
A SURVEY OF SOME RECENT DEVELOPMENTS 
IN DIFFERENTIAL TOPOLOGY 

S. SMALE 

1. We consider differential topology to be the study of differenti-
able manifolds and differentiable maps. Then, naturally, manifolds 
are considered equivalent if they are diffeomorphic, i.e., there exists 
a differentiable map from one to the other with a differentiable in­
verse. For convenience, differentiable means C00; in the problems we 
consider, C' would serve as well. 

The notions of differentiable manifold and diffeomorphism go back 
to Poincaré at least. In his well-known paper, Analysis situs [27] 
(see pp. 196-198), topology or analysis situs for Poincaré was the 
study of differentiable manifolds under the equivalence relation of 
diffeomorphism. Poincaré used the word homeomorphism to mean 
what is called today a diffeomorphism (of class C). Thus differential 
topology is just topology as Poincaré originally understood it. 

Of course, the subject has developed considerably since Poincaré; 
Whitney and Pontrjagin making some of the major contributions 
prior to the last decade. 

Slightly after Poincaré's definition of differentiable manifold, the 
study of manifolds from the combinatorial point of view was also 
initiated by Poincaré, and again this subject has been developing up 
to the present. Contributions here were made by Newman, Alexan­
der, Lefschetz and J. H. C. Whitehead, among others. 

What started these subjects? First, it is clear that differential 
geometry, analysis and physics prompted the early development of 
differential topology (it is this that explains our admitted bias toward 
differential topology, tha t it lies close to the main stream of mathe­
matics). On the other hand, the combinatorial approach to manifolds 
was started because it was believed that these means would afford a 
useful attack on the differentiable case. For example, Lefschetz 
wrote [13, p. 361], that Poincaré tried to develop the subject on 
strictly "analytical" lines and after his Analysis situs, turned to com­
binatorial methods because this approach failed for example in his 
duality theorem. 

Naturally enough, mathematicians have been trying to relate these 
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two viewpoints that have developed side by side. S. S. Cairns is an 
example of such. 

In the last decade, the three domains, differential topology, com­
binatorial study of manifolds, and the relations between the two, have 
all advanced enormously. Of course, these developments are not 
isolated from each other. However, we would like to make the follow­
ing important point. 

I t has turned out that the main theorems in differential topology 
did not depend on developments in combinatorial topology. In fact, 
the contrary is the case; the main theorems in differential topology 
inspired corresponding ones in combinatorial topology, or else have 
no combinatorial counterpart as yet (but there are also combinatorial 
theorems whose differentiable analogues are false). 

Certainly, the problems of combinatorial manifolds and the rela­
tionships between combinatorial and differentiable manifolds are 
legitimate problems in their own right. An example is the question 
of existence and uniqueness of differentiable structures on a com­
binatorial manifold. However, we don't believe such problems are the 
goal of differential topology itself. This view seems justified by the 
fact that today one can substantially develop differential topology 
most simply without any reference to the combinatorial manifolds. 

We have not mentioned the large branch of topology called homo­
topy theory until now. Homotopy theory originated as an attack on 
the homeomorphism or diffeomorphism problem, witness the "Poin-
caré Conjecture" that the homotopy groups characterize the homeo­
morphism type of the 3-sphere, and the Hurewicz conjecture that the 
homeomorphism type of a closed manifold is determined by the 
homotopy type. One could attack the homotopy problem more easily 
than the homeomorphism one and, for many years, most of the 
progress in topology centered around the homotopy problem. 

The Hurewicz conjecture turned out not to be true, but amazingly 
enough, as we shall see, the last few years have brought about a re­
duction of a large part of differential topology to homotopy theory. 
These problems do not belong so much to the realm of pure homotopy 
theory as to a special kind of homotopy theory connected with vector 
space bundles and the like, as exemplified by work around the Bott 
periodicity theorems. 

Of course, there are a number of important problems left in differ­
ential topology that do not reduce in any sense to homotopy theory 
and topologists can never rest until these are settled. But, on the 
other hand, it seems that differential topology has reached such a 
satisfactory stage that, for it to continue its exciting pace, it must 
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look toward the problems of analysis, the sources that led Poincaré 
to its early development. 

We here survey some developments of the last decade in differen­
tial topology itself. Certainly, we make no claims for completeness. 
A notable omission is the work of Thorn, on cobordism, and the study 
of differentiable maps. The reader is referred to expositions of Milnor 
[2l] and H. Levine [14] for accounts of part of this work. 

2. We now discuss what must be considered a fundamental prob­
lem of differential topology, namely, the diffeomorphism classifica­
tion of manifolds. 

The classification of closed orientable 2-manifolds goes back to 
Riemann's time. The next progress on this problem was the develop­
ment of numerical and algebraic invariants which were able to dis­
tinguish many nondiffeomorphic manifolds. These invariants include, 
among others, the dimension, betti numbers, homology and homo-
topy groups and characteristic classes. 

For dimension greater than two, there was still (at the beginning 
of 1960) no known case where the existing numerical and algebraic 
invariants determined the diffeomorphism class of the manifold. The 
simplest case of this problem (or so it appeared) was that posed by 
Poincaré: Is a 3-manifold which is closed and simply connected, 
homeomorphic (equivalently diffeomorphic) to the 3-sphere? This 
has never been answered. 

The surprising thing is, however, that without resolving this prob­
lem, the author showed that in many cases, the known numerical 
and algebraic invariants were sufficient to characterize the diffeo­
morphism class of a manifold. Generally speaking in fact, considera­
ble information on the structure of manifolds was found. We will now 
give an account of this. 

To see how manifolds can be constructed, one defines the notion of 
attaching a handle. Let Mn be a compact manifold with boundary 
dM (we remind the reader that everything is considered from the Cw 

point of view, manifolds, imbeddings, etc.) and let D* be the s-disk 
(i.e., the unit disk of Euclidean s-space E8). Suppose/ : (dZ>) XDn~8 

—>M is an imbedding. Then X(M;f; s), "M with a handle attached 
b y / , " is defined by identifying points under ƒ and imposing a differ­
entiable structure on M\JfD*XDn~8 by a process called "straighten­
ing the angle." Similarly if ƒ<: (dDfi XDÏ~S-+M, i = l , • • • , k, are 
imbeddings with disjoint images one can define X(M; / i , • • • , ƒ&; s). 
If M itself is a disk, then X(M; jfi, • • • , ƒ * ; s) is called a handlebody. 

(2.1) THEOREM. Let f be a C00 function on a closed (i.e. compact with 
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empty boundary) manifold with no critical points on f~l[ — e% e] except 
k nondegenerate ones on jf""1^)» all of index s. Then f~l[ — °°, e] is 
diffeomorphic to X(f-l[— *>t — c]; fu * * * > fk', $) (for suitable fi). 

(For a reference to the notion of nondegenerate critical point and 
its index, see e.g. [l].) This might well be regarded as the basic theo­
rem of finite dimensional Morse theory. Morse [23] was concerned 
with the homology version of this theorem, Bott [ l ] , the homotopy 
version of 2.1. The proof of 2.1 itself is based on the ideas of the proofs 
of the weaker statements, 

(2.2) THEOREM (MORSE-THOM). On every closed manifold W, there 
exists a C00 function with nondegenerate critical points. 

For a proof see [41 ]. 
By combining 2.1 and 2.2 we see that every manifold can be ob­

tained by attaching handles successively to a disk (we have been 
restricting ourselves to the compact, empty boundary case only for 
simplicity). 

The main idea of the following theory is to remove superfluous 
handles (or equivalently critical points) without changing the diffeo-
morphism type of the manifold. For this one starts (after 2.2) with 
a "nice function," a function on M given by 2.2 with the additional 
property that the handles are attached in order according to their 
dimension (the s in D8XDn~a). 

(2.3) THEOREM. On every closed manifold there exists a function f 
with nondegenerate critical points such that at each critical point, the 
value off is the index. 

This was proved by A. Wallace [44] and the author [38] inde­
pendently by different methods. (For a general reference to this sec­
tion see [34; 37].) 

The actual removing of the extra handles is the main part and for 
this one needs extra assumptions. The next is the central theorem 
(or its generalization "2.4'" to include manifold with boundary). 

(2.4) THEOREM, Let M be a simply connected closed manifold of 
dimension > 5 . Then on M there is a nondegenerate (and nice) function 
with the minimal number of critical points consistent with the homology 
structure of M. 

We make more explicit the conclusion of 2.4. Let cru, • • • , Vip^, 
TU, • • • , Ti0(i)y O^i^n, be a set of generators for a direct sum de­
composition of Hi(M)} dij free, r^ of finite order. Then one can ob-
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tain the function of 2.4 with type numbers Mi (the number of critical 
points of index i) satisfying Mi = p(i)+g(i)+g(i — 1). 

The first special case of 2.4 is 

(2.5) THEOREM. Let M be a simply connected closed manifold of 
dimension greater than 5 with no torsion in the homology of M. Then 
there exists a nondegenerate function on M with type numbers equal to 
the betti numbers of M. 

We should emphasize that 2.4 and 2.5 should be interpreted from 
the point of view of 2.1. One may apply 2.5 to the case of a "homotopy 
sphere" (using 2.1 of course). 

(2.6) THEOREM. Let Mn be a simply connected closed manifold with 
the homology groups of a sphere, n>5. Then M can be obtained by "glu­
ing" two copies of the n-disk by a diffeomorphism from the boundary of 
one to the boundary of the other. 

For n = 5, the theorem is true and can be proved by an additional 
argument. 

Theorem 2.6 implies the weaker statement ("the generalized Poin-
caré conjecture in higher dimensions") that a homotopy sphere of 
dimension ^ 5 is homeomorphic to Sn, see [33]. Subsequently, Stall-
ings [39] and Zeeman [50 ] found a proof of this last statement. 

Theorem 2.4 was developed through the papers [34; 35] and ap­
pears in the above form in [37]. Rather than try to give an idea of the 
proof of 2.4, we refer the reader to these papers. One may also refer 
to [2; 3] and [IS]. 

The analogue of 2.4, say 2.4' is also proved for manifolds with 
boundary [37] and this analogue implies the ft-cobordism theorem 
stated below. The simplest case of 2.4' is 

(2.7) D I S K THEOREM. Let Mn be a contractible compact manifold, 
n>5, dM connected and simply connected. Then Mn is diffeomorphic to 
the disk Dn. 

We now discuss another aspect of the preceding theory, the rela­
tionship between diffeomorphism and A-cobordism. Two oriented, 
closed manifolds Mi, M2 are cobordant if there exists a compact 
oriented manifold W with dW—Mi — M2 (taking into account orien­
tations). Thorn in [40 ] reduced the cobordism classification of mani­
folds to a problem in homotopy theory which has since been solved. 

Two closed oriented manifolds Mi, M2 are A-cobordant (following 
Milnor [18]) if one can choose W as above so that the inclusions 
Mi—>W, i = 1, 2 are homotopy equivalences. The idea of A-cobordism 
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(homotopy-cobordism) is to replace diffeomorphism by a notion of 
equivalence, a priori weaker than diffeomorphism and amenable to 
study using homotopy and cobordism theory. 

The following theorem was proved in [37], with special cases in 
[34; 35]. I t is also a consequence of 2.4/. 

(2.8) T H E Â-COBORDISM THEOREM. Let MÎ, Ml be closed oriented 
simply connected manifolds, n>4, which are h-cobordant. Then M\and 
Mi are diffeomorphic. 

Milnor [20] has shown that 2.7 is false for nonsimply connected 
manifolds. On the other hand Mazur [16] has generalized 2.7 to a 
theorem which includes the nonsimply connected manifolds. 

Theorem 2.8 reduces the diffeomorphism problem for a large class 
of manifolds to the ^-cobordism problem. This A-cobordism problem 
has been put into quite good shape for homotopy spheres by Milnor 
[19], Kervaire and Milnor [12], and recently Novikov [24] has found 
a general theorem. 

Kervaire and Milnor show that homotopy spheres of dimension n, 
with equivalence defined by A-cobordism form an abelian group 3Cn. 
Their main theorem is the following. 

(2.9) THEOREM. 3Cn is finite, n?*3. 

Kervaire and Milnor go on to find much information about the 
structure of this finite abelian group, in particular, to find its order 
for 4 S n g 18. The main technique in the proof of 2.9 is what is called 
spherical modification or surgery, see [44; 22]. 

Putting together 2.8 and 2.9 one obtains a classification of the 
simplest type of closed manifolds, the homotopy spheres, of dimension 
n for 5 g w ^ l 8 and for general n the finiteness theorem. This also 
gives theorems on differentiable structures on spheres. See [35] or 
[12]. 

Most recently, Novikov has found a very general theorem on the 
A-cobordism structure of manifolds (and hence by 2.8, the diffeo­
morphism structure). We refer the reader to [24] for a brief account 
of this. 

Lastly we mention some specific results on the manifold classifica­
tion problem [36; 37]. 

(2.10) THEOREM, (a) There is a 1-1 correspondence between simply-
connected closed 5-manifolds with vanishing 2nd StiefeUWhitney class 
and finitely generated abelian groups, the correspondence given by 
M-+Free part H2(M)+% Torsion part H2(M). 
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(b) Every 2-connected 6-manifold is diffeomorphic to S6 or a sum (in 
the sense of [18]) of r copies of 53X53, r a positive integer. 

C. T. C. Wall has very general theorems which extend the above 
results to (w—1)-connected 2w-manifolds [43]. 

3. We give a substantial account of immersion theory because the 
main problem here has been completely reduced to homotopy theory. 

An immersion of one manifold Mk in a second Xn is a C00 map 
ƒ: M—>X with the property that for each p(~M, in some coordinate 
systems (and hence all) about p and ƒ(p), the Jacobian matrix of ƒ 
has rank k. A regular homotopy is a homotopy ft: M—+X, O^tfgl 
which for each t is an immersion and which has the additional prop­
erty that the induced map Ft: TM~>TX (the derivative) on the tan­
gent spaces is continuous (on TMXI). One could obtain an equivalent 
theory by requiring in place of the last property that ft be a differ­
entiate map of MXI into X. 

The fundamental problem of immersion theory is: given manifolds 
M and X, find the equivalence classes of immersions of M in X, 
equivalent under regular homotopy. This includes in particular the 
problem of whether M can be immersed in X at all. This general 
problem is in good shape. The complete answer has been given re­
cently in terms of homotopy theory as we shall see. 

The first theorem of this type was based on "general position" argu­
ments and proved by Whitney [46] in 1936. 

(3.1) THEOREM. Given manifolds Mk, Xn, any two immersions 
ƒ, g: M—±X which are homotopic are regularly homotopic if n^2k+2. 
If n ^ 2k there exists an immersion of M in X. 

Recent proofs of the second part of this theorem can be found in 
[17] and [28]. 

The first statement of 3.1 is equally true with 2fe+2 replaced by 
2& + 1. Most of the theorems in this survey on the existence of immer­
sions and imbeddings can be strengthened with an approximation 
property of some sort. Although these are important, for simplicity 
we omit them. 

The first immersion theorem for which arguments transcending 
general position are needed was the Whitney-Graustein theorem [45] 
(proved in a paper by Whitney who gives much credit to Graustein). 
For an immersion ƒ : Sl—»E2, 5 \ E2 oriented, the induced map on 
the tangent vectors yields a map of S1 into Sl ; the degree (an integer) 
of this map times 2w is called by Whitney the rotation number. 

(3.2) THEOREM (WHITNEY-GRAUSTEIN). Two immersions of Sl in 
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E2 are regularly homotopic if and only if they have the same rotation 
number. There exists an immersion of Sl in E2 with prescribed rotation 
number of the form an integer times 2w. 

The next step in the theory of immersions was again taken by 
Whitney [48] in 1944 with the following theorem. 

(3.3) THEOREM. Every k-manifold can be immersed in E2k~~lfor k>l. 

The proof of this is quite difficult and involved a careful analysis of 
the critical points of a differentiable mapping of Mk into E2k~l. In 
this dimension, these critical points are isolated in a suitable approxi­
mation of a given map, but have to be removed to obtain an immer­
sion. The difficulties in the study of singularities of differentiable 
maps have limited this method, although, very recently, Haefliger [4] 
has used effectively Whitney's ideas in the above proof, both in 
studying imbeddings and immersions. We shall say more about this 
later. 

Some of the recent progress in imbeddings and immersions can be 
measured by Whitney's statement in the above paper. "I t is a highly 
difficult problem to see if the imbedding and immersion theorems of 
the preceding paper and the present one can be improved upon." He 
goes on to ask if every open or orientable ikf4 may be imbedded in E7 

and immersed in E6. The complex projective plane cannot be im­
mersed in E6 , but every open M4 can be imbedded in E7. See Hirsch 
[8; 9] . Whitney finally asks if every ikf3 can be imbedded in EB. 
Hirsch has proved this is so if ikf3 is orientable [lOJ. 

The next progress in the subject of immersions occurred in papers 
[30; 31] and [32] of the author in 1957-1959. The first generalized 
the Whitney-Graustein theorem for circles immersed in the plane to 
circles immersed in an arbitrary manifold, and here methods were 
introduced which soon led to the solution of the general problem 
mentioned previously. 

Consider " based" immersions in a manifold X. 
that is those which map 0 — 0 into a fixed point x0 of X and the posi­
tive unit tangent a t 6 — 0 into a fixed tangent vector of X at x0. To 
each based immersion of Sl in X, the differential of the immersion 
associates an element of the fundamental group of ÜTj, the unit tan­
gent bundle of X. 

(3.4) THEOREM* The above is a 1-1 correspondence between (based) 
regular homotopy classes of based immersions of S1 in X and wi(T'x). 

In the next paper [31 ] corresponding theorems are proved with Sl 

replaced by S2. A noteworthy special case of the theorem proved there 
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is that any two immersions of S2 in E3 are regularly nomotopic. I t 
is a good mental exercise to check this for a reflection through a plane 
of S2 in E3 and the standard S% in E3. This check has been carried 
through independently by A. Shapiro and N. H. Kuiper, unpub­
lished. 

In [32], the classification, under regular homotopy, of immersions 
of Sk in E n is given (any k, n). This can be stated as follows. 

If/, g: Sk—>En are based immersions (i.e., at a fixed point x0 of Sk, 
f(xo) = g(#o) is prescribed and the derivatives of ƒ and g at x0 are pre­
scribed and equal) one can define an invariant &(ƒ, g)ÇzTk(Vn,k) 
where Wk(Vn,k) is the &th homotopy group of the Stiefel manifold of 
fe-frames in En. 

(3.5) THEOREM. Based immersions ƒ, g: Sk--*En are (based) regu­
larly homotopic if and only if Q(/, g) ~ 0. Furthermore, given a based im­
mersion f:Sk—*En and fio€:?*•&(F*,&), there is a based immersion 
g: Sk-*En such that 0 ( / , g) =O0 . 

The content of Theorem 3.2 is that the homotopy group TTk(Vn%k) 
classifies immersions of Sk in En. Information on the groups can be 
found in [25], An application of this theorem is that immersions of 
Sk in E2k are classified by the integers if k is even, the correspondence 
given by the intersection number. 

R. Thorn in [42 ] has given a rough exposition of the proof of the 
previous theorem, which contributes to the theory of conceptualizing 
part of the proof. 

M. Hirsch in his thesis [8], using the results of [32], has generalized 
3.5 to the case of immersions of an arbitrary manifold in an arbitrary 
manifold. If Mk and Xn are manifolds TM, TX their tangent bundles, 
a monomorphism 4>: TM—*Tx is a fiber preserving map which is a vec­
tor space monomorphism on each fiber. For each immersion/: M~>X 
the derivative is a monomorphism <£/: TM-+Tx. 

(3.6) THEOREM. Ifn>k,the map ƒ—»<j>f induces a 1-1 correspondence 
between regular homotopy classes of immersions of M in X and (mono­
morphism) homotopy classes of monomorphisms of TM into Tx* 

In this theorem one can replace homotopy classes of monomor­
phisms of TM into Tx by equivariant homotopy classes (equivariant 
with respect to the action of GL(k)) of the associated fe-frame bundles 
of TM and Tx respectively. Still another interpretation is that the 
regular homotopy classes of immersions of M in X are in a 1-1 cor­
respondence with homotopy classes of cross-sections of the bundle 
associated to the bundle of jfe-frames of M whose fiber is the bundle of 
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fe-frames of X. Recently Hirsch (unpublished) has established the 
theorem for the case n = k provided M is not closed. 

Theorem 3.6 includes as special cases all the previous theorems 
mentioned here on immersions and has the following consequences as 
well. 

(3.7) THEOREM. Ifn>k and Mk is immersible in En+r with a normal 
r-field, then it is immersible in En. Conversely, if Mk is immersible in 
En then (trivially) it is immersible in En+r with a normal r-field. 

(3.8) THEOREM. If Mk is parallelizable (admits k independent con-
tinuous tangent vector fields), it can be immersed in Ek+1. Every closed 
3-manifold can be immersed in E4 ; every closed 5-manifold can be im­
mersed in E8 . 

Theorem 3.6 is the fundamental theorem of immersion theory. I t 
reduces all questions pertaining to the existence or classification of 
immersions to a homotopy problem. The homotopy problem, though 
far from being solved, has been studied enough to yield much in­
formation on immersions through Theorem 3.6 as can be seen for 
example in Theorem 3.8. Most further work ón the existence and 
classification of immersions would thus seem to lie outside of differ­
ential topology proper and in the corresponding homotopy problems. 

We note that Haefliger [4] has very recently given another very 
different proof of Theorem 3.6 under the additional assumption 
n>3(k + l)/2. See also [7], 

We return now to discuss very briefly some of the methods used to 
proved the theorems of the previous section. The first step is to intro­
duce function spaces of immersions. If Mk, Xn are manifolds, let 
Imr(Mt X) be the space of all immersions of M in X endowed with 
the Cr topology, l^rS °°. This means roughly that two immersions 
are close if they are pointwise close and their first r derivatives are 
close. Of course Imr(M, X) might be empty! A point in Imv(My X) 
is an immersion of M in X and an arc in Im1(M, X) is a regular homo­
topy, so the main problem amounts to finding the arc-components of 
Iml(M, X) or To(Im1(M, X)). One now generalizes the problem to 
finding not only ir0(Im

l(M, X)), but all the homotopy groups of 
Iml(M1 X). The homotopy groups of Imr(M, X) do not depend on r 
and we sometimes omit it. To find these homotopy groups one uses 
the exact homotopy sequence of a fiber space and one of the main 
problems becomes, to show certain maps are fiber maps. 

The following in fact is perhaps the most difficult part of [32]. 

(3.9) THEOREM. Define a map ir:Im2(Dk, En)-*Im2(dDk, En) by 
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restricting an immersion of Dk to the boundary. If n>k + l, w has the 
covering homotopy property. 

Actually, one uses an extension of this theorem to the case where 
boundary conditions involving first order derivatives are incorporated 
into the range space of T. Since it was first proved, Theorem 3.9 has 
been generalized and strengthened. The general version, due to 
Hirsch and Palais [ l l ] is as follows. 

(3.10) THEOREM. Let V be a submanifold of a manifold M, X 
another manifold and TT: Im(M, X)—>Im(Vt X) defined by restriction. 
Then ir is a fiber map in the sense of Hurewicz {and hence has the cover­
ing homotopy property). 

A version of 3.10 is also proved with the boundary conditions men­
tioned above. 

An idea not present in the author's original proof of 3.9, but intro­
duced by Thorn in [42], was to prove theorems of type 3.9 and 3.10 
by first explicitly proving the corresponding theorem for spaces of 
imbeddings, this theorem being much easier and quite useful itself. 
The final version of this intermediate result is due to Palais [26]. 

(3.11) THEOREMS. Let M be a compact manifold, V a submanifold, 
and X any manfold. Let 8>(M, X), 8 (F , X) be the respective spaces of 
imbeddings with the Cr topology, 1 ^r^ 00, and T: &(M, X)—>8(F, X) 
defined by restriction. Then T is a locally trivial fiber map. 

Using Theorems 3.9, 3.10 and an induction basically derived from 
the fact tha t the dimension of the boundary of a manifold is one less 
than the manifold itself, one obtains weak homotopy equivalence 
theorems. The most general one is due to Hirsch and Palais [ l l ] . 
Given manifolds M, X let K(M, X) be the space of monomorphisms 
of TM into Tx with the compact open topology. Then as described 
in §2, there is a map 

a:Itn(M,X)->K(M,X). 

(3.12) THEOREM. The map a induces an isomorphism on all the 
homotopy groups (is a weak homotopy equivalence) if dim X > dim M. 

Theorem 3.12 applied to the zeroth homotopy groups or arc-com­
ponents of Im(M, X) and K(M, X) yields Theorem 3.6. Theorem 
3.12 was first proved for Im(Sk, En) in [32]. 

4. An imbedding (or differentiable imbedding) is an immersion 
which is also a homeomorphism onto its image. A regular (or differ­
entiable) isotopy is a regular homotopy which at each stage is an im-
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bedding. The fundamental problem of imbedding theory is; given 
manifolds Mk, Xn , classify the imbeddings of M in X under equiva­
lence by regular isotopy. This includes the problem : does there exist 
an imbedding of M in XI Our discussion of imbedding theory is 
limited to work on this problem. The difficulty of the general problem 
is indicated by the special case of imbeddings of 5 1 in E3. This prob­
lem of classifying "classical" knots is far from being settled (and of 
course we omit any discussion of this special case although it could 
well be considered within the scope of differential topology). 

Again the first theorems are due to Whitney in 1936 and are proved 
by general position arguments [46]. 

(4.1) THEOREM. A manifold Mk can always be imbedded in E2k+1. 
Any two homotopic imbeddings of M in X2H_3 are regularly isotopic. 

One can replace X2k+Z by X2k+2 here. 
See [17] or [28] for recent proofs of the first statement of 6*1. 
In 1944, Whitney proved the much harder theorem [47], 

(4.2) THEOREM. Every k-manifold can be imbedded in E2k. 

The methods used in this paper have been important in subsequent 
developments in imbedding theory. A. Shapiro, in fact, has consider­
ably developed Whitney's ideas in the framework of obstruction 
theory. Only the first stage of Shapiro's work is in print [29]. Besides 
being mostly unpublished, the theory has thç further disadvantage 
from our point of view that it is a theory of imbedding for complexes 
and does not directly apply to give imbeddings (differentiable) of 
manifolds, On the other hand, Shapiro's work has in part inspired 
the important theorems of Haefliger that we will come to shortly. 

Wu Wen Tsun in a number of papers, see e.g. [49], has a theory of 
imbedding and isotopy of complexes which overlaps with Shapiro's 
work. Shapiro's (unpublished) theorems on the existence of imbed­
dings of complexes in Euclidean space seem much stronger than those 
of Wu Wen Tsun. On the other hand, Shapiro works with spaces de­
rived from the two-fold product of a space, while Wu studies stronger 
invariants derived from the p-iold products. Also Wu Wen Tsun not 
only considers existence of imbeddings but isotopy problems as well, 
including the following one for the differentiable case [49]. The proof 
is based on Whitney's paper [47]. 

(4.3) THEOREM. Any two imbeddings of a connected manifold Mk in 
E2k+l are regularly isotopic. 
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Haefliger [4] has taken a big step forward in the theory of imbed-
dings with the following theorems, proved by strong extensions of the 
work of Whitney, Shapiro and Wu Wen Tsun. Haefliger's main theo­
rem can be expressed as follows. 

An imbedding f:M~±En induces a map fa: MXM— M-~>Sn~l 

{MXM—M is the product with the diagonal deleted) by $/(x, y) 
= (f(x) —f(y)) /\\f(y) —f(x)\\. Then clearly </>/ is equivanant with re­
spect to the involution on MXM—M which interchanges factors and 
the antipodal map of Sn~l. 

(4.4) THEOREM. If n>3(k + l)/2, the map ƒ—><£ƒ induces a 1-1 cor­
respondence between regular isotopy classes of M in En and equivariant 
homotopy classes of MXM—M into Sn~l. 

The equivariant homotopy classes are in a 1-1 correspondence with 
homotopy classes of cross-sections of the following bundle E. Let M* 
be the quotient space of MX M— M under the above involution. The 
two involutions described above define an action of the cyclic group 
of order two on (MXM— M) XS"""1. The orbit space of this action is 
our bundle E with base M* and fiber S71"1. 

Haefliger actually proves 4.4 with En replaced by an arbitrary 
manifold Xn. 

Another of Haefliger's theorems is the following. 

(4.5) THEOREM. If Mh and Xn are manifolds which are respectively 
(r — 1)-connected, reconnected and n^2k — r + l then 

(a) if 2r<n, any continuous map of M in X is homotopic to an 
imbedding', 

(b) if 2r<n + l, two homotopic imbeddings of M in X are regularly 
isotopic. Thus if n>3(k + l)/2, any two imbeddings of Sk in En are 
regularly isotopic. 

Hirsch has proved some theorems on the existence of imbeddings 
of manifolds in Euclidean space. Perhaps the most interesting is the 
following [lO]. 

(4.6) THEOREM. Every orientable 3-manifold can be imbedded in E5. 

We do not discuss here, in general, the highly unstable problem of 
imbeddings of Mk in Xn where n^k+2 except to mention that 2.7 is 
relevant to the differentiate Schonflies problem. 

Since this section was first written Haefliger has obtained several 
further important results on imbeddings; see [S]. 
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