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Let M be a connected and simply connected topological manifold 
(with or without boundary) and m a fixed point in Int M, the interior 
of M. Let ho and hi be two isotopic homeomorphisms of M9 each of 
which leaves m fixed. 

I t is the object of this note to show that, under these conditions, 
ho/M—m and hi/M—m are isotopic homeomorphisms of M—rn. 

With the standard definition of isotopy, the result follows immedi­
ately from the covering homotopy theorem, but with a somewhat 
more liberal (and frequently more natural) definition of isotopy, the 
argument is less direct. In fact in this case I can obtain the result only 
with the aid of the apparently irrelevant assumption that M can 
support a piecewise linear structure. 

The converse question of extending isotopies on a space to isotopies 
on its one-point compactification has already been answered affirma­
tively by R. H. Crowell [ l ] in the much more general setting of 
locally compact Hausdorff spaces. 

1. Definitions. If ho and hi are homeomorphisms of X onto F, an 
isotopy between ho and hi is a continuous map 

E : X X [0, 1] ~> Y X [0, l] 

such that 
(i) H(x, 0) = (A0(*), 0) for all * G X , 
(ii) H(x, 1) = (h(x)} 1) for all xGX, 
(iii) H/XXt is a homeomorphism of XXt onto YXt for all 

te[o, i]. 
I t is shown in [ l ] that if X is a locally compact Hausdorff space, 

then condition (iii) above implies 
(iii') H is a homeomorphism. 

H is called a weak isotopy between ho and hi if H satisfies conditions 
(i), (ii) and (iii'). Thus if X is locally compact and Hausdorff (in 
particular, if X is a manifold), an isotopy is also a weak isotopy, so 
that isotopic homeomorphisms will also be weakly isotopic. 

Weak isotopy is an important notion in the study of topological 
manifolds. For example, the extendability of a homeomorphism de-

1 The author holds a National Academy of Sciences Postdoctoral Research Fellow­
ship. 
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fined on the boundary of a manifold to a homeomorphism of the 
whole manifold depends only on the weak isotopy class of the homeo­
morphism. 

If M is a connected topological manifold and m a fixed point in 
Int M, then H(M) will denote the topological group of homeomor­
phisms of M under the compact-open topology, and H(M, m) the 
closed subgroup of homeomorphisms which leave m fixed. 

The projection of MX [0, l ] onto M will be denoted by pfM. If H 
is a weak isotopy between two homeomorphisms of (M, m) then the 
curve 

7 :[0, l]->ilf, 

defined by y(t)—prM(H(m> /)), is a closed curve in M based at m, 
which we call the trace of H. 

2. Restriction of isotopies. 

THEOREM 2.1. Let M be a connected and simply connected topological 
manifold and m a fixed point in Int M. If ho and hi are two isotopic 
homeomorphisms of M, each of which leaves m fixed, then ho/M—m and 
hi/M—m are isotopic homeomorphisms of M—m. 

Let 

H: MX [0,1]-* MX [0, l] 

be an isotopy between ho and fti, and let 

ht:M-*M 

be the homeomorphism of M defined by 

H(x, t) = (**(*), t). 

The following facts are well known. 
(i) The map T: [0, l]—>Jff(M), defined by T(t)=ht, is continuous. 
(ii) H(M) is a principal bundle over Int M with fibre and group 

H(M, m) and projection p: H(M)-+lnt M defined by p(h)=h(m). 
Then y = pT, the trace of the isotopy H, is contractible because M 

is simply connected. Hence by the covering homotopy theorem, V 
can be deformed into a path T' which connects ho with hi and lies 
entirely in the fibre p~l(m)=H(M, m). Then 

H':MX [0, l ] -> i l f X [0,1], 

defined by 

H'{x, t) = (!"(*)(*), 0 , 
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is an isotopy between A0 and hi such that, for all / £ [0, l ] , 

H'(m, t) = (w, t). 

Hence Hf/(M—m) X [0, l ] is an isotopy between ho/M—tn and 
fa/M—m. 

3. Homma's theorem. Homma [2] has recently proved the follow­
ing theorem, in the statement of which, Ut(P

k) denotes the set of 
points whose distance from Pk is less than e. 

HOMMA'S THEOREM. Let Mn, Mn and Pk be two finite combinatorial 
n-manifolds and a finite polyhedron such that Mn is topologically em­
bedded in Mn, Pk is piecewise linearly embedded in Int Mn and 2& + 2 
^n. Then for any e > 0 , there is an e-homeomorphism F o f Mn onto Mn 

such that 

F/Mn - U€(P
k) = 1, 

F/Pk is piecewise linear. 

Combining the reciprocal approximation technique employed by 
Homma to prove the above theorem with Lemma 2 of [2], one easily 
obtains the following result, which may be regarded as an indirect 
corollary to Homma's theorem. 

THEOREM 3.1. Let Mn be a topological n-manifold with boundary 
Bn~-X. Let Mi and M% be two combinatorial n-manifolds, each of which 
has Mn for underlying space. Let Pi be a polygonal arc in Mi which 
meets B\~x only at its endpoints. If w è 4, then for any e > 0 there is an 
e-homeomorphism F: Mi—>M% such that 

F/Mni - U<(Pi) = 1, 

F/BT1 = i, 
F I Pi is piecewise linear. 

4. Restriction of weak isotopies. 

THEOREM 4.1. Let M be a connected and simply connected topological 
manifold which can support a piecewise linear structure, and m a fixed 
point in Int M. If ho and hi are two weakly isotopic homeomorphisms 
of Mf each of which leaves m fixed, then ho/M—m and hi/M—m are 
weakly isotopic homeomorphisms of M—m. 

Since M can support a piecewise linear structure, triangulate 
M X [0, l ] as a combinatorial manifold in which mX [0, l ] appears 
as a subcomplex. Let 
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H: M X [0, 1] -* M X [0, l ] 

be a weak isotopy between ho and hi. The plan is to first find a homeo­
morphism F of M X [0, l ] onto itself such that 

F/(M X 0) U (M X 1) = 1, 

FH(mX[0, l ] ) is polygonal, 

and then a homeomorphism F' of M X [0, l ] onto itself such that 

F'liM X 0) \J (M X 1) - 1, 

FfFH(mX [0,1]) = m X [0, 1]. 

Then F'FH will be a weak isotopy of ho with hi which takes m X [0, 1 ] 
onto itself, and hence F'FH/(M—m)X [0, l ] will be a weak isotopy 
of ho/M—m with hi/M—m. 

If dim M = 1, M is homeomorphic to an open, half-closed or closed 
arc, and the theorem is trivially true. 

If dim M = 2 , suppose first tha t M is homeomorphic to S2. The 
existence of both F and F' is demonstrated in §9 of [3]. If M is not 
homeomorphic to S2, then Int M is homeomorphic to Euclidean 2-
space, R2. The existence of .Fis shown in §9 of [3], while the existence 
of F' follows from a standard argument involving Dehn's lemma [4] 
and the fact that an orientation preserving homeomorphism of a 2-
sphere is isotopic to the identity. 

If dim M ^ 3 , let M? be M X [0, l ] triangulated as above, and let 
Mi be M X [0, l ] with the triangulation induced from M? by the 
homeomorphism H. Since mX[0 , l ] appears as a subcomplex of M£, 
H(m X [0, l ] ) appears as a subcomplex of M?. Letting Pi 
— H(mX [0, l ] ) , the existence of Fis assured by Theorem 3.1. 

Since M X [0, l ] is simply connected, the polygonal arc 
FH(mX[0, l ] ) is homotopic to the polygonal arc mX[0 , 1] in 
MX[0, l ] . Since dim (MX[0 , l ] ) ^ 4 , a general position argument 
will produce F'. 

5. An application. Think of Sn as the one-point compactification 
of Rn by the point 00. Then the following may be regarded as a corol­
lary to Theorem 4.1. 

THEOREM 5.1. If h is a homeomorphism of (5 n , 00) which is weakly 
isotopic to the identity, then h/Rn is weakly isotopic to the identity homeo­
morphism of Rn. 

For the theorem is trivial when n = 1 and Sn is simply connected 
when n>\. 



82 HERMAN GLUCK 

Now let h be a homeomorphism of (Sn, <*>), and from 5 n X [0, l ] 
form a space M by identifying (x, 0) with (h(x), 1) for each xÇzSn. 
Let 0 : 5 n X [0, l]—>M be the decomposition map. 

THEOREM 5.2. If M is homeomorphic to SnXS\ then <l>(RnX [0, l ]) 
is homeomorphic to RnXSl. 

If M is homeomorphic to SnXSl, then it follows from [5] that h 
must be weakly isotopic to the identity. By the preceding theorem, 
h/Rn must also be weakly isotopic to the identity, from which it 
easily follows that 4>(RnX [0, l ]) is homeomorphic to RnXS1. 

6. Further results. Theorem 2.1 is actually a special case of a more 
general result, which is briefly described below. 

Let i f be a connected manifold and w(EInt M. Let h be a homeo­
morphism of M leaving m fixed, which is isotopic to the identity 
homeomorphism, 1M. Define the trace class, r{h), to be the set of all 
elements of wi(M, m) which can be represented by traces of isotopies 
of 1M with h. Then T(1M) is a central (and hence normal) subgroup 
of 7Ti(ilf, m), and r{h) is a coset of T(1M). Thus r(h) may also be re­
garded as an element of the trace group 

T(M, m) = 7Ti(M, m)/r(\M). 

Now, if ho and hi are isotopic homeomorphisms of M, each of 
which leaves m fixed, then hô"lh\ is isotopic to 1M, hence r(feô"1^i) is 
defined. I t then follows easily from the covering homotopy theorem 
applied to the bundle H(M) over Int M that ho/M—m and hi/M—m 
are isotopic homeomorphisms of M—m if and only if rQi^hi) = T ( 1 M ) . 

This condition is automatically satisfied when M is simply con­
nected, hence Theorem 2.1. 

Theorem 4.1 follows from a similar result about weak isotopy. 
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