RESTRICTION OF ISOTOPIES

BY HERMAN GLUCK1

Communicated by Deane Montgomery, August 23, 1962

Let M be a connected and simply connected topological manifold (with or without boundary) and m a fixed point in Int M, the interior of M. Let h_0 and h_1 be two isotopic homeomorphisms of M, each of which leaves m fixed.

It is the object of this note to show that, under these conditions, $h_0/M-m$ and $h_1/M-m$ are isotopic homeomorphisms of M-m.

With the standard definition of isotopy, the result follows immediately from the covering homotopy theorem, but with a somewhat more liberal (and frequently more natural) definition of isotopy, the argument is less direct. In fact in this case I can obtain the result only with the aid of the apparently irrelevant assumption that M can support a piecewise linear structure.

The converse question of extending isotopies on a space to isotopies on its one-point compactification has already been answered affirmatively by R. H. Crowell [1] in the much more general setting of locally compact Hausdorff spaces.

1. **Definitions.** If h_0 and h_1 are homeomorphisms of X onto Y, an isotopy between h_0 and h_1 is a continuous map

$$H: X \times [0, 1] \rightarrow Y \times [0, 1]$$

such that

- (i) $H(x, 0) = (h_0(x), 0)$ for all $x \in X$,
- (ii) $H(x, 1) = (h_1(x), 1)$ for all $x \in X$,
- (iii) $H/X \times t$ is a homeomorphism of $X \times t$ onto $Y \times t$ for all $t \in [0, 1]$.

It is shown in [1] that if X is a locally compact Hausdorff space, then condition (iii) above implies

(iii') H is a homeomorphism.

H is called a weak isotopy between h_0 and h_1 if H satisfies conditions (i), (ii) and (iii'). Thus if X is locally compact and Hausdorff (in particular, if X is a manifold), an isotopy is also a weak isotopy, so that isotopic homeomorphisms will also be weakly isotopic.

Weak isotopy is an important notion in the study of topological manifolds. For example, the extendability of a homeomorphism de-

¹ The author holds a National Academy of Sciences Postdoctoral Research Fellowship.

fined on the boundary of a manifold to a homeomorphism of the whole manifold depends only on the weak isotopy class of the homeomorphism.

If M is a connected topological manifold and m a fixed point in Int M, then H(M) will denote the topological group of homeomorphisms of M under the compact-open topology, and H(M, m) the closed subgroup of homeomorphisms which leave m fixed.

The projection of $M \times [0, 1]$ onto M will be denoted by pr_M . If H is a weak isotopy between two homeomorphisms of (M, m) then the curve

$$\gamma \colon [0, 1] \to M$$

defined by $\gamma(t) = pr_M(H(m, t))$, is a closed curve in M based at m, which we call the *trace* of H.

2. Restriction of isotopies.

THEOREM 2.1. Let M be a connected and simply connected topological manifold and m a fixed point in Int M. If h_0 and h_1 are two isotopic homeomorphisms of M, each of which leaves m fixed, then $h_0/M-m$ and $h_1/M-m$ are isotopic homeomorphisms of M-m.

Let

$$H: M \times [0, 1] \rightarrow M \times [0, 1]$$

be an isotopy between h_0 and h_1 , and let

$$h_t \colon M \to M$$

be the homeomorphism of M defined by

$$H(x, t) = (h_t(x), t).$$

The following facts are well known.

- (i) The map $\Gamma: [0, 1] \rightarrow H(M)$, defined by $\Gamma(t) = h_t$, is continuous.
- (ii) H(M) is a principal bundle over Int M with fibre and group H(M, m) and projection $p: H(M) \rightarrow Int M$ defined by p(h) = h(m).

Then $\gamma = p\Gamma$, the trace of the isotopy H, is contractible because M is simply connected. Hence by the covering homotopy theorem, Γ can be deformed into a path Γ' which connects h_0 with h_1 and lies entirely in the fibre $p^{-1}(m) = H(M, m)$. Then

$$H': M \times [0, 1] \rightarrow M \times [0, 1],$$

defined by

$$H'(x, t) = (\Gamma'(t)(x), t),$$

is an isotopy between h_0 and h_1 such that, for all $t \in [0, 1]$,

$$H'(m, t) = (m, t).$$

Hence $H'/(M-m) \times [0, 1]$ is an isotopy between $h_0/M-m$ and $h_1/M-m$.

3. Homma's theorem. Homma [2] has recently proved the following theorem, in the statement of which, $U_{\epsilon}(\tilde{P}^k)$ denotes the set of points whose distance from \tilde{P}^k is less than ϵ .

HOMMA'S THEOREM. Let M^n , \tilde{M}^n and \tilde{P}^k be two finite combinatorial n-manifolds and a finite polyhedron such that \tilde{M}^n is topologically embedded in M^n , \tilde{P}^k is piecewise linearly embedded in Int \tilde{M}^n and $2k+2 \le n$. Then for any $\epsilon > 0$, there is an ϵ -homeomorphism F of M^n onto M^n such that

$$F/M^n - U_{\epsilon}(\tilde{P}^k) = 1,$$

 F/\tilde{P}^k is piecewise linear.

Combining the reciprocal approximation technique employed by Homma to prove the above theorem with Lemma 2 of [2], one easily obtains the following result, which may be regarded as an indirect corollary to Homma's theorem.

THEOREM 3.1. Let M^n be a topological n-manifold with boundary B^{n-1} . Let M_1^n and M_2^n be two combinatorial n-manifolds, each of which has M^n for underlying space. Let P_1 be a polygonal arc in M_1^n which meets B_1^{n-1} only at its endpoints. If $n \ge 4$, then for any $\epsilon > 0$ there is an ϵ -homeomorphism $F: M_1^n \to M_2^n$ such that

$$F/M_1^n - U_{\epsilon}(P_1) = 1,$$

 $F/B_1^{n-1} = 1,$

 F/P_1 is piecewise linear.

4. Restriction of weak isotopies.

THEOREM 4.1. Let M be a connected and simply connected topological manifold which can support a piecewise linear structure, and m a fixed point in Int M. If h_0 and h_1 are two weakly isotopic homeomorphisms of M, each of which leaves m fixed, then $h_0/M-m$ and $h_1/M-m$ are weakly isotopic homeomorphisms of M-m.

Since M can support a piecewise linear structure, triangulate $M \times [0, 1]$ as a combinatorial manifold in which $m \times [0, 1]$ appears as a subcomplex. Let

$$H: M \times [0, 1] \rightarrow M \times [0, 1]$$

be a weak isotopy between h_0 and h_1 . The plan is to first find a homeomorphism F of $M \times [0, 1]$ onto itself such that

$$F/(M \times 0) \cup (M \times 1) = 1$$
,
 $FH(m \times [0, 1])$ is polygonal,

and then a homeomorphism F' of $M \times [0, 1]$ onto itself such that

$$F'/(M \times 0) \cup (M \times 1) = 1,$$

 $F'FH(m \times [0, 1]) = m \times [0, 1].$

Then F'FH will be a weak isotopy of h_0 with h_1 which takes $m \times [0, 1]$ onto itself, and hence $F'FH/(M-m) \times [0, 1]$ will be a weak isotopy of $h_0/M-m$ with $h_1/M-m$.

If dim M=1, M is homeomorphic to an open, half-closed or closed arc, and the theorem is trivially true.

If dim M=2, suppose first that M is homeomorphic to S^2 . The existence of both F and F' is demonstrated in §9 of [3]. If M is not homeomorphic to S^2 , then Int M is homeomorphic to Euclidean 2-space, R^2 . The existence of F is shown in §9 of [3], while the existence of F' follows from a standard argument involving Dehn's lemma [4] and the fact that an orientation preserving homeomorphism of a 2-sphere is isotopic to the identity.

If dim $M \ge 3$, let M_2^n be $M \times [0, 1]$ triangulated as above, and let M_1^n be $M \times [0, 1]$ with the triangulation induced from M_2^n by the homeomorphism H. Since $m \times [0, 1]$ appears as a subcomplex of M_2^n , $H(m \times [0, 1])$ appears as a subcomplex of M_1^n . Letting $P_1 = H(m \times [0, 1])$, the existence of F is assured by Theorem 3.1.

Since $M \times [0, 1]$ is simply connected, the polygonal arc $FH(m \times [0, 1])$ is homotopic to the polygonal arc $m \times [0, 1]$ in $M \times [0, 1]$. Since dim $(M \times [0, 1]) \ge 4$, a general position argument will produce F'.

5. An application. Think of S^n as the one-point compactification of R^n by the point ∞ . Then the following may be regarded as a corollary to Theorem 4.1.

THEOREM 5.1. If h is a homeomorphism of (S^n, ∞) which is weakly isotopic to the identity, then h/R^n is weakly isotopic to the identity homeomorphism of R^n .

For the theorem is trivial when n=1 and S^n is simply connected when n>1.

Now let h be a homeomorphism of (S^n, ∞) , and from $S^n \times [0, 1]$ form a space M by identifying (x, 0) with (h(x), 1) for each $x \in S^n$. Let $\phi: S^n \times [0, 1] \to M$ be the decomposition map.

THEOREM 5.2. If M is homeomorphic to $S^n \times S^1$, then $\phi(R^n \times [0, 1])$ is homeomorphic to $R^n \times S^1$.

If M is homeomorphic to $S^n \times S^1$, then it follows from [5] that h must be weakly isotopic to the identity. By the preceding theorem, h/R^n must also be weakly isotopic to the identity, from which it easily follows that $\phi(R^n \times [0, 1])$ is homeomorphic to $R^n \times S^1$.

6. Further results. Theorem 2.1 is actually a special case of a more general result, which is briefly described below.

Let M be a connected manifold and $m \in Int M$. Let h be a homeomorphism of M leaving m fixed, which is isotopic to the identity homeomorphism, 1_M . Define the *trace class*, $\tau(h)$, to be the set of all elements of $\pi_1(M, m)$ which can be represented by traces of isotopies of 1_M with h. Then $\tau(1_M)$ is a central (and hence normal) subgroup of $\pi_1(M, m)$, and $\tau(h)$ is a coset of $\tau(1_M)$. Thus $\tau(h)$ may also be regarded as an element of the *trace group*

$$T(M, m) = \pi_1(M, m)/\tau(1_M).$$

Now, if h_0 and h_1 are isotopic homeomorphisms of M, each of which leaves m fixed, then $h_0^{-1}h_1$ is isotopic to 1_M , hence $\tau(h_0^{-1}h_1)$ is defined. It then follows easily from the covering homotopy theorem applied to the bundle H(M) over Int M that $h_0/M-m$ and $h_1/M-m$ are isotopic homeomorphisms of M-m if and only if $\tau(h_0^{-1}h_1)=\tau(1_M)$.

This condition is automatically satisfied when M is simply connected, hence Theorem 2.1.

Theorem 4.1 follows from a similar result about weak isotopy.

REFERENCES

- 1. R. H. Crowell, *Invertible isotopies*, Proc. Amer. Math. Soc. (to appear).
- 2. T. Homma, On the imbedding of polyhedra in manifolds, (to appear).
- 3. H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- 4. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- 5. M. Brown and H. Gluck, Stable structures on manifolds. I. Homeomorphisms of S^n , (to appear).

THE INSTITUTE FOR ADVANCED STUDY