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Let f(2) be a function, meromorphic in |z| <1, whose power series
around the origin has integral coefficients. In [5], Salem shows that
if there exists a nonzero polynomial p(2) such that p(2)f(z) is in H?,
or else if there exists a complex number «, such that 1/(f(2) —a) is
bounded, when | 2| is close to 1, then f(2) is rational. In [2], Chamfy
extends Salem’s results by showing that if there exists a complex
number « and a nonzero polynomial p(2), such that p(z)/(f(z) —a)
is in H?, then f(z) is rational. In this paper we show that if f(2) is of
bounded characteristic in |z| <1 (i.e. the ratio of two functions, each
regular and bounded in Izi <1), then f(z) is rational. If f(z) is regular
in |2| <1, then, by [4], f(2) is of bounded characteristic in |z| <1,
if and only if

27
lim sup f log* | f(re®) | d8 < .
0

r—1—

Thus any function in any H? space (p >0) is of bounded character-
istic. Hence, since the functions of bounded characteristic form a
field, our result includes those of Salem and Chamfy.

Our first lemma gives a necessary condition for a function to be of
bounded characteristic in |z| <1, in terms of the properties of its
Taylor series coefficients.

If g(g)= D i az’, we denote by A,=A4,(g) the matrix ”aiHH,
0=4,j=r.

LeEMMA 1. Suppose g(2) is of bounded characteristic in |z| <1. Then
det(4,)—0 as r— . More precisely, lim,.,, |det(A,)| Ur=(,

Proor. By assumption, we may write g(z) =s(2)/t(2), where s(3)
and i(z) are bounded analytic functions in |z| <1. Suppose that
5(2) = Do szt and £(2) = D_.op tizé, and, without loss of generality,
that 2=1. We now perform a series of column and row operations
on the matrix 4,. Denote its columns from left to right by ¢, ¢,
¢, * + -, ¢ Now, successively, for j=0, 1, 2, - -+, 7, replace the
column ¢,_; by D523 ticr_j_i; then perform the same sequence of
operations on the rows. This yields a matrix D,=||du.||, 0Sm, n<r.
Since ty=1, det(D,) =det(4,).
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It is easy to verify that

m n

Gmn = 2 D LitiGmin—icj-

=0 j=0

Hence dn.. is the coefficient of zm*t* in

itiziitjzfiakz"
=0 j=0 k=0
1 = - 3 tigt _3 %
® = P} NE j-zn;rltz>g(z)

= <t(z) - i tat — i tjzf) s(2) + g(2) i t:5 i 7,

t=m+1 J=n+1 G=m+41 je=ntl

since £(2)g(z) = s(z). As the coefficient of z»** in the last term of (1)
18 0, dny is the coefficient of g»+» in

( Z thi + E t,-z" - Z tjzf) E SjZi.

J=0 J=0 =0 =0
Hence
dmn = Omn + Qnm — ﬁmn,
where am, = Z;"_o tiSmin—i and Bmn = D " tiSmin_i. Then, by
Schwarz’s inequality,
) | dn |2 S 3(] tmn |2+ | @um |2+ | Bun|?).

We now show that

> ZO | dmn |2 = o(7).
m=0 n=
To do this, it suffices to show that

>3 | aml?

m=0 n=0

0(’) ’
and that

i i ‘ ﬁmnP = o(r).

m=0 n=0
NOW, otmn is the coefficient of 27+ in Y ;2 t:iz' D2, s;27. Hence, by
Parseval's equality,

27

0 2
1(z) Y sit| do,

i=n

3) f_‘, | amn|? = lim 1

=0 1= 2w g
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where z=pe®. Now £(z) is bounded in Iz] <1 by, say, T. Thus, again
using Parseval’s equality, we have, when Iz] =p<1,

0 2 T2 2x] ©
1(2) Zsizi de < —f Es;zi
27r 0 fwan

= T2 Z ‘S;lzp“-

i=n

Put S,= > 2, Isil 2, Then, as s(2) is bounded, Sy is finite and S,—0
as n— . By (3) and (4), we have

2T 2
— do

21 o

(4)

> | oma|? £ T2S,.

m=0

Hence

) XX | am| £ T2 X5, = o).

n=0 m=0 n=0

Now, Bu. is the coefficient of zm+* in the bounded function s(2)¢(z)
= > o uiz'. Then,

5 [bunlt = 2 [ bunlt = 5 [l

i=n

Thus,

©) 33 | fnl? = o).

n=0 m=0

Hence, by (2), (5), and (6),

i ZT: | dmnlz = o(r).

m=0 n=0

We now estimate det(D,). By Hadamard’s inequality,

) | det(D) |2 = TT 2 | dua 2.

me=0 n=0
The right hand side of (7) is the (r+1)st power of the geometric mean
of the quantities > .o ld,,.,,lz, 0<=m=r. Hence, by the inequality
between arithmetic and geometric means

1 r r
| det(D,) |21+ £ —— 3 3" | dua|? = 0(1).
r + 1 M= ne=0
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Hence, since det(D,) =det(4,), we have
lim | det(4,)|Y" = 0. q.ed.
r—w

By a change of variable we obtain

LeEMMA 2. Suppose g(2) is regular at 2=0, and of bounded character-
istic in |z| <s. Then lim,.., s*| det(4.(g))| %" =0.

THEOREM 1. Let f(2) be a function of bounded characteristic in [ z| <1,
whose Laurent series around the origin has integral coefficients. Then
f(2) 1s rational.

Proor. By multiplying f(2) by a power of z, if necessary, we may
assume that f(2) is regular at z=0, and has a power series expansion
f2) = Zﬁ.o a:z’, where the a; are integers. By Lemma 1,
lim,., det(4,(f)) =0. As the a; are integers, so are the det(4,(f)).
It follows that det(4,(f)) =0 for all large ». But this implies that
f(2) is rational, by a theorem by Kronecker [1, p. 138].

CoOROLLARY. Let f(2) be a function meromorphic in |z| <1, whose
Laurent series around the origin has integral coefficients. If there exists
a set S of positive capacity, such that for each &S, the equation f(2) =a
has only finitely many solutions in | 3| <1, then f(3) is rational.

ProoF. If f(z) satisfies only the second condition, then by a theo-
rem of Frostman [3] or [4, p. 260], f(2) is of bounded characteristic.
g.e.d.

Let K be an algebraic number field of degree # over the rationals;
denote by K, 1 £4=#, the different embeddings of K into the field
of complex numbers. If ¢ €K, denote by a? the image of ¢ in K,

THEOREM 2. Let f(23)= D o a;s' be a formal power series whose
coefficients a; are algebraic integers in K. Suppose that f©0(z) = 2, aPzi
is of bounded characteristic in the disc [zl <si, 1Si<n, where [0, s:
=1. Then f(2) is a rational function.

Proor. Put 4, = 4,(f) and 4A® = 4.(f®). By Lemma 2,
s;| det 4P| ¥r—0 as r— . Hence

Nm det(4,) = [[ det(4) =0

1=1

as r— . Since Nm det(4,) is an integer, it is eventually 0. Hence by
the theorem of Kronecker (whose proof is valid over any field) [1,
p. 138], f(2) is rational.
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We shall consider C* vector fields X, ¥ on a compact 2-manifold
M. When the Lie bracket [X, V] vanishes identically on M, we say
that X and Y commaute. It was shown in [1] that every pair of com-
muting vector fields on the 2-sphere S? has a common singularity.
Here we extend this result to all compact 2-manifolds with nonvanish-
ing Euler characteristic.

Our manifolds are connected and may have boundary. The bound-
ary of a compact 2-manifold is either empty or consists of finitely
many disjoint circles. Given a C! vector field X on a compact mani-
fold M, we tacitly assume that X is tangent to the boundary of M
(if it exists). Then the trajectories of X are defined for all values of
the parameter, and translation along them provides a (differentiable)
action £ of the additive group R on M. Given x& M, one has X(x) =0
if, and only if, x is a fixed point of £, that is, £(s, x) =x for all sER.
Let Y be another C! vector field on M, generating the action 5 of R
on M. The condition [X, ¥]=0 means that £ and  commute, that
is, £(s, n(t, x)) =n(2, £(s, x)) for all x& M and s, t&ER. Thus the pair
X, Y generates an action ¢: R?X M— M of the additive group R? on
M, defined by o¢(r, x)=£(s, n(t, x))=2(, £(s, x)) for xEM and
r={(s, £) ER2 Notice that x& M is a fixed point of ¢ if, and only if,
x is a common singularity of X and Y, that is, X (x) = Y(x) =0. These
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