A GENERALIZED KOSZUL COMPLEX

BY DAVID A. BUCHSBAUM AND DOCK S. RIM1

Communicated by D. Zelinsky, December 20, 1962

1. This note is concerned with the definition of a free complex which generalizes the classical Koszul complex [2], and its application to the notions of depth and multiplicity.

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a map, where R is any commutative ring. Then for each p, $1 \le p \le n$, we define a complex K as follows:

$$K_{q+2} = \sum_{i=1}^{s_0+\nu} \bigwedge^{s_0+\nu} R^{n*} \otimes \bigwedge^{s_1} R^{n*} \otimes \cdots \otimes \bigwedge^{s_q} R^{n*} \otimes \bigwedge^{n+1+\Sigma_{s_i}} R^m \text{ for } q \geq 0;$$

$$K_1 = \bigwedge^p R^m, \qquad K_0 = \bigwedge^p R^n;$$

 ν is the fixed integer n+1-p and the summation is taken over all $s_0 \ge 0$, $s_i \ge 1$ for $i \ge 1$. (We are using the notation $M^* = \text{Hom}(M, R)$ for any R-module M.) The boundary map in this complex is defined as

$$d_{q+2}(b_0 \otimes b_1 \otimes \cdots \otimes b_q \otimes a)$$

$$= \sum_{i=0}^{q-1} (-1)^i b_0 \otimes \cdots \otimes b_i \wedge b_{i+1} \otimes \cdots \otimes b_q \otimes a$$

$$+ (-1)^q b_0 \otimes \cdots \otimes b_{q-1} \otimes \omega_{b_q}(a) \quad \text{for } q \geq 0,$$

and $d_1: \wedge^p R^m \to \wedge^p R^n$ is simply $\wedge^p f$. The symbol $\omega_{b_q}(a)$ is defined as follows: if β is any element of R^{n*} , then βf is in R^{m*} and thus induces a derivation of degree -1 on the exterior algebra of R^{m*} , denoted by ω_{β} . If $b = \beta_1 \wedge \cdots \wedge \beta_s \in \wedge^s R^{n*}$ and $a \in \wedge^t R^m$, then $\omega_b(a)$ is defined to be $\omega_{\beta_1} \cdots \omega_{\beta_s}(a)$. Since $\omega_{\beta_1} \omega_{\beta_2} + \omega_{\beta_2} \omega_{\beta_1} = 0$, this operation is well defined and thus gives a pairing $\wedge^s R^{n*} \otimes \wedge^t R^m \to \wedge^{t-s} R^m$.

The fact that this gives a chain complex is rather easy to verify and the length of the complex is seen to be m-n+1.

2. If R is a commutative, noetherian ring, and E is an R-module, a sequence a_1, \dots, a_d of elements in R is called a proper E-sequence if for all i, $1 \le i \le d$, $E/(a_1, \dots, a_i)E \ne 0$ and a_i is not a zero-divisor for $E/(a_1, \dots, a_{i-1})E$ [1]. If I is an ideal of R, the I-depth of E is defined to be the length of a maximal proper E-sequence of elements contained in I. It is known that this number is always finite for a

¹ This work was done with the partial support of NSF grant G-14097 and also with the partial support of IDA.

noetherian ring R, and that any two such maximal proper E-sequences have the same length [1].

If $f: R^m \to R^n$, the ideal I(f) is defined to be the annihilator of Coker $\Lambda^n f$. If E is an R-module, we denote the homology of $K \otimes E$ by $H_*(\Lambda^p f, E)$, and that of Hom(K, E) by $H^*(\Lambda^p f, E)$.

THEOREM 1. Given a map $f: \mathbb{R}^m \to \mathbb{R}^n$ $(m \ge n, \text{ and } \mathbb{R} \text{ a noetherian } ring)$ and an \mathbb{R} -module E such that $E/I(f)E \ne 0$, we have, for each p $(1 \le p \le n)$ the following statements:

- (1) I(f)-depth E is the smallest integer q for which $H^q(\Lambda^p f, E) \neq 0$, and $H^d(\Lambda^p f, E) = \operatorname{Ext}^d(\operatorname{Coker} \Lambda^p f, E)$, where d = I(f)-depth E.
- (2) m-n+1-(I(f)-depth E) = the largest integer q for which $H_q(\bigwedge^p f, E) \neq 0$. Furthermore, $H_{m-n+1-d}(\bigwedge^p f, E)$ may also be interpreted as $\operatorname{Ext}^d(M, E)$ where M is a specific module depending upon f and p.

The proof of this theorem follows from a fairly general argument about exact connected sequences of functors $\{T^i\}$ satisfying several conditions, the main one being that for every R-module E, Supp $T^i(E) \subset R/I$ for some fixed ideal I. It can be shown that $H^*(\Lambda^p f, E)$ and $H_*(\Lambda^p f, E)$ (the latter with suitable shift of index) are both exact connected sequences of functors of the appropriate type, and hence our result.

As a corollary, we obtain the fact that if E and f are as above, then I(f)-depth $E \le m-n+1$. We also obtain the generalized Cohen-Macaulay unmixedness theorem, due to Eagon [3] which is:

THEOREM 2. Let $f: R^m \to R^n$ $(m \ge n)$ be a map such that I(f)-depth R = m - n + 1. Then if R is a Cohen-Macaulay ring, Coker $\Lambda^p f$ is unmixed for all $p, i \le p \le n$.

The proof proceeds by using the fact that if I(f)-depth R=m-n+1, then K_{Λ^p} , is an acyclic resolution of Coker $\Lambda^p f$ and $K_{\Lambda^p}^*$, $= \operatorname{Hom}(K_{\Lambda^p}, R)$ is an acyclic resolution of $H^{m-n+1}(\Lambda^p f, R)$. Thus $\operatorname{Ext}^i(H^{m-n+1}(\Lambda^p f, R), R)$ is 0 if i < m-n+1, and is Coker $\Lambda^p f$ if i = m-n+1. Thus one may express Coker $\Lambda^p f$ as $\operatorname{Ext}^{m-n+1}(H^{m-n+1}(\Lambda^p f, R), R)$ which is equidimensional. Since R is Cohen-Macaulay, this implies that Coker $\Lambda^p f$ is unmixed.

3. Let us assume throughout that R is a local ring,² unless otherwise specified. Although this is not an essential assumption, it simplifies some of our statements.

If M is an R-module, we denote by $S(M) = \sum S_{\nu}(M)$ the symmetric

² Here, by a local ring, we mean a commutative, noetherian ring with identity element, having a unique maximal ideal.

algebra generated by M over R. If $f: R^m \to R^n$ is a map, then $S_r(f): S_r(R^m) \to S_r(R^n)$ is the induced map on symmetric products. If, moreover, E is an R-module such that Coker $f \otimes E$ has finite length, then the same is true for Coker $S_r(f) \otimes E$ for every $v \ge 1$, i.e., $l(\operatorname{Coker} S_r(f) \otimes E) < \infty$. We define a numerical function $P_f(v, E) = l(\operatorname{Coker} S_r(f) \otimes E)$.

For any polynomial function ϕ , we define $\mu(\phi) = (\deg \phi)!$ (leading coefficient of ϕ).

THEOREM 3. Let R be a local ring, $f: R^m \to R^n$ be a map, and E be an R-module such that $l(\operatorname{Coker} f \otimes E) < \infty$. Then

- (1) $P_f(v, E)$ is a polynomial function for all sufficiently large v;
- (2) $\mu(P_f(\nu, E))$ depends only on Coker f and E;
- (3) deg $P_f(\nu, E) = n 1 + \dim E$.

The proof, although not trivial, is computational. Let $\tau^m: S(R^m)^m \to S(R^m)$ be the canonical map. $S(R^n)$, and hence also $S(R^n) \otimes E$, becomes a graded $S(R^m)$ -module through the map $S(f): S(R^m) \to S(R^n)$. Hence we may consider the Koszul complex K_{τ^m} associated with the map τ^m , and the (graded) homology groups $H_*(\tau^m, S(R^n) \otimes E)$ whose λ th homogeneous part is denoted by $H_*(\tau^m, S(R^n) \otimes E)_{\lambda}$. We then observe that $\Delta^m P_f(\nu, E) = \sum (-1)^{m-q} l(H_{m-q}(\tau^m, S(R^n) \otimes E)_{\nu+q})$ for all sufficiently large ν , where $\Delta^m P_f$ denotes the mth difference function of P_f , and establishes, through the use of a certain double complex, that $\Delta^{m+n} P_f(\nu, E) = 0$ for all sufficiently large ν . This establishes (1).

The proof of (2) is a purely formal computation, based on an application of Schanuel's lemma, which also shows that deg $P_f(\nu, E) - n + 1$ depends only on Coker f and E.

Having proved these facts, the proof of (3) proceeds by restricting our attention to maps $f: R^m \to R^n$ such that $f(R^m) \subset \mathfrak{m} R^n$, where \mathfrak{m} is the maximal ideal of R. Since, then, $I(f) \subset \mathfrak{m}$, deg $P_f - n + 1$ gets squeezed between the degree of the characteristic function for \mathfrak{m} and that for I(f) with respect to E. Hence the result.

As a consequence of this theorem, we obtain a generalization of Krull's principal ideal theorem.

THEOREM 4. Let R be any noetherian ring, and $f: R^m \to R^n$, with $m \ge n$. Then dim $R_p \le m - n + 1$ for all minimal primes p in Supp Coker f.

The proof proceeds by first reducing to the case when R is a local ring and Coker f has finite length. One then may assume that R is an integral domain and thus contains a nonzero divisor α in its maximal ideal. From the exact sequence $0 \to S(R^n) \to \alpha S(R^n) \to S(R^n) \otimes R/\alpha \to 0$ (the maps being of homogeneous degree 0), and

using the fact that $\Delta^m P_f$ may be computed as an Euler-Poincaré characteristic, together with Theorem 3, we obtain our result.

We also obtain as a corollary (again R is a local ring) that if $f: R^m \to R^n$ and E is such that $l(\operatorname{Coker} f \otimes E) < \infty$, then $m-n+1 \ge \dim E$ and hence $m \ge \deg P_f(\nu, E)$.

These theorems naturally lead to the following definition. Let M be a module of finite length over a local ring R, let $f: R^m \to R^n$ be a map whose cokernel is M, and let E be an R-module. Then $(\dim R+n-1)!$ (the coefficient of the term of degree $n-1+\dim R$ in the polynomial $P_f(\nu, E)$) is a non-negative integer which depends only on M and E. We call it the multiplicity of M with respect to E, and denote it by $e_E(M)$.

THEOREM 5. If R is a local ring, given a map $f: \mathbb{R}^m \to \mathbb{R}^n$ and an R-module E such that $l(\operatorname{Coker} f \otimes E) < \infty$, we have

$$\binom{n-1}{n-p}\Delta^m P_f(\nu, E) = \chi H_* \binom{p}{\Lambda} f, E$$

where $\chi H_*(\bigwedge^p f, E) = \sum_q (-1)^q l(H_q(\bigwedge^p f, E)).$

The proof of this theorem falls out of a general construction of a double complex associated with maps $R^m \rightarrow f R^n \rightarrow g R^r$ which relates the complexes K defined by f, g, and gf.

We say the map $f: R^m \to R^n$ is a parameter matrix for R if $M = \operatorname{Coker} f$ has finite length, and $m - n + 1 = \dim R$. We obtain as a corollary of the above theorem that if $f: R^m \to R^n$ is a parameter matrix for R with cokernel M, and if E is an R-module, then

$$\chi H_* \left(\stackrel{p}{\wedge} f, E \right) = {n-1 \choose n-p} e_E(M).$$

BIBLIOGRAPHY

- 1. M. Auslander and D. A. Buchsbaum, Homological dimension in noetherian rings. II, Trans. Amer. Math. Soc. 88 (1958), 194-206.
 - 2. ——, Codimension and multiplicity, Ann. of Math.(2) 68 (1958), 625-657.
- 3. J. Eagon, Ideals generated by the subdeterminants of a matrix, Ph.D. dissertation, Univ. of Chicago, Chicago, Ill., 1961.

BRANDEIS UNIVERSITY