, the set of functions constituting 
Z,2(S, rrt)y and the algebra Cfc. Given a mapping from the projections 
in Ofc into the non-negative reals that satisfies certain rather obvious 
additivity properties, this mapping will determine the measure m. 
Thus it will be possible to reword the theory of measure in such a 
way that it would be expressed in terms of the algebra & and the 
mapping m from projections in Ct onto reals. When this is done, it is 
possible to generalize the whole theory by abandoning the commuta-
tivity of Ofc. We thus arrive at Segal's definition (Segal [3]): 

"A gage space V is a system (iî, Cfc, m) composed of a Hubert space 
Hy a ring & of operators on H, and a non-negative valued function m 
on the projections in a, where m is completely additive, unitarily in­
variant, and such that every projection in a is the l.u.b. of projec­
tions on which m is finite. To be more explicit, m is said to be com­
pletely additive in case for any set S of mutually orthogonal projec­
tions in (X with l.u.b. P , m(P)= ^m(Q) {QÇzS} ; and is unitarily 
invariant in case for every unitary operator £/£<$ and projection 
PECfc, ni(U*PU)=tn(P). The function m associated with T is called 
a gage." 

On this definition Segal bases a rather extensive theory of integra­
tion, including definitions of spaces Lp and analogs of the Riesz-
Fisher theorem and the Radon-Nikod^m theorem. However, it is 
manifestly impossible for me to give, in the few minutes at my dis­
posal, even the rudiments of an idea of these developments. 

These results of Segal did not spring full-panoplied from the brow 
of Jove. Their roots He in the work of Neumann and Murray (Neu-
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mann and Murray [ l ] ) ; related ideas will be found in the work of 
Dixmier (Dixmier [ l ] ) ; and Dye had generalized the Radon-
Nikod^m theorem to this noncommutative setting. The reason that 
I emphasize the work of Segal is that he was motivated in its develop­
ment by a strong wish to put a sound mathematical foundation under 
quantum field theory. Thus he was not studying his noncommutative 
extension of abstract integration merely as a highly intriguing mathe­
matical device, nor as a contribution to the theory of algebras of oper­
ators, but as an integration process invented for a special purpose, 
the advancement of the quantum field theory. I t is for this reason that 
I regard Segal's contribution as coming so particularly within the 
scope of this talk. 

Suppose that we are given some sort of device (enclosed of course 
in the canonical black box) with an input side and an output side. 
Some start of stimulus is fed into the input side of the box, the total 
input between times h and h being x(/2) —x(h). We suppose that the 
mechanism inside the box is such that if an input of amount dx is fed 
into the box at time r, the resulting contribution to output at a later 
time t will be $(£ — r)dx. We suppose also that the device is linear, so 
that the output at time t is the sum of all the contributions from all 
the inputs at earlier times; from our present completely nonrigorous 
point of view, the output is 

f *(*-r)<fe(r). 

There are in this world optimists who feel that any symbol that starts 
off with an integral sign must necessarily denote something that will 
have every property that they would like an integral to possess. This 
of course is quite annoying to us rigorous mathematicians; what is 
even more annoying is that by doing so they often come up with the 
right answer. If the function #(•) were of bounded variation, we 
would have of course an ordinary Stieltjes, or at worst Lebesgue-
Stieltjes, integral before us. In the outstandingly important case of 
Gaussian input, the probability that #(•) will be of bounded variation 
is exactly zero. Consequently, the pseudo-definition that I have just 
presented for the thing that looks like an integral has probability 0 
of meaning something. But the fact that this really undefined pseudo-
integral still serves to give useful answers in physical and engineering 
situations, is enough to justify a strong suspicion that it is in fact a 
caricature of some rigorously definable mathematical entity. I now 
wish to sketch this definition and some of its generalizations. 
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Once again let us use the symbol Î2 to mean a set of labels serving 
to distinguish all the real-valued functions on the real axis. We sup­
pose that a probability measure P is given on some field Cfc in Q in 
such a way that for each interval [h, fa\ the increment xfe, • ) —#(Ji, ') 
belongs to L^Q, P ) , and that when [h, £2] and [h, £4] are nonover-
lapping intervals the corresponding increments are orthogonal : 

E{[x(t%) - x(h)][x(h) - x(h)]) - 0. 

It follows at once that there is a function F defined on the real axis 
such that for every interval [t\, h\ we have 

E([x{h) - *(/i)]2) - F(h) - F(h). 

Since F is monotonie nondecreasing, it can have only countably many 
discontinuities. Suppose that ƒ is a step function on the real number 
system taking on the respective values Ci, • • • , cn on the intervals 
[aQ, #i), [ai, <z2), • • • , [Ö»-I, an), where a 0 < a i < • • • <an and all the 
dj are points of continuity of F, It is then natural to define the 
integral of the step function ƒ to be 

1: 3 é~l 

Thus the integral is, as we should expect, a random variable, and it 
is easily seen to be defined and linear on the class of all step functions 
of the type just described. I t is now rather easy to establish (Doob 
[l, p. 427]) the crucial equation 

E{ {ƒ * m d x ( t ' , } } ) = ƒ " I m ',<TO-
Thus for the step functions of the type we have been considering, 
the stochastic integral defined by the finite sum just above maps step 
functions on the real number system into random variables in such 
a way as to preserve L% norm; that is, the stochastic integral is an 
isometry from part of L%(R, dF) to L2(Q, P ) . This gives us the op­
portunity to extend the range of definition of the integral from the 
class of step functions to a much larger class. Whenever ƒ is in Li{R, dF) 
it is the limit of step functions of the type described. Each sequence 
of step functions of this type approaching ƒ in the norm of ^ ( P , dF) 
is a Cauchy sequence, and hence maps onto a Cauchy sequence in 
Z,2(Ï2, P ) . The latter space being complete, the Cauchy sequence 
converges to a limit, which we define to be the integral of ƒ with re­
spect to dx(t, '). It is almost self-evident that this integral will pos­
sess the linearity and convergence properties that we would wish an 
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integral ff(t)dx(t) to have. I t can also be shown to permit integration 
by parts, 

J» b /» b 

h(t)dy(t, «) = h(b)y(b, «) - h(a)y(a, «) - I y(tt u)h'(t)dt 
a J a 

for almost all co, whenever h is absolutely continuous on the interval 
[a, b] (Doob [l, p. 432]). Moreover, in gaining rigor we have not lost 
utility; this integral can be used to establish rigorously the theorems 
that the physicists wanted to use, such as Campbell's theorem (Doob 
[1, P. 433]). 

There are however interesting and important problems for which 
the integral just defined turns out to be too restrictive because the 
integrands that we would like to use are themselves functions not only 
of / but also of w. Suppose then that we are given a function 
f(t, co) (t real, co£Q), and we wish to define the integral of this ƒ with 
respect to the stochastic process x(t} •) (— 00 <t< 00). This can be 
done, but only under certain restrictions. One rather natural restric­
tion is an analytic hypothesis which in effect asserts that for each 
value of t, the random variable ƒ (£, • ) ( — 0 0 < J < 0 0 ) i s independent of 
the increments x{t2f ')—x(fi, •) later than L Besides this, it seems 
to be at least convenient and probably necessary to impose restric­
tions on the process x(t). We assume it to be a Wiener process (Itô 
[2] 1 [3], [6]) or at least a special kind of martingale (Doob [l, 
p. 436]). The method of defining this more general integral is con­
ceptually quite close to that outlined above for the simpler integral 
of the functions of t alone, although of course the details are notice­
ably more complicated. 

The stochastic integral just defined was in fact invented in order 
to permit the solution of certain stochastic differential equations, for 
example, the diffusion equation (Itô [2], [3], [ó]; Doob [l, p. 277]). 
However, the subject can hardly be considered to be closed. There are 
other stochastic processes that occur in a quite natural manner and 
that lead to differential equations whose solution will call for new 
techniques. There seems to be room left for quite a bit of enjoyable 
research. 

The stochastic integrals considered above are simple integrals. 
Multiple integrals can also be defined, and in fact were considered 
by Wiener as long ago as 1938 (Wiener [ó]). The simple integral is, 
as we have seen, suggested to us by linear processes. Nonlinear 
processes lead just as naturally to multiple stochastic integrals, as 
Wiener has pointed out in a recent book (Wiener [7]). In order to get 
some idea of what is going on, let us once again abandon all pretense 



614 E. J. McSHANE [September 

at rigor. Once again we consider the black box with an input and an 
output side, the input being given by a random function x such that 
the amount of input during the time interval [t%9 t2] is x(t2) —#(£1). In 
order to estimate the output at time £, we subdivide all times before 
t into short time intervals, which we can number from right to left 
as A/i, At2f - • • . We shall assume that the output is adequately ap­
proximated by some infinitely differentiable (but not necessarily line­
ar) function of all past increments A,-x, where AjX is the increment of 
the input x over the time interval Atfy. The output is now represented 
by a function 

$(Ai*, A2x, • • • ). 
This function we expand in a Taylor series : 

*(Ai*, A2x} • • • ) = *(0, 0, • • • ) + Z *y(0, 0, • • • ) Ajx 
J 

+ E *i.*(0, 0, • • • )Ay*Aft* + • • • 

where the factors $y(0, 0, • • • ), etc. represent the partial derivatives 
of $ with respect to the correspondingly numbered Ajx. To be spe­
cific, let us look at the third term on the right. If tj represents a point 
chosen in the interval A£y, we can change notation by replacing the 
symbol 3>y,fc(0, 0, • • • ) by ^(/y, fe). Now if the functions x(t) are 
much better behaved than we have any reason to expect them to be, 
as the partitioning of the time axis becomes finer and finer, the term 
under consideration should approach a limit which could be reason­
ably indicated by the symbol 

f f *(thh)dx{h)dx{h). 

The other terms would with good luck have analogous limits. How­
ever, what we have already seen of the simple stochastic integral 
should convince us that a much more sophisticated approach than 
this is needed if we are to establish the existence of an integral with 
any sort of usable properties. 

The subject of this talk being what it is, I shall confine my discus­
sion of multiple stochastic processes to those in which stochastic 
integration plays an outstandingly prominent rôle; even these are 
too numerous for us even to sketch (Itô [S], [8], [ l l ] ; Wiener 
[6], [7]; McShane [2]), so we shall concentrate on two of them in 
which the underlying stochastic process is not required to be Gaus­
sian. As before, we shall suppose that the set of functions on the real 
number system i? is labeled by a set 0 of labels, and that we are given 
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a probability measure P in Q. For simplicity we shall suppose that 
the process has no fixed points of discontinuity, and we shall suppose 
that the increments x(t2,

 m)—x(h, •) not only are independent, but 
have moments of every order, and that these moments define interval 
functions that are of bounded variation on every finite time interval. 
If N is any positive integer and I is an interval 

in RN, and xi denotes the indicator function of the interval I, we 
define the stochastic integral of xi to be 

Xi « [x(ti ) - *(*i)] • • • [%(tN
f) - x(tN)]9 

and we define a real-valued measure MN by 

mNI = £(xï) . 

By linearity we can define the stochastic integral of any step function 
on RN, and we can define a corresponding real-valued integral of the 
step function by taking the expected value of the stochastic integral, 

JNf =£(ƒ- ) • 

If ƒ is a step function of N variables, we form from it a function of 
IN variables defined by 

ƒ ® ƒ = (f(h, • • • , tN)f(tN+li • • • , hN) : /1, • • • , hN G -R). 

This fails to be non-negative unless ƒ happens to be of one sign. Never­
theless it can be shown that the equation 

J2*(f®f) = E([f~]*) 

is satisfied, so that the left member is non-negative. Furthermore, it 
is possible to show that the square root of the left member has all of 
the properties that we wish of a norm. It is this that takes over the 
rôle played by the L2 norm in the definition of the simple stochastic 
integral. Since it is a real non-negative integral on a class of step func­
tions, it can be extended by the Daniell process to an integral defined 
on a large class of functions and possessing the well-known linearity 
and closure properties. If ƒ is any function in this class, and ƒ1, ƒ2, • • • 
is a sequence of step functions converging to it according to the norm 
thus defined, namely 

lim [j2N([fn -f]® [fn ~ / ] ) ] 1 / 2 = 0, 

then by isometry the stochastic integrals f» of the step functions 
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form a Cauchy sequence in L%(Q, JP). They therefore tend to a limit, 
and this limit is by definition the stochastic integral f. 

Itô defines multiple stochastic integrals in quite another way, us* 
ing as a tool the concept of random measure. If, for instance, 
x(tt •) ( O g ^ l ) is the Brownian motion process, we have already 
defined 

»i 

ƒ 
as a random variable for each ƒ in L2( [0, 1 ]). If ƒ is the indicator func­
tion of a measurable set E, the above integral can be denoted by 
tn(E, -)î for each E it is a random variable, and for disjoint sets 
Ei, E2, • • • we have tn(Ejt •) and m{Ek} •) independent if j^k and 
also 

n 

lim J^m(Ej, •) = m{\}Eh •) 

(convergence in probability). Random measures can be defined in 
any measure space. 

Now let X(t, cS) ( — 00 <t < 00, coGö) define a separable process with 
stationary independent increments. In P. Levy's formula for the 
characteristic function of AX there occurs a non-negative bounded 
measure dfi\ in the plane TT = R2 = {(/, u) : t real, u real} we define two 
(real) measures /*, V by 

tfM = (l -f u*)dtdp(u), dv = (1 + u2)u~2dtdp(u). 

Now if £ is any Borel set in w that is bounded and bounded away 
from the /-axis, for each <o we define N(E, œ) to be the number of 
points (/, u) in E for which X(t + , oS)— X(t —, co)=u. This defines a 
random measure on the plane 7r, in terms of which the increments of 
X can be expressed : 

X(b, .) - X(a, 0 « T(ô - a) + \fi(0+) - «<>-)][*(», •) - JB(a, •)] 

= lim I I [udN(t, u) - u{\ + u)~ldv(t, «)], 

where B is a Wiener process independent of the N(E, •)• Next Itô 
defines a random measure M{E) (E Borel, E O , JU£< <») by 

M(E) = f D8(0+) - j8(O-)]<W(0 
•J JB(0> 

+ lim I I [wdiyfo #) — udv(t, «)], 
It-no J J B{n) 
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where E(0) is the intersection of E with the /-axis and E(n) is the 
set of points (/, u) of E with nr1< \ u\ <n (w = 1, 2, 3, • • • ). 

If we define a "special rectangle-set" in R2p (p a positive integer) 
to be a set of the form E iX • • • XEP, where the Ej are disjoint 
Borel subsets of the plane TT with JJL(EJ) < 00, we can reasonably de­
fine the random measure of this set to be M(Ei) • • • M(EP). This 
leads immediately to a definition of the integrals of special simple 
functions, which are the linear combinations of indicator functions of 
special rectangle-sets. Now (trivially) the integral IP(J) of such a 
function ƒ coincides with the integral of its symmetrization /sym, ob­
tained by permuting the arguments of ƒ in all possible ways and aver­
aging the results, and (not so trivially) 

E(\lv(f)\2) = E(\Wym)\2) 

= f |/(Éi,---,W| f*ftO • • • * (&) . 

Thus the domain of definition of the integral Ip can be extended to 
the closure in L2(irp, {dix)v) of the set of special simple functions; and 
under a mild continuity hypothesis on JJL, this closure is all of that 
space. 

This integral was defined for the purpose of analyzing the spectral 
structure of time-shift transformations (Itô [ i l ] ) ; for the Brownian 
motion this had been done previously by Kakutani (Kakutani [ l ] ) . 
Its relation to the integral described previously is not very trans­
parent. At least they both specialize to Wiener's integral for Brown-
ian-movement processes, and the overlap might be greater than is 
superficially evident. 

In applications of stochastic integration the process #(•, •) used is 
frequently either imperfectly known or intentionally idealized. It is 
therefore important to know that in some sense, "small" changes in 
the process will cause only "small" changes in the integral. Among 
stationary processes, one possible topology is the topology of con­
vergence of all moments of #(1, •) —x(0, •)• If/, g are functions of m 
and n variables respectively, their stochastic integrals in the sense of 
McShane [2], denoted b y / , g, will depend on the process. So will 
£ ( * ( / ) ^ ( | ) ) , where $>, >£ are continuous functions of at most poly­
nomial rate of growth. Subject to conditions on the magnitude of the 
moments of the increments x(l, «)~#(()> •)» this can be shown 
(McShane [2, p. 271]) to depend continuously on the process. 

For simple stochastic integrals a more elementary topology is use­
ful. Without going into details, this can be described as the topology 



618 E. J. McSHANE [September 

of the weak convergence of the joint distributions of (x(h, • ) > • • ' i 
x(tk, •)) for all finite sets {/i, • • • , / * } . With this topology, it can be 
shown (McShane [3], [4]) that under moderate requirements o n / , 
the integral 

?«, - ) - f' f(t-T)dx(r, •) 

defines a continuous mapping from stochastic processes #(•, •) into 
stochastic processes y(>, •)• The continuity of solutions of stochastic 
differential equations has not yet been studied. 

The connection between Wiener integrals and differential equa­
tions may be said to be seventeen years older than the Wiener inte­
gral itself, since Einstein deduced the distribution of the Brownian 
motion from the diffusion equation. But the principal development 
began with R. Feynman's dissertation of 1942 (see Feynman [ l ] ) . 
Let us first notice that if a functional ƒ on R[0>t] depends only on the 
values of x a t n , • • • , r*, so that f(x) — F(x(ji), • • • , tffa)), its 
Wiener integral is 

1 /» oo /» oo 

-J •••JyWn),'-,^)) 
/ * i r*fa)-*fa^)T, \ 

•expf - 2^ y I — J fa - r/_i) )<kfa) • • ' ^ f a ) , 

where the #(r,0 are merely symbols for real numbers and TO = 0 . This 
suggests denoting the Wiener measure symbolically by 

dwx = — expf I ff(r)2dr ) ILdxM. 
N \ 2 J o / 

Now let us recall that the diffusion equation 

du d2u 

it dx2 

led (Einstein [l]) to the Brownian motion and Wiener measure, 
which in turn can be used to write solutions of equations of the form 

du 1 d2u 
— = U(x)u. 
dt 2 dx2 

If we allow ourselves to replace t formally by iht (h>0)> we could 
hope that in some sense the corresponding "measure" 

d/x « — exp (—j x(r) 2dA Udx(r) 
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should permit us to write solutions of the equation 

1 du 1 d*u 1 
— U(x)u, 

ih dt 2 dx2 h* 
which is the one-dimensional Schrödinger equation. The difficulty 
here is that the "measure" dfx, and the "Feynman integral" based on 
it, are introduced merely as symbols, without any meaning assigned 
to them. This has not troubled some scientists, who used the non­
existent "integral" in "proofs" that irritatingly wound up with the 
right results. In some cases it was remarked that if we replaced ih 
by ih+5 (ô>0) the resulting convergence factor in the integrand 
would allow us to treat the integral in the same way as the Wiener 
integral, and the limit-passage 8—>0+ might be feasible after all 
other computations are finished. Cameron (Cameron [5]) pointed 
out that the statements about the integrals with ih+d in place of i 
were simply wrong; if we define the "measures" of finitely-based sets 
in the natural way, the resulting set function is not of bounded 
variation. If the "Feynman integral" is to be given any usable mean­
ing, a more sophisticated approach is required. Within the past few 
months there has been considerable activity in this direction. (In 
fact, I have been favored with unpublished manuscripts by Itô, 
Feldman and Nelson since the January 1963 meeting, so the rest of 
this paper is in Congressional terminology an "extension of the re­
marks" made during that meeting.) These investigations fall into two 
classes. Those in one class proceed by defining some rigorous sub­
stitute for the invalid procedure of replacing ih by ih+d and then 
using analytic continuation and a passage to the limit analogous to 
Ô-*0. Those in the other class (i.e., two papers by Itô) are essentially 
rigorous replacements for the (nonexistent) "rotation- and transla­
tion-invariant measure in Hubert space." 

Let us begin with Cameron's recent study (Cameron [6]) of the 
Feynman and related integrals. This begins with the observation 
that if we define X = (T~2 ("reciprocal variance parameter"), for the 
ordinary Wiener integral of a functional F we have 

J F(x)dw,\x = f F0r^2x)dWtix 
C[a,b] JC{a,b] 

if the integrals exist; here dw,\x is the Wiener measure corresponding 
to the Brownian-motion process with "reciprocal-variance param­
eter" X, and C[a, b] is the space of all real continuous functions on 
[a, b] that vanish at a. Suppose now that F is a functional defined on 
C[at b] such that for some positive p0, (F(px) : pQ [0, p0], XGC[Q, b]) 
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is integrable with respect to dpdWt\x measure on [0, po]XC[a, b]. 
Then for almost all sufficiently large X the integral 

x FQrWxid^x 
C[a,b] 

will be finite. I t is possible that the function of X thus defined is, 
for large X, the Laplace-Stieltjes transform of some function 
(ƒ($) : 0 S s < oo ) ; that is, ƒ is left continuous and of bounded variation 
on [0, h] for all finite h, and for sufficiently large X the integral 

ƒ' 
v 0 

sX\df(s)\ 

exists, and for almost all such X 

f e~*df(s) = f F(\-v2x)dWtlx. 

Then ƒ($) is the "Ilstow integral of F with parameter s." Don't 
worry if you have never heard of anyone named Ilstow; it is merely 
a contraction of "inverse Laplace-Stieltjes transform of Wiener's." 

So far X has been positive. Now suppose that X is complex (not 0) 
with non-negative real part. I t may still happen (and will, if the real 
part of X is large enough) that 16~8X| has a finite integral over [0, oo ] 
with respect to | df(s) | . In that case we take the preceding equation 
as the definition of its right member. In particular, if ƒ is of bounded 
variation we can take X== —iq for any real non vanishing number q, 
and the resulting integral is the "Feynman integral, with parameter 
q,'} for which Cameron introduces the special notation 

F(x)dx = I ei9*df(s). 

However, the Feynman integral can be defined for a wider class of 
integrands by introducing convergence factors, that is by defining 
Wiener integrals with parameter X in the right half-plane and letting 
X tend to — qi. This time the trick works because the Wiener integrals 
involved have been truly defined. Cameron defines the "limiting 
Feynman integral with parameter q" to be the quantity 

/

» - » / g /» «> 

F(x)dx = lim I esa^^df(s)9 
C[aM T-»0j Be9>£> J 0 

provided that the right member exists. 
Since this whole treatment of complex-Wiener and Feynman inte-
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grals rests upon the behavior of the "Ilstow integrals" f($), the de­
velopment of the theory requires extensive investigation of the lat­
ter. Cameron has carried out this investigation in great detail, which 
it would be absurd for me to try to outline. However, we can men­
tion the last theorem. Under suitable boundedness and integrability 
conditions on the functions (6(t, £ ) : 0 ^ / ^ 0 , — <» <£<<*>) and 
(^(£)- ~ °° < £ < °°)> the limiting Feynman integral 

Gif, Ö = f exp < I 0(t - s, x(s) + Qds\ f(x(f) + Qdx 
J C[0,t] W O / 

exists for all (t, £) in (0, to] X( —• °°, °°), and on that set it satisfies the 
partial differential equation 

1 dG 1 d2G 
» i8(f, QG 

i dt 2 «P 
and the boundary condition 

lim G(f,Q = ^ ( 0 . 

Thus the limiting Feynman integral serves to express the solution 
of the one-dimensional Schrödinger equation with suitably restricted 
potential function, and to this extent it does what the Feynman inte­
gral was meant to do. 

We now turn to Itô's device for introducing a substitute for a uni­
form measure in Hubert space. If we look back at the formula for the 
(nonexistent) Feynman measure d/X, and replace % by y, we see that 
the paths x over which we integrate are uniquely specified by the 
functions 3; in L2[0, / ] , assuming that they all start at the same x(0). 
Then Jl

0\ x(j)\ 2dT = \\y\\, so the Feynman integral of a function f(y) 
with respect to d/ should be of the form 

N-i f exp [*||y||V2A]/(y)IMy(r), 

with some suitable normalizing constant N. So our problem now is to 
assign a useful meaning to such integrals. 

Consider first a finite-dimensional space Rn ; let h be a positive num­
ber. We shall define a "normalized uniform" measure d^y in Rn. (The 
subscript i stands for I to; it is our notation, not his!) This will take 
the place of N^ILdyÇr) in the preceding formula. It will be a con­
stant C times Lebesgue measure in i£n, where C depends only on h 
and n and will be specified shortly. If M is any bounded complex 
measure on Rn, the Fourier transform of M is the function FM 
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= (FM(y) : yERn) defined by 

F M (y) = I exp i(y, z)M(dz)9 

integration being over the whole space. If we write ƒ for FM, an easy 
calculation shows 

ƒ [exp(î||y||V2*)]/(y)^ 

= CW2h f (cost2 + isinP)dA f ext>(h\\z\\*/2i)M(dz). 

We choose C so that the coefficient of the integral in the right mem­
ber is 1. Thus we find that the "normalized uniform" measure diy in 
i?n possesses the following property : whenever ƒ is the Fourier trans­
form of a measure M, the equation 

ƒ [«*(f|M|V2*)l/(y)<*0' = ƒ bxp(h\\zi/2i)]M(dz) 

holds. 
This gives us the pattern of definition that Itô uses. No measure 

is defined in H\ but the integral in the left member of the last equa­
tion is defined for all functions ƒ such that ƒ is the Fourier transform 
of a bounded measure M> and its value is that given by the last equa­
tion. This is easily seen to be linear and to be invariant under rota­
tion. If ƒ = 1, the value of the integral is 1. Also, an analogue of the 
Fubini theorem can be established. 

From the heuristic discussion, the integral has some sort of spatial 
homogeneity. However, this can also be more precisely expressed in 
another way. Let V be any compact symmetric operator on H whose 
eigenvalues Xi, X2, • • • are positive and have finite sum. There is a 
unique probability measure Gy defined on the Borel sets in H whose 
Fourier transform is exp(-—(Fy, y)/2); this is called the Gaussian 
distribution with variance operator V. Then for every positive integer 
n, Gnv is a measure on H. Itô shows that if ƒ is the Fourier transform 
of a measure, 

f exp[f||y||V2*l/(y)^ 

= lim I f ( 1 + ~ ) t^[i\\y\\y2h]f(y)Gar(dy). 
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Thus the left member is the limit of integrals with respect to meas­
ures which individually are not uniform over H, but which "spread 
out" over H as n increases. The measures tend to uniformity in the 
sense that if eu • • • , er are orthonormal in H and <£(£i, • • , £r) is al­
most periodic on Rn, 

lim I 4>((eu y>, • • • , (er, y))Gnv(dy) 

= lim (2A)-' f f *(Su ••-, fe)#i • • • «%•• 

Itô shows that this integral furnishes solutions of the Schrödinger 
equation 

h d$ h2 d2xP 

t dt 2 dx2 

(where xÇzR1) for a rather large class of potentials q} in the following 
way. If T £ [O, t] and i r is the function which is 1 on [O, T ] and 0 on 
(r, t], then (remembering that y was introduced as x) x + (iT, y)=zx(t). 
We define 

UsKx) = f exp[f||y||V2A] 
•J # 

• exp h~H I j ( s + (iT, y))dr <t>(x + (ih y))d&. 

I tô shows that if q is the Fourier transform of a bounded complex 
measure [x in R' such that 

f r2M 
•J 12' 

(#) < », 

the integral Urf>(x) is well defined and satisfies the Schrödinger equa­
tion. This is true also if q(x) = x, even though this is not the Fourier 
transform of such a measure. 

Finally, I wish to report briefly on three papers (Nelson [2], 
Feldman [2], Babbitt [l]) which are as yet unpublished and which 
I have not yet seen even in manuscript; however, I believe that two 
earlier publications (Nelson [ l ] , Feldman [l]) indicate what two of 
these papers will contain. In each of these two the Schrödinger equa­
tion is solved in the form of a semi-group of transformations by start­
ing with the heat equation and obtaining a semi-group capable of 
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analytic continuation to purely imaginary parameters. Nelson indi­
cates that this technique also serves to define a Feynman integral. 
However, in these papers the integrals (other than the Wiener inte­
gral) play a secondary rôle, the chief goal being to solve the equa­
tions rather than to define an integral that will help in solving the 
equations; and therefore, in spite of their interesting contents, they 
are somewhat alien to our present subject. The abstracts of Babbitt 's 
results indicate that analytic continuation of semi-groups plays an 
essential rôle in his results too. 
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