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The contributions of the Russian school to the theory of rings are 
outstanding. Indeed the architects of much of the theory are the 
triumvirs Gelfand, Naimark, and Shilov. How fortunate for us that 
one of these three has put down in extenso his essence in writing. 
One can only purloin Dostoyevsky's famous last words about the 
original Three Brothers and exclaim in admiration: "Hurrah for 
Naimark." 

EDGAR R. LORCH 

Stationary processes and prediction theory. By H. Furstenberg. Annals 
of Mathematics Study No. 44. Princeton Univ. Press, Princeton, 
N. J., 1960. 283 pp. $5.00. 

This work is an elaboration of the author's doctoral dissertation at 
Princeton. The limitations of the classical prediction theory of sto­
chastic processes are first discussed. In the light of this discussion a 
new prediction theory for single time-sequences is formulated. The 
ideas uncovered in the course of this development are shown to have 
interesting ramifications outside prediction theory proper. In the 
author's opinion the discussion of these offshoots, for which predic­
tion is more of an "excuse" than a "reason" (p. 7), constitutes the 
most important part of the book. In this review we shall touch upon 
the critique, the new theory as well as the offshoots, but greater 
emphasis will be placed on the second topic in relation to the third 
both from considerations of space and the reviewer's predilections. 
We shall conclude the review with some general remarks on the work. 

The book abounds with strange terminology, which has to be un­
derstood to get any insight into it. I t is also rather complex in struc­
ture. In this review we have thus been obliged to state definitions and 
to indulge in an abridged and sometimes over-simplified exposition 
of the author's theory. I t is hoped that this exposition will serve as 
a guide to the prospective reader of the book. 

I. LIMITATIONS OF CLASSICAL PREDICTION THEORY 

I t is well known that we are able to prognosticate the future in 
many realms in which strictly deterministic laws do not prevail. One 
scientific explanation of this ability is that such realms are governed 
by probabilistic laws in which the underlying probability measure is 
invariant under time-shifts. More precisely, underlying such a realm 
is a probability space (ft, (B, P ) , and a JP-measure-preserving trans­
formation T on ft onto ft. We are interested in some (B-measurable 
function ƒ on Q or what amounts to the same thing, in a stationary 
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stochastic process (S.P.) (/n, — <*> <n< <*>), where/n(co) —f(Tnu>).1 As 
conceived classically, prediction consists in finding the conditional 
probability P(-1 (B0) or the conditional expectation E(- | (ft0) relative 
to the "past and present" Borel subalgebra (Bo of (B, i.e. the algebra 
generated by the functions//c, k^O. Specifically, the problem of pre­
diction is to estimate P(- | (B0) and E(- \ (B0) from past observations 
of a typical time-sequence (/n(co), n^O) of the S.P., co£0. Its solva­
bility hinges on the ergodicity of 7\2 

In actual practice, however, we have often to predict the future 
values of a single time-sequence (xn, — <*> <n< oo); e.g. xn may be 
the temperature at time n at a given place. In such cases we usually 
regard the xn-sequence as being a typical time-sequence of an ergodic 
S.P. (/n,— °° <n< co), say xn=/n(co0), co0£O, and (naturally) take 
the predicted value of xn to be E(Jn\ (B0)(co0). This procedure is ques­
tionable, however. For, since JS(/n|(Bo) is an equivalence class of 
functions any two of which may differ on a (variable) set of zero P -
measure, the symbol E(fn\ (Bo)(coo) has no clear-cut meaning. Except 
in special cases3 it will be quite arbitrary to represent the equivalence 
class by one of its members. Thus in general there is no rational way 
of finding E(fn\ (B0)(co0). In short, it is impossible to derive directly 
from the prediction theory of stochastic processes a prediction theory for 
general individual time sequences. The author makes a gallant at tempt 
to develop the latter theory ab initio and de novo. 

I I . PREDICTION THEORY FOR A SINGLE TIME-SEQUENCE 

A. Regular sequence. The author assumes that the time-sequence 
of interest has values in a compact metric space A. In many applica­
tions A will be a subset of the set C of complex numbers, but there are 
several cases in which A $ 6 , e.g. coin tossing. He denotes by AM the 
set of bisequences £=(£(#)> — oo<^<oo) such that £(w)£A. The 
set of one-sided sequences £=(£(»), n^O) is denoted by A". The 
spaces Aoo, A~ are endowed with the weak product topology. Given 
££A~, we wish to predict its future, i.e. for v>0 to assign a function 
pv such that pp(\) is the probability that £(*>) =X, X£A. This assign­
ment has to be made on the basis of our knowledge of %(n) for n^O. 
For such prediction to make sense the sequence J has, of course, to 

1 For simplicity of discussion, we are supposing that time is discrete. The author 
deals exclusively with this case. 

2 For details, see P. Masani and N. Wiener: Non-linear prediction in Probability 
& Statistics, TheHaraîd Cramer volume, Almquist &Wiksell, Uppsala, 1959, pp. 190-
212. 

8 E.g. when Q is a topological space and a function in the family E(fn\ (Bo) is con­
tinuous on ti; or when Ü is a topological space for which Radon-Nikodym derivatives 
are definable as limits a.e. of quotients of measures of neighborhoods. 
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exhibit some statistical regularity and be free from erratic changes. 
The author effects the explication4 of these vague requirements by 
means of the fundamental concepts of stochastic sequence and regular 
sequence. These concepts involve some preliminary notions: 

1. DEFINITION. fGCoo is called a numerically-derived sequence of 
EGA*, if 

(1) r(») = ^{ . . . , $ ( » - 1), {(»)}, - 0 0 < n < co, 

where ^GC(AM), i.e. \p is a continuous complex-valued f unction on A». 
This definition is also to hold when 6*,, Aoo, " — 00 <n< 00 " are replaced 
by e« , A«, "w^O," respectively. 

2. DEFINITION, (a) The upper (time-) average E~(Ç) of a sequence 
f £ 6 * is defined by lim s u p n ^ { ^2n=o f ("~w)/( iV+l)} . Similarly we 
define -E-(f), a t ó in case £~(f) = £-(£"), tóe (time-) average £( f ) . 

(b) 77Ê£ upper density D~(S) of a set S of integers is defined by 
E~(xs), where xs is the restriction of the indicator-function of S to the 
set of integers n^O. 

The fundamental notions can now be defined : 
3. DEFINITION. 4 ' (a) £(EA~ is called stochastic, if every numerically 

derived sequence f of £ has a time-average E(Ç). 
(b) £(EA~ is called regular, if (i) £ is stochastic, and (ii) for all fe^O, 

and all open Ai, • • • , A&CA, the set 

S = {n: n g 0, {(») G Ai & • • • & {(» - £ + 1) G A*} 

is either void or D~(S)>0. 
As an example consider the case : 

£(0) = £ ( -1 ) = 1, £(„) = (-1)», n £ - 2. 

I t is easily seen that this £ is stochastic but not regular. The irregular­
ity stems from the change occurring in the definition of xn when n 
crosses —2. It does not make sense to speak of "predicting the future" 
of such a sequence. On the other hand the regular sequences are 
amenable to such prediction as the author shows, cf. §§B-F below. 
There is a plentiful supply of regular sequences. For instance, every 
almost periodic sequence is regular (p. 41), and so are almost all time-
sequences of one-sided stationary stochastic processes (5.3, p. 37). 

B. Prediction problem for a regular sequence. A regular sequence 
4 Throughout this review the term "explication" will mean the transformation of 

an inexact pre-mathematical concept into a precise mathematical concept, cf. R. 
Carnap: Logical foundations of probability, Univ. of Chicago Press, Chicago, 111., 1950, 
Ch. I. 

4' Our definitions are variants of the author's (Def. 3.2, p. 24), convenient for pur­
poses of this review. 
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£ £ A ; will have many quite arbitrary bisequential extensions lEA*. 
For prediction purposes we must obviously confine attention to only 
those \ which extend into the future the statistical features of £. The 
author explicates this vague requirement in terms of the following 
notion (p. 56) : 

4. DEFINITION. I-GA* is an L-extensionh of ££A~, if £ is an exten­
sion of £, and for all numerically derived sequences I of ?, 

sup | f («) | = sup | f (») | . 
— oo<n<e» n^O 

A heuristic or pre-mathematical version of the prediction problem 
can now be stated: given a regular ££A* to determine a probability 
measure /x on the space of all L-extensions I of £, so that ix(A) is the 
probability that the {actual) extension of £ lies in A. This problem is of 
course utterly trivial when £ has only one L-extension | , or as the 
author says when £ is deterministic (p. 60). (An interesting class of 
regular, deterministic sequences are the £(EC* such that %{n) is a 
uniform limit of X X I c* exp {2?ri/>„(w)}, where pv is a polynomial 
with real coefficients (p. 83-). I t follows that the almost periodic 
sequences are determinstic.) 

In the author's theory the measure \i just referred to is to take the 
role played by the conditional probability P('|(Bo) in the classical 
theory (cf. I above). Unfortunately /x cannot be obtained by a purely 
sequential analysis of the regular sequence £. To define it, the author 
has first to show that £ is a "typical"6 time-sequence of a one-sided, 
A-valued, stationary S.P. X~{Ç). Associated with X~{£) is a probabil­
ity space (0~(£), (B, P ) . The desired \x is constructed from this P by 
requiring that /x should behave like a conditional probability relative 
to the hypothesis that the event £ has occurred (cf. p. 63). He is thus 
obliged to follow more or less the classical footsteps but a t a more 
abstract level. The theory of Banach-algebras is the basic tool he 
uses to complete this analysis, which has many important features 
and so calls for a brief description (§§C-F below). 

C. The S.P. associated with a stochastic sequence. With each 
stochastic ££A« is associated the commutative linear algebra ^4o(£) 
of all numerically derived sequences f of £. Each such f has a pseudo-
norm 

HrlU = inf. {r:r^0&D{n: | f(n) | > r] = 0}. 

5 The latter ttLn is used because of a theorem of J. E. Littlewood (p. 59). 
6 "Typical" in the sense that the time-averages of all numerically derived se­

quences of £ will be equal to the corresponding phase averages, cf. §D below. 
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This pseudo-norm becomes a norm on the quotient-algebra Ai(%) 
«i4o(ö/iV, where N is the ideal of all £ for which ||r||co = Of i.e. for 
which E(\ £ I ) = 0 , E being the time-average, cf. Def. 3(a). The linear 
functional E on A0(£) therefore carries over to ^4i(£). Now the com­
pletion -4""(£) of AiQ;) is a commutative C*-algebra with unit, to 
which the functional E can be extended by the Hahn-Banach Theo­
rem. Moreover, 

E(l) = 1, E(tf) ^ 0; E(tf) - 0 => £ = 0. 

In the author's terminology, A~(^) is an E-algebra (p. 12). 
I t follows that A~Q;) is isomorphic to the algebra C(Q-(£)) of all 

complex-valued, continuous functions on a compact Hausdorff space 
Q-(£). We may identify Ö~(£) with the space of algebraic homomor-
phisms of A~(£) onto 6. By the Riesz-Markov Theorem, the func­
tional E induces a probability measure P defined on the Borel sets of 
Q-(£) such that 

(2) EG-) = f f (co)P(Jc), f G il-(Ö ^ C(0r(Ö). 
J Q-<É) 

Thus to each stochastic sequence ££A« corresponds a probability 
space (Ö~(£), (B, P ) , (B being the family of Borel subsets of 0~(£). 

Next, the author shows that to each stochastic £GA^ corresponds 
a one-sided, stationary, A-valued S.P. X~(£) = (#*, fe^O), #n_i = ffnr, 
where the Xk are functions from £2~(£) to A, and T is a P-measure 
preserving transformation on £2~(£) into itself. The construction of 
the Xk (pp. 29, 30) is too technical to indicate here and is not entirely 
clear. As for P, we first define an operator T on A" by 

(Tv)(k) = T ; ( £ - 1 ) , i g O , vEAZ. 

In an obvious way this induces a || H^-preserving endomorphism on 
J40(£) and hence on its completion A~Q;). Moreover T preserves £ , 
i.e. E(P£) = £ ( £ ) , £G^4~(£).7 This T in turn induces a continuous 
mapping on ö~(£) to itself, which by (2) preserves P-measure. 

This one-sided S.P. X~(£) is then shown to extend uniquely to a 
two-sided stationary S.P. X(%) = (xn, — <*> <#<<*>). Firstly, it is 
proved that the jE-algebra i4~"(£)^C(Q-"(£)) can be embedded in a 
larger E-algebra A (£), so that the endomorphism T extends to an 
automorphism T on A(£)f and for £ ' € - 4 ( 0 , £(P£ ' ) = £ ( £ ' ) , this E 

7 The author speaks of an E-algebra A with an E-preserving endomorphism T as 
an abstract process. He calls A two-sided if T is an automorphism ; otherwise one-sided 
(p. 15). 
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being an extension of the original E (Th. 2.1, p. 16).8 Now A(%) 
~C(Q(£)) ; hence from E, T we get as before a probability measure 
P over Q(£) and a P-measure preserving homeomorphism T on ft(£). 
Since ^4~(Ç)C^4(^), every homomorphism a/ of ^4(£) contracts to a 
homomorphism a? =/3(co') of ^4~(£). We thus get a "canonical mapping" 
]8 on Q(£) onto 0~(£) (p. 17). Now for co'G«(£) let 

*n («') = *n{/3(co')}, » ^ 0; *„'(«') = ^ o ( r - V ) , M ^ O , 

Then AT (£) = (x„', — oo<^<oo) is the desired two-sided S.P. cor­
responding to £. Obviously %n-.\ = %n T, — oo <n< oo. 

D. A regular £ as a typical time-sequence of AT~(£). Let £GA« be 
stochastic, and f£^4o(£). We recall, cf. (1) in §A, that to J" cor­
responds a function ^£C(A~) . On the other hand, on identifying 
fi, f2£^4o(£) for which Çi — ÇzÇzN, Ao(è) becomes an everywhere dense 
subset of ^4~(£)~C(S2~(£)). I t is shown that these facts imply that 
&""(£) can be imbedded in A^; in fact after making suitable identifica­
tions we can write Q~(£)ÇA~ (pp. 18, 19, 31). In case £ is not only 
stochastic but regular, it is shown that ££0~(£) (Th. 5.1, pp. 33, 
34). We can therefore write %(n)=xn(£)} w^O, and regard £ as a 
time-sequence of the associated one-sided S.P. X~(£). Moreover, £ is 
a typical time-sequence of X~(£), or in the author's terminology, a 
generic point of A~~(£), i.e. 

lim — — E f ( ^ ) = £(f), f G i*-(Ö-
#-»« iV + 1 n=0 

The notion of "generic point," defined more generally as follows, is 
quite important: 

5. DEFINITION (p. 38). Let A~C(QA) be an E-algebra with an endo-
morphism T such that E(Tf) =£(ƒ) ,ƒG^4, 9 and let P be the probability 
measure on &A induced by E, so that £(ƒ)=ƒQAƒ(co)P(dco). We call 
co£Œ;t a generic point of A, if for all f(~A, 

iV-oo AT + 1 n=0 

Roughly speaking this means that for any fÇzA the time-average 
of the sequence (f(Tnœ), n^O) equals the phase average of/. 

The author proves (p. 57) that for a regular ££A~, £ is an L-exten-
sion of J, if and only if ££0(£) . I t follows that the set of all L-extensions 
of Ç is precisely the subset )8~"x {ê} of £2(£), |8 being the canonical map-

8 Actually the author shows that to every one-sided abstract process A corre­
sponds a unique two-sided abstract process B. He calls B the two-sided version of A, 

9 I.e. A is an abstract process, cf. footnote 7. 
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ping from 0(£) to 0~(£). Thus the measure /i referred to in the pre­
diction problem in §B has to have the carrier /S x {^}. 

E. Prediction measure and continuous predictability. Our formu­
lation of the Prediction Problem in §B for a regular sequence £GA« 
is heuristic in that it merely indicates what the desired measure /x has 
to accomplish. In the light of the preceding investigation our require­
ments on /x can be expressed in a more mathematical way: p. has to 
behave like a conditional probability measure derived from the P -
measure on 0(£), relative to the hypothesis that the event £ has oc­
curred (p. 63). The author effects the explication of this still vague 
requirement in terms of the important notion of a prediction measure: 

6. DEFINITION. 1 0 Let A~C(QA) be an E-subalgebra11 of the E-
algebra J 3 ~ C ( S 2 B ) . 

(a) For g(~B the conditional expectation E(g\A) is the unique, 
bounded measurable function \f/ on &A such that E(fg)=E(f}J/)1 for all 
/ G A 1 2 

(b) A probability measure /x on 0# is called a prediction measure at 
SEQA, if for all gGB, 

E(g I A) ^ 0 in a nhbd. of £=* E^g) = I g(œ)P(dœ) ^ 0. 

The existence of such a prediction measure jtc at each £ G ^ , and 
the fact that the support of /x is contained in the set /S x {Ç}, where ]8 
is the canonical mapping from Q,B to 0^, are established (Cor., p. 68; 
10.1, p. 64). The important question as to whether /z is unique is then 
considered : 

7. DEFINITION (p. 64). (a) Let A, B be as in Def. 6. A is continu­
ously predictable (c.p.) to B at £G£U, if there is just one prediction 
measure p at £. 

(b) A regular sequence £GA~ is c.p., if A~(£) is c.p. to A(£) at §. 
The author shows (p. 69) that A is c.p. to B a t £, if and only if 

for every gÇzB, E(g \ A) is "continuous" at £ in a certain sense which 
we shall not stop to explain (p. 65). This is the reason for the term 
"continuously predictable." Also, A is c.p. to B a t each £ G ^ A > if 
and only if E(g \A)ÇzA for all gEB. In this case if ju$ is the unique 
prediction measure at £, then 

En(g) = E(g I 4 ) ( 0 , for almost all £ G QA. 

Several criteria are given for A to be c.p. to B a t £. The most basic 
10 Once again our definition is an adaptation of the author's (pp. 63, 64), conven­

ient for purposes of this review. 
11 I.e. the functional E for A is the restriction of the functional E for B. 
12 The existence and uniqueness of ^ are easy to establish (p. 13). 
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of these is stated in terms of the notion of a predicting sequence at £, 
i.e. a sequence (/n, n^l) such that each fn£.A and for each g(~Ay 

E(fng)—>g(£), as n—»oo. A necessary and sufficient condition for A 
to be c.p. to B a t £ is that for every predicting sequence (fnj n^i) 
at £ and every g E 5 , E(fng)-*F(g)} where F is a linear functional on 
B, F turns out to be £M{ (Th. 10.1, Cor. 2, pp. 68, 69). 

No nice direct criteria are given for a regular sequence ££A~ to 
be c.p. If £ is deterministic, i.e. j3-1{£} is a unit set, then obviously £ 
is c.p. The only other c.p. sequences discussed by the author are 
typical time-sequences of standard stochastic processes. A regular 
sequence ££A~ is called a random, Markoff or m-Markoff sequence, 
according as the associated S.P. X(£) is random,13 Markoff or m-
Markoff (p. 75). The author shows that a "random sequence" is c.p., 
and that so is a m-Markoff sequence with denumerable state space A. 
This is not the case when the state space is non-denumerable. Ac­
tually, the class of c.p. sequences turns out to be rather fragile. For 
instance, a derived sequence of a c.p. sequence need not be c.p. The 
author gives a simple but surprising example of such a sequence 
(§12, p. 78): 

8. EXAMPLE. Let £ be the sequence of independent tosses of a 
biassed coin in which the experimenter records whether each toss 
gives the same or different outcome from the previous toss. Then £ 
is not c.p., although it is derived from a "random" and therefore c.p. 
sequence rj. More formally, letting A= { — 1, 1} we take rç£A» to be a 
regular sequence such that X(rj) is made up of independent random 
functions yni — oo <n< <*> for which P{yn~ —1) = ^ , P ( y n = l ) = 1—£, 
where 0 < £ < 1 , pp^l/2; we take %(n) =rj(n)'rj(n—l). 

The author devotes a good deal of effort to finding conditions which 
will exclude the sort of pathology exemplified in Example 8. Ch. 4 is 
devoted to finding conditions under which a derived sequence of a 
Markoff sequence will be c.p. We do not have the space to report on 
this part of his work in any detail. 

F. Statistical predictability. Consider now a regular sequence 
£ £ A * which is not c.p., i.e. for which A~(£) is not c.p. to A(%) a t £. 
There is then more than one prediction measure jtz at £. Are there non-
c.p. sequences £GA^ for which one can single out one of these meas­
ures, say JUO, as being more appropriate statistically than the others? 
If so, we could speak of fxo as being the "correct" prediction measure 
a t £, and speak of the non-c.p. sequence £ as being "statistically 
predictable" (s.p.). 

13 Unfortunately, the author uses the term "random processn to mean a process of 
independent random functions. 
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The author investigates this question in a slightly wider context. 
Let A~C(QB) be an E-subalgebra of the E-algebra J5~C(Q5), and 
let both have E-preserving endomorphisms denoted by T.u Let 

L{A) =the E-algebra of all complex-valued bounded, measurable f une-
tions on Q^, 

C={f:f=E(g\A),geB}, 
Â = the intersection of all E-algebras K such that 

A,CQKQ L{A) & T{K) C K. 

The author shows that A is an E-algebra with an E-preserving homo-
morphism T. He calls A the c.p. cover of A with respect to B (p. 131). 

Now let £<EA~ be a regular but not c.p. sequence. Let -4~(£) be 
the c.p. cover of A~(%) with respect to A(g). As before (§C) we can 
imbed Â~(Ç) in a (unique) algebra ^4(£)~C(S(£)) over which the 
extension of T is an E-preserving automorphism. This "two-sided" 
A(%) is called the c.p. cover of £. 

In general A(%)%A(£); we define (4(£), A(Ç)) to be the smallest 
E-algebra containing both Â(Ç) and A(%). The author shows that 
invariably Â(Ç) is c.p. to (1(£), A(£)) at each |£Œ(£).15 I t follows 
that for each |<GÖ(£) there exists a unique prediction measure /x| at 
2j, this measure being over a subset of the space Q, such tha t C(Q) 
~(Â(Ç), A(£)). Since A(Ç)Ç1(Â(Ç), A(£)), this measure JU| induces a 
measure on 0(£) via the canonical mapping on Q, onto fl(£). Thus 
to each ££0(£) corresponds a measure jti| on 0(£). 

Finally, since A""(^)QA(^)} there is a canonical mapping ]8 on 
&(£) onto 0~(£). Now suppose that the set jS"1^} has exactly one 
member I which is a generic point for A{%) (Def. 5 above). We can 
then associate with our ££A* the measure ix\ on £2(£). Such considera­
tions lead the author to make the following definition (pp. 133-136, 
Defs. 22.1, 22.2): 

9. DEFINITION. The regular sequence £(EA~ is called statistically pre­
dictable (s.p.),16 if £ has exactly one extension ££Ö(£), which is a generic 
point f or the c.p. cover Â(Ç)~C(U(£)). In this case the measure \i\ over 
Q(£) is called the determined prediction measure at £. 

This concept of predictability is broader than that of continuous 
predictability as the following example shows. 

10. EXAMPLE. Let A, rj, £ be as in Example 8. We find that Â~(Ç) 
~A~(ri) and so Â(Ç) = A(TJ). Thus A(rj) is the c.p. cover of the non-
c.p. sequence £. Moreover, it can be shown that £ has exactly one 

14 I.e. A, B are abstract processes, cf. footnote 7. 
15 Cf. proof of 21.1 on p. 131. 
16 Rather misleading terminology, since in the literature the term "statistical pre­

dictionM is used to refer to the classical concept. 
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extension to Q,(rj) which is a generic point for the cover A(rj), viz. t\ 
itself. Thus § is s.p. and fxVi confined to £2(£), is the determined pre­
diction measure at £. 

A regular sequence ££A* can fail to be s.p. either because it has 
no extension which is a generic point for the cover Â(Ç)> or because 
it has more than one such extension. The latter possibility compli­
cates the relationship between continuous and statistical predictabil­
ity. Thus from the author's theorem (21.1, p. 131) that Â-(Ç) is the 
minimal algebra A such that AQL(Qr(Ç)) and A is c.p. to (^4, A(Ç)), 
it follows that if £ is c.p., we have iï~(£) = 4̂~~(£) and so Â(Ç) =A(£). 
But £ may have more than one extension £ which is a generic point 
for the cover A(£). Thus a c.p. sequence need not be s.p. Examples of 
this are provided by certain Markoff sequences with non-denumerable 
state space (p. 137). 

The remainder of the author's investigation in prediction theory 
proper is devoted to showing that if the sequence £ is derived from a 
Markoff sequence rj, and £, rj are finite-valued, then £ is s.p. This is the 
last theorem in the book (p. 282). As such sequences are not particu­
larly important for prediction, and the proof of the theorem is both 
long and difficult and involves ideas on which we shall comment in 
I I I , we shall here terminate our review of the author's prediction 
theory of time-sequences. 

I I I . RAMIFICATIONS 

In II , although our interest was in predicting the future of a one­
sided sequence, we followed the author in stating many definitions for 
general E-algebras endowed with E-preserving endomorphisms. This 
was done in accord with his view that prediction from past to future 
should be treated as a special case of prediction from one E-algebra to 
another. I t turns out that important analytical and probabilistic 
problems fall within the framework of this wider outlook on predic­
tion. An important instance is the study of sub-Markoff processes,17 

which occupies a good deal of the book (Chs. 3, 4, 8, 9). While such 
processes are uninteresting from the standpoint of pure prediction, 
their investigation fits well into the author's wider conception of the 
subject, and has in fact led him to the fruitful ideas of a stochastic 
semi-group (Ch. 5) and of an inductive function (Ch. 7). As regards 
the former concept we shall only say that to every stochastic semi­
group S corresponds a stationary S.P. X, and vice versa, and that 

17 (yn) is called a sub-process of the one-sided or two-sided process (xn), if, for each 
admissible n, yn =^( • * • , xn-i, xn) where ^ is a continuous function on A» to a 
compact metric space A' (p. 20). 
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when S consists of linear transformations the corresponding X is 
Markoff or sub-Markoff (Ch. 5). We now turn to the discussion of in­
ductive functions. 

With the aid of his theory of stochastic semi-groups the author 
proves (24.2, p. 149) that for a finitely-valued subprocess 
X=(xni — 00 <n< 00) of a m-Markoff process the c.p. cover J£18 is 
a composite (X, Z), i.e. the algebra X is generated by functions of the 
form xn — (xn, zn)y where Z = (zn, — o o O < o o ) i s a process satisfying 
an equation of the form 

(1) zn = \p(xn, zn-i) a.e. 

This leads him to the study of such functional equations and the 
associated equation for sequences £, f : 

The author calls a A-valued process Z an inductive function of X, if 
X, Z are subprocesses of some process, Z satisfies equation (1) and 
yp is continuous. Similarly he speaks of the A-valued sequence f being 
an inductive function of % when (1') is satisfied (pp. 153, 154). 

Let \[/ and X be given and £ be a generic sequence of X.19 The 
author is interested in knowing if the inductive function J* will be 
generic for the inductive function Z. He raises two questions: 

Qi: Given a solution Z of (1), will it have a generic sequence f which 
satisfies (1')? 

Q2: Will every solution f of (1') be a generic sequence of a solution Z 
of (.D[ 

These questions arise naturally within the wider context of predic­
tion just referred to above. 

The author first provides answers when \{/ has simple forms (Ch. 7). 
For instance, for the special case 

Zn = 0Cn + Zn-h f (») = £(») + f (ft ~ 1) 

he proves (p. 164) that Qi has an affirmative answer if X is topologi­
c a l ^ ergodic.20 For the more difficult case in which A is a compact 
Abelian group G and 

Zn = Xn'Zn-1, £(») = £(»)'£(» - 1), 

18 The c.p. coverX of X is defined as follows. Let Ax, Ax be the algebras generated 
by all functions \p(xn) where \[/Ç. C(A), and n ^0 , — <*> <n< oo, respectively. Then X is 
the two-sided version (cf. footnote 8) of the c.p. cover Ax of Ax with respect to Ax 
(cf. Def. in §F). 

19 I.e. let £ be a generic point of the algebra AxC^C(üx). 
20 I.e. if for all closed sets AQÜX for which T(A) C A , we have P(A) =0 or 1. 
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he shows that if X is ergodic, "X-ergodic" for every rational X,21 and 
"equidistributed in G,"22 then (1) has a unique solution Z, and Q2 
has an affirmative answer (p. 166). 

From the last result the author deduces Weyl's important theorem 
that if p is a polynomial with real coefficients at least one of which is 
irrational, then the points ^(n)=e2irip(n\ n*z0, are "equidistributed" 
on the circle [\z\ = l ] (p. 171). In a similar vein he proves a general 
theorem (27.1, p. 175), from which emerges the theorem of Wiener 
and Wintner that if /£Li(Q, B, P), T is ergodic and measure-preserv­
ing on Q, then for almost all co£Q, the limits 

1 N 

Cx = lim ——— £ f(T*ü>)e-2™* 
N->* N + 1 „«.o 

exist for all X (p. 179). 
The author is also able to answer the questions Qi, Q% for a wide 

class of \[/ by placing restrictions on X (Ch. 8). An important result 
of this sort is as follows (29.2, p. 202) : if X is a finitely valued Mark-
off process and ^ is a "compact mapping,"23 then Q\ has an affirmative 
answer; as for Q2, every solution f of (1') is a generic sequence of 
some solution Z of (1). In the course of proving this, the writer estab­
lishes the interesting result (28.1, p. 183) that every ergodic, finitely-
valued Markoff process is an inductive function of a "random proc­
ess."24 He also gets an interesting law of large numbers, viz. if 
W= (Wk, k^l) is a finitely valued (non-stationary) Markoff process, 
then almost every time-sequence of W is a generating sequence (28.2, 
p. 187). 

An immediate corollary of these results is the random ergodic 
theorem of von Neumann and Ulam, restricted to a finite number of 
measure-preserving transformations. The simplest version of this 
asserts that if T, V are measure-preserving transformations on 
(A, (B, P), X=(xn)£„Q is a "random process" with values T1 T\ and 
/£C*(A), then for almost all time-sequences £ of X> the sequence 

(i) zoo. /U(i)x}, /{É(2)*(I)X}, • • •, x e A 

has an average. The proof rests on noting that X is a finitely valued 
Markoff process, and that therefore almost all time-sequences are 

21 I.e. zEL(Qx) and T(z) =*e2vih implies s = 0 (p. 21). 
22 I.e. for each <TE.G, the S.P.'s (xn), (o-#n), — °° <n< <*> have the same joint dis­

tributions. 
23 I.e. for each T, the mapping ^(r, •) on A to A is a contraction. 
24 Cf. footnote 13. 
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generic, and that what is involved in (1) is an inductive function f 
of £, viz. 

f(») = *(»)£(» - 1) • • • *(1)X = £(n)-f(fi - 1); 

hence f is a generic and therefore stochastic sequence. This remark­
able proof sheds new light on the theorem by showing that what 
makes it work is the inductive character of the underlying function. 

IV. CONCLUDING REMARKS 

The limitations of the author's prediction theory for individual 
time-sequences should be evident. Finite-valued sub-Markoff se­
quences are of no particular interest for prediction, and so the 
author's final theorem (§F, above) is not very exciting. I t is not yet 
clear if further work with the author's concept of "statistical predic­
tion" will yield anything worthwhile in the actual analysis of the time-
sequences which arise in science. As these limitations could not pos­
sibly have been foreseen, the author has of course rendered yeoman 
service to the subject by venturing on this new frontier. 

The wider concept of prediction advocated by the author has al­
ready proved fruitful in revealing the essential core of certain deep 
theorems in analysis and probability. But it remains to be seen if 
significant tracts of mathematical territory can be illuminated by the 
development of his ideas and techniques. The reviewer would cer­
tainly hope that this may be possible. Recently it has become clear 
that many linear prediction problems are special (deficiency 1) cases 
of other quite important problems in functional analysis, and that 
linear prediction techniques extend to the latter. I t would be very 
satisfying indeed, if the same situation were found to prevail a t the 
non-linear level. 

Reading the book is not an easy job. The subject is itself rather 
hard. But part of the difficulty stems from the peculiar organization 
of the book, which is very different from that of this review, for in­
stance. Idiosyncrasies in its format also make for hard reading, espe­
cially the absence of an index and misuse of the decimal system of 
enumeration. (Theorem 10.2 occurs in §10.4!) But the work stands as 
a first-rate and highly original dissertation on a very difficult subject. 

P. MASANI 

Strukturtheorie der Wahrscheinlichkeitsfelder und -raurne. By D. A. 
Kappos. Ergebnisse der Mathematik, und Grenzgebiete, Heft 24. 
Springer, Berlin, 1960. 4 + 136 pp. DM 21.80. 

This book is the first to be devoted to a systematic account of the 
applications of Boolean algebras to measure theory. The direct con-


