$$p(u-v) \leq \delta^p + \gamma [\eta(C)] + \int_{c(x)}^{C} \eta(s) ds.$$

The proof follows by setting $\mu'(s) = \eta(s)$, $y = m - \mu[c(x)]$, where m is a constant so chosen that the function p(u-v) - y does not assume a positive maximum on ∂B .

BIBLIOGRAPHY

- 1. L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167-177.
- 2. R. M. Redheffer, Bemerkungen über Monotonie und Fehlerabschätzung bei nichtlinearen partiellen Differentialgleichungen, Arch. Rational Mech. Anal. 10 (1962), 427-457.
- 3. S. Simoda, and M. Nagumo, Sur la solution bornée de l'équation aux dérivées partielles du type elliptique, Proc. Japan Acad. 27 (1951), 334-339.

University of Hamburg

COMPLETE LOCALLY AFFINE SPACES AND ALGEBRAIC HULLS OF MATRIX GROUPS

BY LOUIS AUSLANDER¹

Communicated by I. M. Singer, November 27, 1962

Let M be a complete Riemann manifold with curvature and torsion zero. If $\pi_1(M)$ denotes the fundamental group of M, then Bieberbach [3; 4] proved that $\pi_1(M)$ contains an abelian normal subgroup of finite index. Moreover, if M is compact then M is covered by a torus.

In recent years the study of general affine connections has led to the study of the following problem: How can one classify the manifolds which possess a complete affine connection with curvature and torsian zero? Such manifolds will be called complete locally affine spaces.

It was Zassenhaus [6] who first gave a general setting to the Bieberbach theorem. He showed a special case of the following theorem:

THEOREM 1. Let G be a connected Lie group with its radical R simply connected, $\rho: G \rightarrow G/R$ the projection, and L a closed subgroup of G. If the identity component L_0 of L is solvable, then the identity component of the closure of $\pi_1(L)$ is solvable.

This theorem in this generality is due to H. C. Wang [5] and his

¹ With partial support from the N. S. F.

proof is a modification of a proof given for this theorem by the author [1] when L was required to be discrete.

Now Bieberbach's theorem follows trivially from Theorem 1. However, Theorem 1 is still not strong enough to treat the general case of complete locally affine manifolds. In order to treat this general problem, we will need the following theorem.

THEOREM 2. Let M be a complete locally affine manifold with fundamental group $\pi_1(M)$. Assume further that the holonomy group is discrete and isomorphic to $\pi_1(M)$. Then $\pi_1(M)$ is abelian.

Using the above two theorems one can show the following:

THEOREM 3. Let M be a complete locally affine manifold with fundamental group $\pi_1(M)$. Then $\pi_1(M)$ contains a normal solvable subgroup of finite index. Further if $\pi_1(M)$ is compact, M is finitely covered by a compact solvanifold.

COROLLARY. Every complete locally affine manifold (compact or not) has Euler characteristic zero.

Added in Proof

Theorem 4. Let M_i , i=1, 2, be a compact complete locally affine manifold with fundamental group $\pi_1(M_i)$. Assume G_i is the algebraic hull of $\pi_1(M_i)$ in the group of affine transformations. Then if σ is an isomorphism of $\pi_1(M_1)$ onto $\pi_1(M_2)$ then σ can be extended uniquely to an isomorphism of G_1 onto G_2 .

COROLLARY. If M_1 and M_2 are compact complete locally affine manifolds with isomorphic fundamental groups, then M_1 is homeomorphic to M_2 .

The material announced in this paper is obviously much stronger than the results already announced in [2]. A detailed account of these results will be published elsewhere.

REFERENCES

- 1. L. Auslander, On radicals of discrete subgroups of Lie groups (to appear).
- 2. ———, On the Euler characteristic of compact complete locally affine spaces. II, Bull. Amer. Math. Soc. 67 (1961), 405-406.
- 3. L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. I, Math. Ann. 70 (1911), 297-336.
- 4. —, Über die Bewegungsgruppen der Euklidischen Räume. II, Math. Ann. 72 (1912), 400-412.
 - 5. H. C. Wang, On the deformation of lattice in a Lie group (to appear).
- 6. H. Zassenhaus, Beweis eines Stazes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg. 12 (1938), 289-312.

PURDUE UNIVERSITY