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Let B denote a bounded region in Euclidean espace , with bound­
ary dB and closure B. We write P = x = (x\, x2, • • • , xn) G B, 
Ui — du/dXi, Uij=d2u/dXidXj, and similarly for v, c and y. The normal 
derivative uv is understood in the sense of Walter, namely: 

uv(Po) = Urn sup [u(Pk) - u(Po)] | Pk - Po h 1 

where PkGB, P0GdB, and P*--»Po in such a way that 

(Ph - P o ) | P * ~ P o h 

tends to a fixed vector, v. We have u~u(x), v~v(x), and 

Tu ~ <t>(x) — f(x, u, Ui, ui}), x G B, 

Ru « 3£(x) — £(#, ^, Up), x S dB. 

Independent variables are denoted by the letter s. The letter p means 
" + " or " — ," and has the same meaning in hypothesis and conclu­
sion. We suppose ep and ôp to be nonnegative constants. The state­
ment "fix, v, Vi, Vij Î ) is monotone" means that 

p[f(x, v, viy Vij) - f(x, », iu, s#)] â 0 

when the matrix p [(vij) — (sij) ] è 0, £ = ± . Other assertions of mono­
tony are interpreted similarly. We assume w£C ( 2 ) , »GC ( 2 ) in J5 and 
w £ C , z>£C in J5, although discontinuities can be allowed as in [2], 

It is convenient to write v'= (v, vif Vi3), a vector of 1+n+n2 com­
ponents, and similarly for u, s, and y. Also f = (fu, fui, fUi3) with argu­
ment (x, z/) or (x, 5'), as the case may be. Similarly, k'**(ku, kUp). The 
statement "ƒ' is continuous in the neighborhood of v" means that 
there is an h>0 such that f(x, s') is continuous for | s ' — v'\ <h. 
Other statements of this kind are understood similarly. 

THEOREM I. Let k(x, uI , uv) be strictly monotone, let k{x,v,vv\) be 
monotone, and let f be continuous in the neighborhood of v. Suppose 
further : 

(i) fix, u I , Ui, Ui/) is monotone, and f(x, s, siy Sij j ) is monotone 
in the neighborhood of v. 

1 Fulbright Research Scholar at the University of Hamburg. 
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(ii) To every compact subset SQB corresponds a function c(x)£C(2) 

such that 

HM*, v')d + ]£ƒ.<,(*, v')ci, > 0 

at those points of S (if there are any) at which 

fv(oc, v') = J^fVij(x, v')acj = 0. 

Then p(Tu-Tv)^0 and p(Ru-Rv)^0=>p(u-v)^0. 

To prove the theorem let 3>£C, yoGC> and suppose the conclusion 
violated. For small h>0 the function w = p(u—v)—hy has an interior 
maximum and at that point WQ — p(u—v)--hy<i>0. We choose 
y= — IM{C(X) } for a suitable function /x, and yo= — fv(x, vf). 

Let 2c(x) =rVô"1~^o where r is the distance to a fixed point Po and 
where ro is constant. The unit normal, v, to the sphere r = | r o | is 
Vi = Ci. A point P is called a sphere-point (ro, *0 of the set u = v if P 
is on the sphere r — | ro|, if & = *> at P, and if there is a neighborhood 
N ol P such that ^(^ — z/) <0 in those points of N at which c(x) >0. 
Thus, when r 0>0 the set w = z; lies locally inside a sphere of radius ro 
and outer normal v, whereas if ro<0 the set lies locally outside a 
sphere of radius | r0| and inner normal v. The following result affords 
a smooth transition from the weak to the strong maximum principle : 

THEOREM II. Let f be continuous in the neighborhood of v, let 
f(x, s, Si7 Sij t ) be monotone in the neighborhood of v, and suppose 
further : 

(i) At the point P £ 5 , either 

S v<fu(x, v') + r^ £ƒ ,„(* , *') > 0 

or 

2 ƒ•</(*> »'><"/ > 0. 
(ii) In a neighborhood of P, p(Tu — Tv) ̂ 0 . 
Conclusion: P is not a sphere-point (ro, v) of the set u — v. 

The Fréchet derivative is 

lim [T(s + hy) - T(s)]h~i = - ƒ'(*, s) -y' m L(s)y 
ft->0 

where L(s) is, for each s, a linear operator on y. Similarly, 

lim [R(s + hy) - RCs)]^1 = M(s)y 
ft-K) 

where M (s) is linear. We say that the pair of operators (L, M) be-
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longs to the class (E, D, A) iî E, D, and A are positive constants 
such that the problem 

Ly^E, %EB; My ^ D9 xEdB 

has a solution yEC&\ O ^ ^ ^ l , ||y<||+||y<y|| ÛA. 

THEOREM I I I . Letf'(x, s') and kf(x> s, sv) be uniformly equicontinuous 
in s and let sup | fv(x, v')\ < <*>, sup | kv(x, vyvv)\ < <*>. Suppose further 
for all s: 

(i) The matrix [f9iJ(x, u, uif $#)] g^O, and k8v{x, u, sv) ^ 0 . 
(ii) [L(s)tM{s)]e(E,D,A). 

Conclusion: p(Tu — Tv) ^ ep and p(Ru — Rv) ^ dp => p(u — v) 
g max ((€»/£), (ip/D)). 

The proof follows by constructing a suitable family of solutions 
y(x, £) of 

p[T(v + py) - Tv] > ep, p[R(v + py) - Rv] > ôp, 

and using the fundamental theorem of Nagumo [3], 
Let £(x)£C ( 2 ) be a fixed function with inf c{x) = 0, sup ||c»(aO|| — !• 

The constants C = supc(x), C2 = sup ||^y(x)|| measure the size of B 
with respect to c. The function 

Up(a, p) = inf p\f(x9 u, uiy ui5 + padj + ppdCj) - f(x, u, u{, ui3)] 

for ÛJ^O, j3^0 measures the influence of the second-derivative terms 
i n / . We write Vinstead of U when v(x) instead of u(x) occurs on the 
right. The influence of the first-derivative terms is expressed by 

p[f(x9 u, uiy Sij) — f(x, v, Vi, Sij)] g GP(S2, \\ui - Vi\\) for p(u — v) > 0 

where 52 = sup ||$»y||, and where Gp is continuous and monotone in 
both arguments. For simplicity let 

Ru = u — k(x, uv), k(x, vv + s) — k(x, vv) ^ y( \ s \ ) 

where 7 is continuous and increasing. Under these conditions we have : 

THEOREM IV. Letf(x, u} Ui, Sij Î ) and k(x, uv Î ) be monotone and 
suppose that r)(s), for 0<s<C,is a positive nondect'easing solution of the 
differential inequality 

u»(v, v') >** + any*, v), v, = supll^H, 
or of the inequality 

V~p(v, j) > ep + GP(V2 + v' + *?C2,77). 

Then p(Tu-Tv) <>ep and p(Ru-Rv) £5P implies 
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p{u - v) Û & + Yfo(C)] + f v(s)ds. 
J c(x) 

The proof follows by setting fxf(s)=rj(s), y = m—fi[c(x)], where m 
is a constant so chosen that the function p(u—v)—y does not assume 
a positive maximum on dB. 
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Let M be a complete Riemann manifold with curvature and torsion 
zero. If Ti(M) denotes the fundamental group of M, then Bieberbach 
[3; 4] proved that Ti(M) contains an abelian normal subgroup of 
finite index. Moreover, if M is compact then M is covered by a torus. 

In recent years the study of general affine connections has led to 
the study of the following problem : How can one classify the mani­
folds which possess a complete affine connection with curvature and 
torsian zero? Such manifolds will be called complete locally affine 
spaces. 

I t was Zassenhaus [ó] who first gave a general setting to the Bie­
berbach theorem. He showed a special case of the following theorem: 

THEOREM 1. Let G be a connected Lie group with its radical R simply 
connected, p : G-+G/R the projection, and L a closed subgroup of G. If 
the identity component LQ of L is solvable, then the identity component of 
the closure of Ti(L) is solvable. 

This theorem in this generality is due to H. C. Wang [5] and his 
1 With partial support from the N. S. F. 


