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1. This note is concerned with the definition of a free complex
which generalizes the classical Koszul complex [2], and its applica-
tion to the notions of depth and multiplicity.

Let f: R»—R" be a map, where R is any commutative ring. Then
for each p, 1 £p <n, we define a complex K as follows:

8o+ 8 n+1+Zes

8q
Kyro=2 ANR*®QAR*® -- - @ AR*® A R» forq = 0;

b4 b4
K1=ARm, K0=AR";

v is the fixed integer #+1—p and the summation is taken over all
5020, s;=1 for 1=1. (We are using the notation M*=Hom(M, R)
for any R-module M.) The boundary map in this complex is defined as

des(bo @ b1 ® + -+ ® by ® a)
q—1

=2 (D) ® - Q@biAbip1® - Qb Qa

t=0
F+(—1D%B ® -+ Q by ®wbq(a) forg = 0,

and di: A» R»—A? R~ is simply A?f. The symbol ws (a) is defined
as follows: if B is any element of R**, then 8f is in R** and thus in-
duces a derivation of degree —1 on the exterior algebra of R™*, de-
noted by ws. If b=BA - - - AB.EA* R** and aEAt R™, then wy(a)
is defined to be wg, + + + wg,(@). Since wg,ws, +ws,ws, =0, this operation
is well defined and thus gives a pairing A* R**®@A t Rm—/\ =+ Rm,

The fact that this gives a chain complex is rather easy to verify
and the length of the complex is seen to be m—n--1.

2. If R is a commutative, noetherian ring, and E is an R-module,
a sequence a,, * - *+ , @q of elements in R is called a proper E-sequence
if for all 4, 1=9=d, E/(ay, - + +, a;)E##0 and a; is not a zero-divisor
for E/(ay, + -+, @i)E [1]. If I is an ideal of R, the I-depth of E is
defined to be the length of a maximal proper E-sequence of elements
contained in I. It is known that this number is always finite for a

1 This work was done with the partial support of NSF grant G-14097 and also
with the partial support of IDA.
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noetherian ring R, and that any two such maximal proper E-sequences
have the same length [1].

If f: R»—R», the ideal I(f) is defined to be the annihilator of
Coker A*f. If E is an R-module, we denote the homology of KQE
by H«(A? f, E), and that of Hom(K, E) by H*(A* f, E).

THEOREM 1. Given a map f: R"—R* (m=n, and R a noetherian
ring) and an R-module E such that E/I(f)Es0, we have, for each
p (1 =p=n) the following statements:

(1) I(f)-depth E is the smallest integer q for which He(A» f, E) 0,
and Hé(A\» f, E) = Ext!(Coker A? f, E), where d = I(f)-depth E.

) m—n+1—(I(f)-depth E)=the largest integer q for which
H,(A» f, E) £0. Furthermore, Hp_ns1-a(A? f, E) may also be interpreted
as Extd(M, E) where M is a specific module depending upon f and p.

The proof of this theorem follows from a fairly general argument
about exact connected sequences of functors { I} satisfying several
conditions, the main one being that for every R-module E, Supp T E)
CR/I for some fixed ideal I. It can be shown that H*(A? f, E) and
Hy(A?f, E) (the latter with suitable shift of index) are both exact
connected sequences of functors of the appropriate type, and hence
our result.

As a corollary, we obtain the fact that if E and f are as above, then
I(f)-depth E<m—n-+1. We also obtain the generalized Cohen-
Macaulay unmixedness theorem, due to Eagon [3] which is:

THEOREM 2. Let f: Rm—R" (m=n) be a map such that I(f)-depth
R=m—n+1. Then if R is a Cohen-Macaulay ring, Coker A?f is
unmixed for all p, 1<p=n.

The proof proceeds by using the fact that if I(f)-depth R=m—n-+1,
then Kjg, is an acyclic resolution of Coker A?f and K},
=Hom(K?, R) is an acyclic resolution of Hm=+1(A? f, R). Thus
Exti(Hm+'(A?f, R), R) is 0 if i<m—n+1, and is Coker A7 f if
i =m —n+ 1. Thus one may express Coker A?f as
Extm—n+1(Hm—n+1(A? f, R), R) which is equidimensional. Since R is
Cohen-Macaulay, this implies that Coker A? f is unmixed.

3. Let us assume throughout that R is a local ring,? unless other-
wise specified. Although this is not an essential assumption, it simpli-
fies some of our statements.

If M is an R-module, we denote by S(M) = DS, (M) the symmetric

2 Here, by a local ring, we mean a commutative, noetherian ring with identity
element, having a unique maximal ideal.
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algebra generated by M over R. If f: R»—R* is a map, then S,(f):
S, (R™)— S, (R*) is the induced map on symmetric products. If, more-
over, E is an R-module such that Coker f® E has finite length, then
the same is true for Coker S,(f) ® E for every » = 1, ie,,
I(Coker S,(f)®E)< . We define a numerical function P;(», E)
=(Coker S,(f) ®E).

For any polynomial function ¢, we define u(¢) = (deg ¢)! (leading
coefficient of ¢).

THEOREM 3. Let R be a local ring, f: R"—R" be a map, and E be an
R-module such that I(Coker fQE) < ». Then

(1) Ps(v, E) is a polynomial function for all sufficiently large v;

(2) w(Ps(v, E)) depends only on Coker f and E;

(3) deg Ps(v, E)=n—1-+4dim E.

The proof, although not trivial, is computational. Let 77: S(Rm)™
—S(R™) be the canonical map. S(R"), and hence also S(R") ® E, be-
comes a graded S(R™)-module through the map S(f): S(R™)—S(R").
Hence we may consider the Koszul complex K.» associated with the
map 7", and the (graded) homology groups Hy(r™, S(R*) @ E) whose
Ath homogeneous part is denoted by Hi(r™, S(R") ® E)». We then
observe that AmP;(y, E)= 3 (—1)"U(Hp_o(r™ S(R*) ®E),.,) for
all sufficiently large », where A™P; denotes the mth difference func-
tion of Py, and establishes, through the use of a certain double complex,
that A»t*P,(y, E) =0 for all sufficiently large ». This establishes (1).

The proof of (2) is a purely formal computation, based on an ap-
plication of Schanuel’s lemma, which also shows that deg P;(», E)
—n-+1 depends only on Coker f and E.

Having proved these facts, the proof of (3) proceeds by restricting
our attention to maps f: R»—R* such that f(R™) CmR®, where m is
the maximal ideal of R. Since, then, I(f) Cm, deg Py—n-41 gets
squeezed between the degree of the characteristic function for m and
that for I(f) with respect to E. Hence the result.

As a consequence of this theorem, we obtain a generalization of
Krull's principal ideal theorem.

THEOREM 4. Let R be any noetherian ring, and f: R®—R", with m = n.
Then dim Ry Em—n-+1 for all minimal primes p in Supp Coker f.

The proof proceeds by first reducing to the case when R is a local
ring and Coker f has finite length. One then may assume that R is
an integral domain and thus contains a nonzero divisor « in its
maximal ideal. From the exact sequence 0 — S(R") —2 .S(R"»)
—S(R") @ R/a—0 (the maps being of homogeneous degree 0), and
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using the fact that A™P; may be computed as an Euler-Poincaré
characteristic, together with Theorem 3, we obtain our result.

We also obtain as a corollary (again R is a local ring) that if
f: R"—R"» and E is such that I(Coker f®E)< «, then m—n+1
=dim E and hence m =deg P;(v, E).

These theorems naturally lead to the following definition. Let M
be a module of finite length over a local ring R, let f: R*—R" be a
map whose cokernel is M, and let E be an R-module. Then
(dim R+n—1)! (the coefficient of the term of degree n—1-+dim R
in the polynomial P;(v, E)) is a non-negative integer which depends
only on M and E. We call it the multiplicity of M with respect to E,
and denote it by eg(M).

THEOREM 5. If R is a local ring, given a map f: R*—R" and an
R-module E such that I(Coker fQE) < », we have

(: B ;) APy(v, E) = xHx ( A, E)

where xHyx(A? f, E) = 2_o(— 1) U(Hy(A? f, E)).

The proof of this theorem falls out of a general construction of a
double complex associated with maps R™—/R"—9R" which relates
the complexes K defined by f, g, and gf.

We say the map f: R»— R"is a parameter matrix for Rif M = Coker f
has finite length, and m—#n-+1=dim R. We obtain as a corollary of
the above theorem that if f: R»—R" is a parameter matrix for R
with cokernel M, and if E is an R-module, then

XHx ( A, E) = (: ~ ;) ex(M).

BIBLIOGRAPHY

1. M. Auslander and D. A. Buchsbaum, Homological dimension in noetherian
rings. 11, Trans. Amer. Math, Soc. 88 (1958), 194-206.

2. , Codimension and multiplicity, Ann. of Math.(2) 68 (1958), 625-657.

3. J. Eagon, Ideals generated by the subdeterminants of a matrix, Ph.D. dissertation,
Univ. of Chicago, Chicago, Ill., 1961.

BRANDEIS UNIVERSITY



