DIFFERENTIAL INQUUALITIES

BY RAYMOND M. REDHEFFER1

Communicated by Lipman Bers, August 14, 1962

Let B denote a bounded region in Euclidean n-space, with boundary ∂B and closure \overline{B} . We write $P = x = (x_1, x_2, \dots, x_n) \in \overline{B}$, $u_i = \partial u/\partial x_i$, $u_{ij} = \partial^2 u/\partial x_i \partial x_j$, and similarly for v, c and y. The normal derivative u_v is understood in the sense of Walter, namely:

$$u_r(P_0) = \lim \sup [u(P_k) - u(P_0)] | P_k - P_0|^{-1}$$

where $P_k \in B$, $P_0 \in \partial B$, and $P_k \rightarrow P_0$ in such a way that

$$(P_k-P_0) \mid P_k-P_0 \mid^{-1}$$

tends to a fixed vector, ν . We have u = u(x), v = v(x), and

$$Tu = \phi(x) - f(x, u, u_i, u_{ij}), \qquad x \in B,$$

$$Ru = \Re(x) - k(x, u, u_i), \qquad x \in \partial B.$$

Independent variables are denoted by the letter s. The letter p means "+" or "-," and has the same meaning in hypothesis and conclusion. We suppose ϵ^p and δ^p to be nonnegative constants. The statement " $f(x, v, v_i, v_{ii} \uparrow)$ is monotone" means that

$$p[f(x, v, v_i, v_{ij}) - f(x, v, v_i, s_{ij})] \ge 0$$

when the matrix $p[(v_{ij}) - (s_{ij})] \ge 0$, $p = \pm$. Other assertions of monotony are interpreted similarly. We assume $u \in C^{(2)}$, $v \in C^{(2)}$ in B and $u \in C$, $v \in C$ in \overline{B} , although discontinuities can be allowed as in [2].

It is convenient to write $v' = (v, v_i, v_{ij})$, a vector of $1 + n + n^2$ components, and similarly for u, s, and y. Also $f' = (f_u, f_{ui}, f_{uij})$ with argument (x, v') or (x, s'), as the case may be. Similarly, $k' = (k_u, k_{u_p})$. The statement "f' is continuous in the neighborhood of v" means that there is an h > 0 such that f'(x, s') is continuous for |s' - v'| < h. Other statements of this kind are understood similarly.

THEOREM I. Let $k(x, u \downarrow , u_v)$ be strictly monotone, let $k(x, v, v_v \uparrow)$ be monotone, and let f' be continuous in the neighborhood of v. Suppose further:

(i) $f(x, u \downarrow, u_i, u_{ij})$ is monotone, and $f(x, s, s_i, s_{ij} \uparrow)$ is monotone in the neighborhood of v.

¹ Fulbright Research Scholar at the University of Hamburg.

(ii) To every compact subset $S \subset B$ corresponds a function $c(x) \in C^{(2)}$ such that

$$\sum f_{v_{i}}(x, v')c_{i} + \sum f_{v_{i}}(x, v')c_{ij} > 0$$

at those points of S (if there are any) at which

$$f_v(x, v') = \sum f_{v_{ij}}(x, v')c_ic_j = 0.$$

Then
$$p(Tu-Tv) \leq 0$$
 and $p(Ru-Rv) \leq 0 \Rightarrow p(u-v) \leq 0$.

To prove the theorem let $y \in C$, $y_0 \in C$, and suppose the conclusion violated. For small h > 0 the function w = p(u - v) - hy has an interior maximum and at that point $w_0 = p(u - v) - hy_0 > 0$. We choose $y = -\mu \{c(x)\}$ for a suitable function μ , and $y_0 = -f_v(x, v')$.

Let $2c(x) = r^2r_0^{-1} - r_0$ where r is the distance to a fixed point P_0 and where r_0 is constant. The unit normal, ν , to the sphere $r = |r_0|$ is $\nu_i = c_i$. A point P is called a sphere-point (r_0, ν) of the set u = v if P is on the sphere $r = |r_0|$, if u = v at P, and if there is a neighborhood N of P such that p(u-v) < 0 in those points of N at which c(x) > 0. Thus, when $r_0 > 0$ the set u = v lies locally inside a sphere of radius r_0 and outer normal ν , whereas if $r_0 < 0$ the set lies locally outside a sphere of radius $|r_0|$ and inner normal ν . The following result affords a smooth transition from the weak to the strong maximum principle:

THEOREM II. Let f' be continuous in the neighborhood of v, let $f(x, s, s_i, s_{ij} \uparrow)$ be monotone in the neighborhood of v, and suppose further:

(i) At the point $P \in B$, either

$$\sum \nu_i f_{v_i}(x, v') + r_0^{-1} \sum f_{v_{ii}}(x, v') > 0$$

or

$$\sum f_{v_{ij}}(x, v')\nu_i\nu_j > 0.$$

(ii) In a neighborhood of P, $p(Tu-Tv) \leq 0$. Conclusion: P is not a sphere-point (r_0, ν) of the set u=v.

The Fréchet derivative is

$$\lim_{h \to 0} [T(s + hy) - T(s)]h^{-1} = -f'(x, s) \cdot y' \equiv L(s)y$$

where L(s) is, for each s, a linear operator on y. Similarly,

$$\lim_{h \to 0} [R(s + hy) - R(s)]h^{-1} = M(s)y$$

where M(s) is linear. We say that the pair of operators (L, M) be-

longs to the class (E, D, A) if E, D, and A are positive constants such that the problem

$$Ly \ge E$$
, $x \in B$; $My \ge D$, $x \in \partial B$

has a solution $y \in C^{(2)}$, $0 \le y \le 1$, $||y_i|| + ||y_{ij}|| \le A$.

THEOREM III. Let f'(x, s') and $k'(x, s, s_v)$ be uniformly equicontinuous in s and let $\sup |f_v(x, v')| < \infty$, $\sup |k_v(x, v, v_v)| < \infty$. Suppose further for all s:

- (i) The matrix $[f_{s_{ij}}(x, u, u_i, s_{ij})] \ge 0$, and $k_{s_{\nu}}(x, u, s_{\nu}) \ge 0$.
- (ii) $[L(s), M(s)] \in (E, D, A)$.

Conclusion: $p(Tu - Tv) \le \epsilon^p$ and $p(Ru - Rv) \le \delta^p \Rightarrow p(u - v) \le \max((\epsilon^p/E), (\delta^p/D))$.

The proof follows by constructing a suitable family of solutions $y(x, \xi)$ of

$$p[T(v + py) - Tv] > \epsilon^p, \quad p[R(v + py) - Rv] > \delta^p,$$

and using the fundamental theorem of Nagumo [3].

Let $c(x) \in C^{(2)}$ be a fixed function with inf c(x) = 0, $\sup ||c_i(x)|| = 1$. The constants $C = \sup c(x)$, $C_2 = \sup ||c_{ij}(x)||$ measure the size of B with respect to c. The function

$$U^{p}(\alpha,\beta) = \inf p[f(x,u,u_i,u_{ij} + p\alpha c_{ij} + p\beta c_{i}c_{j}) - f(x,u,u_i,u_{ij})]$$

for $\alpha \ge 0$, $\beta \ge 0$ measures the influence of the second-derivative terms in f. We write V instead of U when v(x) instead of u(x) occurs on the right. The influence of the first-derivative terms is expressed by

$$p[f(x, u, u_i, s_{ij}) - f(x, v, v_i, s_{ij})] \le G^p(S_2, ||u_i - v_i||) \quad \text{for } p(u - v) > 0$$

where $S_2 = \sup ||s_{ij}||$, and where G^p is continuous and monotone in both arguments. For simplicity let

$$Ru = u - k(x, u_{\nu}), \qquad k(x, v_{\nu} + s) - k(x, v_{\nu}) \leq \gamma(|s|)$$

where γ is continuous and increasing. Under these conditions we have:

THEOREM IV. Let $f(x, u, u_i, s_{ij} \uparrow)$ and $k(x, u_i \uparrow)$ be monotone and suppose that $\eta(s)$, for 0 < s < C, is a positive nondecreasing solution of the differential inequality

$$U^p(\eta, \eta') > \epsilon^p + G^p(V_2, \eta), \qquad V_2 = \sup ||v_{ij}||,$$

or of the inequality

$$V^{-p}(\eta, \eta') > \epsilon^p + G^p(V_2 + \eta' + \eta C_2, \eta).$$

Then $p(Tu - Tv) \leq \epsilon^p$ and $p(Ru - Rv) \leq \delta^p$ implies

$$p(u-v) \leq \delta^p + \gamma [\eta(C)] + \int_{c(x)}^C \eta(s) ds.$$

The proof follows by setting $\mu'(s) = \eta(s)$, $y = m - \mu[c(x)]$, where m is a constant so chosen that the function p(u-v) - y does not assume a positive maximum on ∂B .

BIBLIOGRAPHY

- 1. L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167-177.
- 2. R. M. Redheffer, Bemerkungen über Monotonie und Fehlerabschätzung bei nichtlinearen partiellen Differentialgleichungen, Arch. Rational Mech. Anal. 10 (1962), 427-457.
- 3. S. Simoda, and M. Nagumo, Sur la solution bornée de l'équation aux dérivées partielles du type elliptique, Proc. Japan Acad. 27 (1951), 334-339.

University of Hamburg

COMPLETE LOCALLY AFFINE SPACES AND ALGEBRAIC HULLS OF MATRIX GROUPS

BY LOUIS AUSLANDER¹

Communicated by I. M. Singer, November 27, 1962

Let M be a complete Riemann manifold with curvature and torsion zero. If $\pi_1(M)$ denotes the fundamental group of M, then Bieberbach [3; 4] proved that $\pi_1(M)$ contains an abelian normal subgroup of finite index. Moreover, if M is compact then M is covered by a torus.

In recent years the study of general affine connections has led to the study of the following problem: How can one classify the manifolds which possess a complete affine connection with curvature and torsian zero? Such manifolds will be called complete locally affine spaces.

It was Zassenhaus [6] who first gave a general setting to the Bieberbach theorem. He showed a special case of the following theorem:

THEOREM 1. Let G be a connected Lie group with its radical R simply connected, $\rho: G \rightarrow G/R$ the projection, and L a closed subgroup of G. If the identity component L_0 of L is solvable, then the identity component of the closure of $\pi_1(L)$ is solvable.

This theorem in this generality is due to H. C. Wang [5] and his

¹ With partial support from the N. S. F.