UNKNOTTING S1 IN S4

BY HERMAN GLUCK

Communicated by Deane Montgomery, August 6, 1962

Topologists have for some time suspected that the k-sphere S^k can be topologically knotted in the n-sphere S^n if and only if k>0 and n-k=2. Strictly speaking, this is not quite correct (because of the existence of wild embeddings), but with the appropriate local flatness condition, the conjecture has been verified by Brown [1; 2] for n-k=1, Artin [3] for n-k=2, and Stallings [4] for $n-k\geq 3$, the single undecided case occurring when k=1 and n=4.

It is the object of this note to show that, on the basis of some recent results of Homma, S^1 can not be knotted in S^4 .

1. The main theorem. R^n will denote n-dimensional Euclidean space, and we identify R^n with $R^n \times 0 \subset R^{n+1}$ so that we may write $R^n \subset R^{n+1}$. The unit sphere in R^{n+1} will be denoted by S^n . S^n can be triangulated as a combinatorial manifold so that, for each k < n, S^k appears as a subcomplex.

Let f be an embedding of a k-manifold M^k in an n-manifold M^n with the property that each point of $f(M^k)$ has a neighborhood U in M^n such that the pair $(U, U \cap f(M^k))$ is homeomorphic to the pair (R^n, R^k) . Then f is called a *locally flat* embedding and $f(M^k)$ is called a *locally flat* submanifold of M^n .

The main theorem of this paper will be

THEOREM 1.1. Let f_1 and f_2 be locally flat embeddings of S^1 in S^4 . Then there is a homeomorphism h of S^4 onto itself such that

$$hf_1=f_2.$$

Furthermore, if p is a point of $S^4-f_1(S^1)-f_2(S^1)$, then h can be chosen so as to restrict to the identity in some neighborhood of p.

Since a general position argument will prove Theorem 1.1 whenever f_1 and f_2 happen to be piecewise linear embeddings, it will be more than sufficient to prove the following theorem, in which $U_{\epsilon}(f(S^1))$ denotes the set of points in S^4 whose distance from $f(S^1)$ is less than ϵ .

THEOREM 1.2. Let f be a locally flat embedding of S^1 in S^4 . Then for any $\epsilon > 0$, there is an ϵ -homeomorphism h of S^4 onto itself such that

$$h/S^4 - U_{\epsilon}(f(S^1)) = 1,$$

 $hf: S^1 \to S^4$ is piecewise linear.

2. Homma's results. Homma [5] has recently proved the following theorem.

HOMMA'S THEOREM. Let the following be given:

- (i) Mⁿ, a finite combinatorial n-manifold;
- (ii) \tilde{M}^n , a finite combinatorial n-manifold topologically embedded in M^n :
- (iii) \tilde{P}^k , a finite polyhedron piecewise linearly embedded in $int(\tilde{M}^n)$. If $2k+2 \leq n$, then for any $\epsilon > 0$ there is an ϵ -homeomorphism F of M^n onto M^n such that

$$F/M^n - U_{\epsilon}(\tilde{P}^k) = 1,$$

 F/\tilde{P}^k is piecewise linear.

With only slight modifications, Homma's arguments are sufficient to produce the following somewhat more general result.

THEOREM 2.1. Let the following be given:

- (i) M^n , a possibly noncompact combinatorial n-manifold;
- (ii) \widetilde{M}^n , a possibly noncompact combinatorial n-manifold, topologically embedded in M^n ;
- (iii) \tilde{P}^k , a possibly infinite polyhedron, piecewise linearly embedded as a closed subset of $\operatorname{int}(\tilde{M}^n)$;
- (iv) \tilde{L} , a subpolyhedron of \tilde{P}^k such that $\operatorname{Cl}(\tilde{P}^k \tilde{L})$ is a finite polyhedron, and such that \tilde{L} is piecewise linearly embedded in M^n as well as in \tilde{M}^n .

If $2k+2 \le n$, then for any $\epsilon > 0$ there is an ϵ -homeomorphism F of M^n onto M^n such that

$$F/M^n - U_{\epsilon}(\tilde{P}^k - \tilde{L}) = 1,$$

 $F/\tilde{L} = 1,$
 F/\tilde{P}^k is piecewise linear.

3. Proof of the main theorem

LEMMA 3.1. Let α be an open arc in S^4 , and u,v,w,x four points on α , in that order. Let U and V be open neighborhoods in S^4 of the closed subarcs [uw] and [vx], respectively, of α , such that $(U, U \cap \alpha) \approx (R^4, R^1)$ $\approx (V, V \cap \alpha)$. Then there is an open neighborhood W of [ux] in S^4 such that $(W, W \cap \alpha) \approx (R^4, R^1)$.

Since $(U, U \cap \alpha) \approx (R^4, R^1)$, there is a homeomorphism h of U onto itself which takes $U \cap \alpha$ onto itself, u onto v and w onto itself, and is the identity near the boundary of U. Extend h over S^4 via the identity, and let $W = h^{-1}(V)$.

Repeated use of this lemma proves the following

THEOREM 3.2. Let S be a locally flat 1-sphere in S^4 . Then S may be written as the union of two open arcs, A and B, which have neighborhoods, U_A and U_B , in S^4 such that

- (i) $U_A \cap S = A$ and $(U_A, A) \approx (R^4, R^1)$;
- (ii) $U_B \cap S = B$ and $(U_B, B) \approx (R^4, R^1)$.

Now let f be a locally flat embedding of S^1 in S^4 , and $\epsilon > 0$ a given positive number. Theorem 1.2 will be proved by a double application of Homma's theorem, first in its original form and then in the form of Theorem 2.1.

PROOF OF THEOREM 1.2. Write $f(S^1)$ as the union of two open arcs A and B as in the above theorem, and let x and y be two points of $f(S^1)$, one chosen from each of the two components of $A \cap B$. Then $f(S^1)$ is the union of the two closed arcs $a \subset A$ and $b \subset B$, which intersect at x and y.

Step 1. Since $(U_A, A) \approx (R^4, R^1)$, U_A can be triangulated as a combinatorial manifold in such a way as to make

$$f: f^{-1}(a) \to a \subset U_A$$

a piecewise linear embedding.

Let $M^n = S^4$, $\tilde{M}^n = a$ closed regular neighborhood of a in U_A , and $\tilde{P}^k = a$. Homma's theorem then asserts the existence of an $\epsilon/2$ -homeomorphism F_1 of S^4 onto itself such that

$$F_1/S^4 - U_{\epsilon/2}(a) = 1$$
,

 F_1/a is piecewise linear.

Step 2. Since $(F_1(U_B), F_1(B)) \approx (U_B, B) \approx (R^4, R^1), F_1(U_B)$ can be triangulated as a combinatorial manifold in such a way as to make

$$F_1f: f^{-1}(B) \to F_1(B) \subset F_1(U_B)$$

a piecewise linear embedding.

For the second application of Homma's theorem, let $M^n = F_1(U_B)$ triangulated as an open subset of S^4 , $\tilde{M}^n = F_1(U_B)$ triangulated as in the preceding paragraph, $\tilde{P}^k = F_1(B)$ and $\tilde{L} = F_1(B) \cap F_1(a)$. Note that by choice of F_1 , \tilde{L} is piecewise linearly embedded in M^n as well as in \tilde{M}^n . Now apply Theorem 2.1 to obtain an $\epsilon/2$ -homeomorphism F_2 of $F_1(U_B)$ onto itself such that

$$F_2/F_1(U_B) - U_{\epsilon/2}(F_1(B) - F_1(a)) = 1,$$

 $F_2/F_1(B) \cap F_1(a) = 1,$
 $F_2/F_1(B)$ is piecewise linear.

 F_2 , which is the identity near the boundary of $F_1(U_B)$, may be ex-

tended via the identity to a homeomorphism F_2 of S^4 onto itself. Then $h = F_2F_1$ is an ϵ -homeomorphism of S^4 onto itself such that

$$h/S^4 - U_{\epsilon}(f(S^1)) = 1,$$

 $hf: S^1 \to S^4$ is piecewise linear.

This completes the proof of Theorem 1.2, and hence also of Theorem 1.1.

Theorem 1.2 is actually a very special case of a more general result which will be described elsewhere.

REFERENCES

- 1. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 2. ——, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.
- 3. E. Artin, Zur Isolopie zweidimensionaler Flächen in R₄, Abh. Math. Sem. Univ. Hamburg 4 (1925), 174-177.
- 4. J. Stallings, The topology of high-dimensional piecewise-linear manifolds, (to appear).
 - 5. T. Homma, On the imbedding of polyhedra in manifolds, (to appear).

THE INSTITUTE FOR ADVANCED STUDY