
ON THE EMERGENCE OF PATTERNS OF ORDER 

J. M. BURGERS 

1. Introduction. The lecture which I have been asked to give is 
meant to honor a scientist whose work has encompassed a wide do­
main of knowledge. I have thought that a theme for tonight could 
be found in a review of some aspects of regularity and order as they 
appear in systems considered in mathematical physics. As this pre­
sents a very wide subject, I can do no more than touch upon a few 
examples. 

Forms of order constitute the most basic fact which faces us in the 
phenomena of nature, and to become aware of a pattern of regularity 
has always been a striking experience. I t has often evoked an attitude 
of respect for the forces of nature, and it has never ceased to tempt 
the mind to speculate what causes there may be behind the regularity. 
Even the question : Has this order a specific meaning? Does it point to 
something? has often turned up. Such a question, however, reaches 
beyond the realm of pure science, since any arrangement can be con­
sidered as representing some form of order when we take the mathe­
matical point of view, and no form of order can then be said to be 
more important or to have more meaning than any other form. 

I t may be appropriate to review briefly certain cases of appearance 
of order and to focus attention upon the features from which they 
derive. Although this will not lead to new results, a kind of panorama 
outlook can have an attraction for itself. I t is interesting to go over 
some of the steps which mark their explanation and to collect the 
essential points as far as possible into a single picture. 

I will try to achieve this by describing a few examples of patterns 
in spatial arrangement. The first example will refer to crystal struc­
ture; the second one to a case of fluid motion; finally I will consider a 
mathematical equation describing an extremely simplified case of gas 
motion, under such circumstances that no pressure arises. For lack of 
time I leave aside phenomena of order in temporal sequences and 
shall not speak of periodic motions, etc. 

When we start from the usual conceptions of Euclidean space in 
which, notwithstanding relativity and gravitation, most phenomena 
are still described, we are faced with its continuity and homogeneity. 
A primary requirement for the appearance of a pattern in such a 
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space is something that supplies us with a basic length, a basic dis­
tance between similar features. Once such a distance is given, pat­
terns can emerge through repetition. 

From where do discrete lengths arise in our description of the struc­
ture of matter? One answer is that many phenomena of nature can 
be described by means of linear differential equations with which 
systems of eigenfunctions and eigenvalues are associated. I t is this 
feature which can introduce a peculiar discreteness within continuous 
Euclidean space. Still, this answer is not a final one. The formulation 
of an eigenvalue problem requires the existence of boundary condi­
tions. If these conditions only refer to the origin and to infinity, they 
do not themselves introduce any scale. There remains the feature 
that the differential equations of physics contain certain constants of 
nature, which have definite values. Thus in the theory of the struc­
ture of atoms we encounter the mass of the electron w, the unit elec­
tric charge e, and Planck's constant h. I t is from these constants that 
fundamental dimensions and distances arise. I t would be outside the 
scope of this lecture to speculate about the background of these 
constants of nature and about their relation to other constants, as 
the velocity of light and the constant of gravitation. We shall simply 
take them for granted. 

I t must be observed that in mathematical physics we often also 
have to do with differential equations supplemented by conditions 
referring to boundaries a t finite distances within the field. In such 
cases these boundary conditions introduce definite dimensions. From 
the point of view of the differential equation they may appear to be 
"accidental," as they depend upon circumstances more or less outside 
the mechanism described by the equation itself. 

I shall consider an example of each one of the two cases mentioned 
here. From boundary conditions we are led towards initial conditions, 
and the third example will refer to a case where the state of the sys­
tem at time / = 0 is the important datum. 

2. Crystal structure. The most conspicuous example of the first 
class of systems is the order exhibited by crystals. This order is the 
outcome of the atomic lattice structure. When we assume atomic 
nuclei and electrons as given quantities, the following principles enter 
into the structure of these lattices. 

From the three quantities m.e.h mentioned before, a primary unit 
of length can be derived, the so-called "first Bohr radius" a = h2/4tw2m el. 
This quantity fixes the scale for the eigenfunctions of the Schrö-
dinger equation for the simplest atom, a hydrogen atom in unlimited 
space. 

In the structure of atoms with more electrons two further principles 
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are involved, viz. that the charge of the atomic nucleus is an integer 
multiple of the unit charge; and Pauli's principle, according to which 
all electrons of an atom must be in different quantum states. The 
rules of quantum theory then completely determine the dimensions 
of the electronic system. On the basis of the same principles a theory 
has been developed of the forces between two or more atoms. The 
equilibrium positions between repulsion and attraction determine a 
set of "secondary distances/' characteristic for atomic combinations. 

The final feature is the possibility of an unlimited repetition of a 
basic pattern of arrangement. In this repetition the distances and 
angular relations occurring in an elementary cell of the structure are 
reproduced with great precision, often ten million times and more in 
each coordinate direction. We find here a transmission of order 
through space, and it is in this way that crystals of macroscopic di­
mensions arise. 

I will not go into the details of these arrangements and bother you 
with an enumeration of space lattices or symmetry classes. Rather I 
will follow a sidetrack. I remind you tha t a physicist, once he has 
understood the principles, does not content himself with a con­
templation of forms of order, however beautiful, but is inclined to 
look for infringements upon the ideal rules. The more elaborate the 
structure, the more possibilities there are for infringements. 

In the subject of crystal structure there are two aspects which call 
for attention in this connection. 

The first point is that it follows from thermodynamical theory that 
the order exhibited in a crystal is a by-product of a tendency towards 
variety. This is best elucidated by the following consideration of the 
conditions for crystallization. 

Suppose tha t we have a large collection of atoms of suitable types 
within a closed volume, endowed with a given amount of energy. The 
energy will be present partly as kinetic energy, partly as potential 
energy dependent upon the attractions between the atoms. In such a 
system a large number of configurations are possible. These are differ­
ent quantum states for the system, all belonging to the same total 
energy; they can be distinguished and counted according to the meth­
ods of quantum theory. In some configurations all atoms may have 
that type of irregular motion which we are accustomed to ascribe 
to the molecules of a gas. In other configurations some atoms may 
form a crystal lattice, while only the rest are in gaseous motion. There 
is a perpetual change from configuration to configuration, and what 
we observe as the "macroscopic state" of the system is actually an 
average result over an enormous number of alternating configurations. 

One can calculate how many of these configurations, all of which 
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have the same weight in the theory, are compatible, for instance, 
with the condition that x per cent of the matter shall be condensed in 
the form of a crystal lattice. It has been found that the equilibrium 
state of the system ("state" again in the macroscopic sense) belongs 
to that value of x for which the number of configurations has the 
largest value. In systems consisting of large numbers of atoms, such 
as we encounter in ordinary circumstances, the number of configura­
tions belonging to this equilibrium state completely outweighs the 
number of configurations for any other state. 

When the energy of the system is high, the largest number of con­
figurations is obtained by having all atoms in the gaseous form. On 
the other hand, when the energy of the system falls below a certain 
limit, it is advantageous to bring together a number of atoms into a 
lattice structure, which greatly reduces the potential energy of these 
atoms. The energy released by this process becomes available as 
kinetic energy and this leads to a much greater number of possible 
configurations than can be realized if all the atoms were to remain in 
the gaseous form. 

We conclude that in a physical system there can appear no more 
than a partial order, since the energy liberated by the ordering must 
leave room for variety in configurations in other aspects of the sys­
tem. When the system is not closed but is in contact with surround­
ings, part of the variety of configurations can be realized in t;he sur­
rounding matter. Thus the law that a crystal is an arrangement of 
minimum potential energy is a result of the rule that somewhere, 
either in the system itself, or in its surroundings, the largest possible 
number of configurations must be realized. In a certain sense we can 
say that the emergence of order is conditioned by the possibility of 
configurational variability elsewhere, by preference in surroundings 
which we are inclined to consider as less interesting than the system 
itself. 

The most perfect order that can be attained in a system is to have 
it in a single quantum state which is prevented from alternating with 
other quantum states. In principle this requires that there are no 
other quantum states with the same energy. In many cases this can 
only be realized when the system is in the quantum state of lowest 
energy. Thus order in physical systems is mostly dependent upon the 
possibility of detracting energy from the system, for instance by radi­
ating energy away into unbounded space. The circumstance that 
there is so much almost empty space around us, with an extremely 
low energy level, is of great importance in this connection. 

3. Imperfections in crystal lattices. The second point to be con-
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sidered is that the order in a crystal lattice is never perfect. Already 
surfaces where crystals of different orientation meet, cannot have the 
regular lattice structure. But even within a single lattice there can be 
vacant sites, superfluous atoms in interstitial positions, or atoms of a 
wrong type; and also errors in the fitting together of lattice planes, 
which errors are called "dislocations." These imperfections usually 
concern only a small percentage of the lattice sites; nevertheless, they 
are of great importance for various physical properties of the crystal­
lized material.1 

Dislocations form a very interesting class of imperfections and 
bring with them a special geometry. They are characterized by a line, 
the "dislocation line," indicating the situation of the misfit; and by a 
characteristic vector, measuring the magnitude of the misfit. The 
characteristic vector (sometimes called Burgers vector) must be a 
vector occurring in the lattice structure of the crystal. When it is a 
unit vector of the elementary cell and thus a full period of the lattice, 
the dislocation is termed a perfect dislocation. Such a dislocation intro­
duces no other misfit than what is found along the dislocation line, 
which plays the part of a singularity in the structure; all the rest of 
the lattice has its normal or "healthy" arrangement. The char­
acteristic vector can also be another vector occurring in the element­
ary cell, less than a full period. Such a dislocation is called imperfect; 
in distinction of a perfect dislocation it is characterized by a surface 
(either plane or curved) over which the normal lattice structure is 
disturbed, for instance by passing into a mirror image as occurs in 
twinning; or by a deviation from the normal stacking order in lattices 
consisting of close packed sheets of identical spherical atoms. In this 
case the dislocation line is the contour of the disturbed area. 

A perfect dislocation has a certain resemblance with a vortex line 
in hydrodynamics and cannot end within the lattice. Dislocation 
lines can form nodes where three or more branches meet; the sum of 
the characteristic vectors associated with the branches must then be 
zero provided a certain rule of signs is observed. When the character­
istic vector is perpendicular to the direction of the dislocation line, 
the dislocation is of "edge" type; in this case a layer of atoms ends 
at the dislocation line, thus forming an edge; beyond this edge the 
neighboring layers on both sides must approach each other over a 
distance equal to the characteristic vector, in order to restore normal 
lattice arrangement. When the characteristic vector is tangential to 
the dislocation line, the dislocation is of "screw" type; the lattice 
planes then are fitted together as a helical surface winding around 

1 Reviews of the subject of lattice defects are given in [l, 2]. For the theory of 
dislocations see [3, 4]. 
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the dislocation line. There can also be dislocation lines, or portions of 
dislocation lines, which are of intermediate (mixed) type. 

Similar properties hold for imperfect dislocations, but they bring 
more complicated situations. 

Dislocations originate during the growth of a crystal, and also in 
processes of deformation. Moreover, the presence of screw disloca­
tions can make crystal growth more rapid. This is due to the circum­
stance that a crystal grows most easily when atoms can find a position 
along an edge of a terrace on a crystal face, and it is the particularity 
of a screw dislocation that it presents an edge which never disappears 
in the process. The growth determined by such a dislocation can lead 
to curious patterns on the crystal faces.2 

An important property of dislocations is that, with the exception 
of some types of imperfect dislocations, they can migrate through 
the lattice. This involves, of course, tha t certain rows or planes of 
atoms in the lattice move relatively to each other. 

There are two types of migrations. One type is "conservative migra­
tion,^ which does not involve the creation of new vacant lattice sites 
or the introduction of new atoms (such as either may come into the 
lattice by diffusion, or may previously have found a place in inter­
stices between regular lattice positions). Conservative migration can 
occur in an ideal form when the lattice has no other imperfections. 
This type of migration plays a part in the explanation of plastic 
deformation of crystals under shearing stresses. Some forms of this 
process, in which the dislocation line is held fixed at certain points, 
can lead to the extension or to the multiplication of dislocation lines 
in a lattice. Conservative migration furthermore can play a part in 
the transformation of a lattice structure into one of a different type, 
for instance, into a symmetrical arrangement as occurs in twinning, 
or in the change from a lattice of cubic face-centered structure into 
one of hexagonal type. For each of the changes in structure which 
have been observed to occur, a particular mechanism must be found; 
this usually requires an elaborate comparison of various possibilities 
for migrations. For instance, to produce a change of lattice type in a 
crystal lattice consisting of a single species of atoms, one needs the 
presence of a screw dislocation together with an imperfect disloca­
tion, which latter must be able to turn around the screw axis and 
follow the helical surface determined by the screw. More complicated 
combinations have been imagined for changes in crystals with more 
than one species of atoms.8 

«See [5; 6]. 
8 See W. T. Read, (3]; J. M. Burgers and W. G. Burgers, [4], pp. 178-180. 
An example referring to a lattice containing two species of atoms is treated by 

M. L. Kronberg, [7]. 
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Another type of migration, nonconservative migration, can occur 
when the lattice has superfluous atoms or vacancies; the migration 
may then bring about that superfluous atoms obtain proper lattice 
positions, or that the vacancies disappear. On the other hand, it is 
also possible that migration of the dislocation will create vacancies, 
or will produce superfluous atoms.4 

Anyone who glances over the literature on this subject will be 
struck by the fact that here, out of the concept of structural "errors," 
a theory of new forms of order has developed. Add to this the fact 
that in certain varieties of crystals structural defects may repeat 
themselves in a more or less regular way. A spiral dislocation, for 
instance, can be the cause that a deviation in a part of a lattice 
plane is propagated along the screw surface and becomes a regular­
ized feature of a crystal.6 Here again, structural deviations cease to be 
"errors" and become evidence for the presence of a superstructure 
in the crystal. Thus it is seen that there is an interplay between the 
concepts of "order" and "disorder." The human mind continually 
looks for descriptions and interpretations which reveal new forms of 
order. 

4. Fluid motions resulting from instability. I will now pass to an 
example of the second class, in which we perceive a dominant influ­
ence of a boundary condition. We leave the domain of atomic physics 
and consider a case of fluid motion, treating the fluid as a continuum. 
The fundamental dimensions of nature, so evident in crystal lattices, 
now will appear only in disguised form, through the values of such 
macroscopic properties as density, viscosity and heat conduction 
(sometimes also in the effects of capillarity or other physical forces). 

We take a case where a fluid finds itself in an unstable situation, 
so that a small disturbance can give rise to the appearance of a par­
ticular form of motion. An instance which has been investigated 
both experimentally and theoretically refers to the convection cur­
rents which can arise in a liquid heated from below.6 A layer of fluid 

4 Nonconservative migration can occur only at temperatures where diffusion of 
atoms or of vacancies through the lattice can be of importance. 

See: J. Bardeen and C. Herring, in W. Shockley [l] , p. 261; and [8; 9; 10]. 
1 See [6, p. 86, "Le polytypisme"]. 
• The original observations have been made by Henri Bénard, see [11; 12], 
For later experimental work see [13]. 
Mathematical investigations have been carried out by Lord Rayleigh, H. Jeffreys, 

and A. R. Low; see for instance [14]. Some newer calculations have been given by 
W. H. Reid and D. L. Harris, see [15]. 

A review of the older investigations, in connection with applications to astro-
physical problems, is given in [l6]. 
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is supported by a horizontal surface which is heated, while the top 
layer of the liquid is in contact with a cold horizontal confining sur­
face, or simply with cold air. The lower layers will obtain a smaller 
density than the upper layers in consequence of their higher tempera­
ture, and the situation is unstable. The instability can release itself 
through currents which transport hotter liquid from the bottom to­
wards the top, at the same time bringing cooler liquid downward. 
The colder liquid becomes heated in its turn, while the liquid trans­
ported upward will lose heat by contact with the colder surroundings; 
thus the current system can persist. The peculiar feature observed is 
tha t under favorable circumstances the convection currents assume a 
pattern of polygonal cells of approximately equal dimensions, and 
sometimes of quite regular form. 

The theoretical analysis of the motion assumes that the velocity 
of the liquid is small, so that linearized equations can be used. Ac­
count must be taken of the change in density due to variation of 
temperature, of heat conductivity in regulating the temperature field, 
and of viscosity in regulating the speed of flow. A linear partial 
differential equation is obtained for the vertical velocity of the liquid ; 
the solution of this equation leads to an eigenvalue problem, in which 
the eigenvalues are connected with the temperature gradient leading 
to instability.7 One of the parameters in this equation is a quantity 
connected with the horizontal dimensions of the pattern of currents. 

7 With the js-axis vertical and w = vertical velocity of the liquid, the equation 
takes the form: 

<r2Aw — (K + v)<rA2w + KVA*W «• gaj8A*w, 

where a has been written for d/dt; A for d2/dx2+d2/df+d2/dz2; and A* tord2/dx* 
-)-d2/dy2\ g is the acceleration of gravity, /3 the mean temperature gradient produced 
by the heating, a the thermal volume expansion coefficient of the liquid, v the 
kinematic viscosity and K the thermometric heat conductivity. The same equation 
holds for the temperature perturbation 0. 

For limiting instability we replace a by 0 ; the equation reduces to: KVAZW=ga/3A*w. 
We suppose that w is of the form %¥"(#, y) Z(s) and assume: 

A * ^ - - (\y**)W. 

Writing X^zjh, where h is the thickness of the layer, the equation for the function 
Z(s) becomes: 

(dfi/dp ~ X2)*Z » - p\*Z. 

Here p—gaphA/icv; this quantity can be taken as the eigenvalue parameter. 
Various systems of boundary conditions for Z have been considered, depending 

upon the thermal and frictional conditions at the two surfaces limiting the liquid 
below and above. For each set of conditions and each value of X a series of eigenvalues 
is obtained for p\ the problem investigated has been to find the value of X which makes 
the lowest eigenvalue a minimum. For instance, with two rigid conducting boundaries, 
X=3.17 gives the minimum value of p as 1709, 
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This dimension is not known beforehand. One has therefore calculated 
for which ratio of this dimension to the thickness of the layer the 
instability occurs with the smallest temperature gradient. Thus a 
principle is invoked which we may call "the principle of the most un­
stable solution," and it is assumed that the resulting pattern will de­
pend upon the parameters governing this most unstable solution. 

It must be observed that in this case the scale of the horizontal pat­
tern (the parameter X) is made dependent upon the thickness h of the 
layer of liquid through the intermediary of a numerical quantity (p), 
the value of which is dependent upon the structure of the differential 
equation and upon the nature of its boundary conditions. It must 
also be noted that even with a definite value of X, the differential 
equation introduced for the amplitude °W of the vertical velocity at 
the instability limit, does not enforce a definite pattern. Boundary 
conditions for V? have been deduced from the observational result 
that in most cases the liquid rises in the center of each cell, while a 
compensating downward movement takes place along the cell walls; 
from this it follows that the normal derivative (in the horizontal plane) 
of °W must be zero at these walls. Even with this boundary condition 
the equation admits a variety of solutions.8 However, when we con­
sider a few simple types of solutions, with boundaries in the form of a 
circle, a square and a hexagon, we readily guess that the hexagonal 
form with its obtuse corners will give the most probable solution. 
Some authors have suggested that nonlinear effects are of importance 
in this connection.9 

8 When X has been found, the horizontal pattern is governed by the equation: 

dx2 dy2 ~ h2 -

Some simple solutions are: 
(i) for a circle with radius R: 

*W - VtoJofrr/h), 

provided: Ji(\R/h)=*0, from which R/h=*3.83/\; 
(ii) for a. square with sides 2a: 

W - | W 0 ( C O B —+ cos^Y 
\ a a / 

with a/h*=w/\; 
(iii) for a hexagon with sides determined by 

(x ± a)(x + yVS ± 2a){x - yV$ ± 2a) - 0: 

with a/h**2Tr/(\\/3); see [17]. 

• See [14], pp. 201-202. 
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Let us summarize a few features which stand out in this example : 
(a) The scale of the pattern is dependent upon the thickness of the 

liquid layer, a quantity which can be chosen arbitrarily by the ex­
perimenter. Thus we have an example of an "accidental" boundary 
condition. At the same time we can say that the convection mecha­
nism transmits order: a dimension given by outside conditions is re­
shaped into a dimension characteristic for the pattern. 

(b) The principle of the most unstable solution, which we have 
invoked, is connected with the circumstance that convection currents 
initially will arise in a random way, depending upon a chance distribu­
tion of spots of high temperature. Once motion has started, viscosity 
and heat conduction influence its development. The random starting 
pattern may be considered as a superposition of more or less regular 
patterns of the kind to which the differential equation refers. For a 
given mean temperature gradient some of these patterns will be 
damped; others will show increasing velocities, and it is concluded 
that the pattern with the greatest rate of increase ultimately will be­
come preponderant. There is consequently a kind of selecting mecha­
nism, which operates on random initial conditions and ultimately 
favors a definite state of motion. Hence, although the convection 
mechanism imposes a scale related to the thickness of the liquid 
layer, we also perceive an influence from initial conditions. We shall 
later consider an example where the initial conditions are prepon­
derant. 

(c) The convection pattern can persist so long as there is a 
source of energy which supplies the heat, and a sink of energy where 
the heat is absorbed and radiated or conducted away. Hence the 
appearance of the pattern needs the presence of another form of 
order: the existence of different temperatures at the limiting surfaces 
of the field, while the colder surface must not get saturated but must 
be able to loose its energy to unlimited surroundings.10 

10 The theory of the instability of a layer of viscous material heated from below 
has been applied by Vening Meinesz to the mantle of the Earth, that is a layer of 
about 2900 km thickness between the outer crust of the Earth and the core. This 
mantle is heated from the inside by radioactive processes in the interior of the Earth. 
Vening Meinesz has developed a theory according to which instability in this layer 
is gradually built up in the course of many millions of years; it is released when a 
certain degree of instability is reached, after which the material in the mantle per­
forms a half turn, which brings it into a stable situation. Since the heating continues, 
the process repeats itself. It is supposed that it occurs intermittently, as the stresses 
must exceed a certain threshold before flow can start (the behavior of the material 
of the mantle is not governed by linear equations). The period might be about 200 
million years, which is the period assumed for the major phases of mountain building 
in the geologic history of the Earth; the mountain building would be a consequence 
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5. Longitudinal vortices in shearing flow. Several variations of the 
convection problem have been considered in the literature. An inter­
esting case is tha t where the heated liquid is not at rest originally, 
but has already a shearing motion. This can be produced by giving 
a horizontal motion to the upper confining surface with respect to 
the lower surface which supports the liquid. I t has been found that 
in this case the polygonal cell pattern can make place for a system of 
longitudinal cells, stretched out in the direction of the shearing mo­
tion.11 These cells are separated from each other by parallel vertical 
walls, alternately with rising and with descending motion. Each 
longitudinal cell forms a vortex tube with the axis parallel to the 
direction of the general flow. When we neglect viscosity and heat 
conduction and consider the accelerated motion only, a relatively sim­
ple differential equation suffices to describe the characteristic features 
of the pattern.12 

A related system of vortices has been obtained in the space between 
two rotating co-axial cylinders, for a liquid not subjected to any 
gradient of temperature. In this case the instability is produced by 
the centrifugal forces acting on the liquid, provided a certain relation 
is satisfied by the angular velocities of the cylinders, dependent upon 
the radii and upon the viscosity of the liquid. When the width of 

of the stresses exerted on the crust when there is flow in the mantle. Vening Meinesz 
has also worked out the idea that the distribution of the land masses of the Earth 
may be related to the pattern of convection currents which could have appeared in an 
earlier part of the Earth's history. This pattern shows a marked preference for spheri­
cal harmonic functions of low order, and calculation shows that these low order 
functions represent the "most unstable" types of motion. A pattern of this type could 
make understandable why most of the land mass is concentrated in a few large 
continents, instead of being completely split up into islands of much smaller dimen­
sions. See [18]. 

"See [13]. 
12 When it is assumed that the pattern of motion is independent of x (the co­

ordinate in the direction of the shear flow), the differential equation for the now time 
dependent vertical velocity w still has the form given in footnote 7, independently of 
the velocity profile U(z) of the shear flow. When v and K are replaced by zero in this 
equation, it reduces to: 

a2Aw « gapA*wt 

which, in consequence of d/dx^O, can be written: 

d2w /gap \d2w 

dz2 ~ \ a2 ~ / dy2 "" 

It can have solutions of the type mentioned in the text if 

gap/a2 > 1, 

so that dhv/dz2 and d2w/dy2 must have the same sign and thus both can be negative. 
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the space between the cylinders is small in comparison with the 
radii, the equation governing the stability or instability of the motion 
is related to that which holds for the case of a liquid between flat 
plates in shearing motion, subjected to a destabilizing temperature 
gradient.13 

I t is a curious result of observations made by many experimenters 
that similar longitudinal vortices often appear in boundary layer 
flow along a flat plate, when there is no temperature gradient at all 
and when curvature effects as are found between rotating cylinders 
are entirely absent. 

Much mathematical work and thought has been devoted to the 
problem of the instability of shear flow in such a case. The equation 
describing the behavior of a perturbation of this flow has a character 
different from that which presents itself in the problem of the layer 
heated from below or in that of the flow between rotating cylinders. 
In particular the role of the viscous friction is quite different and the 
evaluation of the criterion for instability involves mathematical rela­
tions of great complexity. Moreover, when instability occurs, it is 
found that the solution of most critical instability has vortex motion 
with the axes of the vortices transverse to the general direction of the 
flow, so tha t the disturbed motion is two-dimensional.14 

18 The original investigations, both theoretical and experimental, have been pre­
sented in an important memoir by G. I. Taylor, see [ l 0 ] . 

The relation of Taylor's problem to that of the longitudinal vortices produced by 
temperature instability in shear flow was pointed out by A. R. Low and D. Brunt 
[20; 21]. See also [l4], pp. 202-206. 

Let the radii of the two cylinders be R8 (outer) and Ri (inner) ; suppose that the 
outer cylinder is at rest, while the inner one rotates, the undisturbed rotational 
velocity of the liquid being U~C{Re/r—r), where Cis a constant. The equation for 
the radial component w of the perturbation velocity, in the case that viscosity is 
neglected and that (i?«—Jf?»)<$Ci?», takes the form: 

Or* U* Vr» ) U 2 ~ ' 
the coordinate y here being measured in the axial direction. This equation is some­
what more complicated than the equation mentioned in footnote 12, but nevertheless 
is related to it. 

Görtler has developed a theory for boundary layer flow along curved walls, where 
again a related form of instability is found. See [22]. 

14 Summaries of the theory of the stability of the laminar motion between two 
flat walls, or in the boundary layer along a flat plate, are given in many textbooks on 
hydrodynamics. The stability for three-dimensional disturbances was investigated 
by H. B. Squire [23]. Squire demonstrated "that, if any velocity profile is unstable 
(against such disturbances) for a particular value of Reynolds' number, it will be un­
stable at a lower value of Reynolds' number for two-dimensional disturbances. " 
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I t has not been possible thus far to find out definitely why longi­
tudinal vortex motion nonetheless so often makes its appearance. A 
probable explanation is that as soon as a system of transverse vortices 
has been formed, the field has become unstable for localized disturb­
ances. When a vortex line extending in the transverse direction has a 
local bend, the field of induced velocities will make this bend rotate 
around the line. This will bring the bend into a layer of different 
horizontal velocity; hence a distortion will set in, in which longi­
tudinal vortex elements are produced. There is experimental evidence 
for such a process.15 But the presence of such distortions does not 
explain why in fully developed turbulence the longitudinal vortices 
seem to play a more important part than transverse vortices. I t is 
as if they completely take over the role of the latter in keeping up 
the mixing process between the horizontal layers, which is char­
acteristic for turbulence.16 In their structure and arrangement one 
can find some analogy with that of the longitudinal vortices obtained 
as a consequence of temperature instability, or of instability through 
curvature and centrifugal forces. This might induce us to consider 
whether a system of equations could be devised that should bring 
this analogy into evidence. 

The forces arising from the presence of turbulence produce both a 
dissipation and a coupling between the velocity components. When 
one attempts to linearize the equations and to introduce forces 
directly depending upon the velocity components (instead of depend­
ing upon spatial derivatives), a possible assumption might be : 

fx = — ku + Kw; fu = —• kv; fz ~ — kw — Ku; 

where k and K are two coefficients, k determining dissipation and K 
introducing a coupling between u and w. One may expect that the 
coefficient K will depend upon the derivative dU/dz, characteristic 
for the shearing motion. The desired analogy can be obtained when 
one treats k as a constant and assumes that K = a dU/dz, with 
0 < Q : < 1 . Although this is no more than a guess, the resulting equa­
tions may be of some interest in a discussion of the structure of a 
turbulent boundary layer.17 

15 See F. R. Hama [24; further publications of Professor Hama and his group on 
this subject are forthcoming]; and J. R. Weske [25]. 

18 Compare the discussion on the relation between the "momentum transfer 
theory" and the "vorticity transfer theory" in S. Goldstein [26] and for more details: 
A. A. Townsend [27; 28; 29]. 

17 When these hypothetic forces are introduced into the equations of motion for 
an incompressible fluid, and when the motion is supposed to be independent of x and 
viscosity is neglected, the perturbation equations take the form: 
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6. Selecting processes in cases where the initial state of the field 
determines the resulting pattern. In the preceding example we have 
seen that instability may bring with it a selecting mechanism which 
can impose a certain pattern upon the resulting field. We now pass 
on to a third group of cases, in which the resulting pattern is wholly 
determinedly features present in the initial state of the field, in par­
ticular, by features that appear to have the greatest speed of propa­
gation. 

The simplest example is a collection of freely moving, noninteract-
ing and noncolliding particles, with velocities of all possible mag­
nitudes and directions, the particles initially being distributed over a 
finite volume surrounded by empty space. When such a system is left 
to itself, a spherically symmetric field of divergent motion will grad­
ually arise, with rough proportionality between speed and distance 
from the center of the original location. The example looks trivial, but 
it is a stepping stone toward more complicated phenomena.18 The 

dt dz 
dfl __ l_ dp 
dt p dy 
dw 1 dp 
— =3 kw — Ku; 
dt p dz 

dv dw ^ — + — - 0. 
dy dz 

Elimination of the pressure leads to (treating k as a constant) : 

G+0---(?-*)•> 
/ d , A „dH 
\dt / dy2 

We write <r for d/dt+kf and eliminate u. The resulting equation can be written: 
dhv iK(dU/dz -K) ) dhv _ 
dz2 { <r2 " )dy2 ~ 

This is again an equation of the same type as considered in footnote 12, provided 
that K(dU/dz—K) has a positive value. 

The subject has been considered by the present author in [30]. 
18 A set of particles, moving with all possible speeds in all possible directions, 

has been used by Milne as the starting point for a theory of relativity and gravitation. 
See: E. A. Milne [31 ]. 

A case related to that considered in the text is obtained with surface wave motion 
on deep water. Suppose that a limited area of a large ocean is acted upon by a random 
fluctuating pressure field. The pressure will produce displacements of the surface of 
the water, which can be analyzed into a complex of wave systems with different wave-
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ordering which appears in this case is not in contradiction with the 
principles of thermodynamics: the assumption that the system of 
particles originally is found in a finite volume amidst emptiness 
represents an order in location, and during the motion of the system 
this order in location is transformed into a relation between velocity 
and location. When the system contains a sufficiently large number of 
particles, a distribution function for the velocity components & can 
be introduced, as is used in the kinetic theory of gases. This distribu­
tion function is subjected to the equation: 

dF dF 

— + * * -—-o . 
dt dxh 

There is no collision term on the right hand side, and calculation 
shows that the integral which determines the entropy of the arrange­
ment, does not change in time.19 

In treatises on the kinetic theory of gases it is shown that , by cal­
culating the moments of the Boltzmann equation for the distribution 
function (of which the equation given above is a simplified example), 
equations can be deduced for the change of the mean local density 
and of the mean local flow velocity in the course of time. In the case 
considered above the equations obtained are those for a gas in which 
there would be no collisions and in which the notion of pressure is 
becoming vague. The scale of the resulting pattern of motion is ex­
clusively determined by what happens to be given in the initial state. 

A more realistic case is obtained when interactions between the 
particles are introduced, that is, when we admit collisions. The pat­
tern of motion which now develops will depend upon the propagation 
of waves through the system. The wave speed is dependent upon the 
speed of the gas itself; this has the consequence that waves carrying 
motion of the gas in the direction of their propagation will become 
steeper and finally develop an abrupt front, called a shock front from 
the sudden way in which it imparts motion to the gas upon which it 
impinges. 
lengths. The waves, once produced, propagate themselves in directions normal to their 
crest lines. Since the waves with longer wavelengths have a larger velocity of propa­
gation than shorter waves, it is found that at a certain distance from the region 
which had been disturbed by the pressure fluctuations, a more or less regular pattern 
of long waves makes its appearance. In virtue of their greater speed these waves 
have run ahead of the shorter waves. Thus there develops a definite pattern, not 
present in the original disturbance. 

19 The integral 

H - - ƒ ƒ dx dl F In F, 

extended over all space and over all possible velocities, is independent of the time. 
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A shock front is a, usually very narrow, transition zone in which 
collisions impart motion to the molecules reached by the wave. It can 
have a complicated structure, dependent upon the interactions 
brought about by the collisions. These interactions are of various 
kinds. In the first place there is exchange of translational motion; 
this exchange occurs in a few collisions and determines the change of 
mean velocity and the primary change of density. When the molecules 
are diatomic, there is also exchange of rotational energy, which takes 
place almost as rapidly. There can further be exchange of vibrational 
energy ; this is a process which often needs hundreds or many thous-
sands of collisions before it becomes effective. Other features can be 
electronic excitation, ionization, dissociation or chemical reactions, 
and radiation. Complicated interactions occur when there is a mag­
netic field; the shock front may then become a current sheet, carrying 
an electric current in a direction perpendicular to that of the motion 
of the wave front. All these processes have their peculiar rates of 
growth and the consequence is that behind, and in certain cases 
also ahead of the front a t which the change of mean velocity occurs, 
there can extend regions in which various adjustments take place. 

In this example we find evidence for two types of structure or, 
as we may say, two types of order. One refers to the structure of the 
shock wave ; the other results as a pattern formed by the propagation 
of many shock fronts through space. From the molecular point of 
view, the structure of the shock wave is a statistical phenomenon 
expressing itself in the distribution of number densities and of states 
of energy, and regulated by the various processes occurring in colli­
sions between the molecules. On the other hand, the pattern formed 
by the location of several shock fronts in space at a given instant of 
time is dependent upon what was given in the initial state, so that it 
has an accidental character. The question may turn up whether some 
features of these patterns can have similar forms for a variety of ini­
tial states. This brings us to the concept of random initial data, and we 
are led to consider the question : are there aspects of statistical order 
in the patterns which arise from such random data? In the next 
section I will discuss a particular example, 

7. Example of a pattern arising from random initial data. We con­
sider the partial differential equation :20 

du du d2u 
\- u — = v • 

dt dx dx2 

20 See [32]. 
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This equation has a form which is related to that for one-dimensional 
motion in gas dynamics for a gas under such circumstances that there 
would be no pressure (this would require zero temperature, and im­
mediate loss by radiation of all heat produced by compression). Posi­
tive values of t are considered. The initial values of the function 
u(x, t) will be written u0(x)> defined for — <*> <x< + oo. The param­
eter v is positive and very small. We look for the form which the solu­
tions assume when v—»0. 

The equation can be reduced to a linear one when we write:21 

u = — 2 v d (In w)/dx. 

The auxiliary variable w must satisfy the equation : 

dw d2w 

dt dx2 * 

The solution of the latter equation, determined by the initial condi­
tion prescribed for u, can be written in the form: 

w = I dt exp {—- - u*fë)d¥\ . 

When v goes to zero, the solution for u can be obtained by means of a 
geometrical construction. In an auxiliary diagram with horizontal 
coordinate ? we construct a curve determined by: 

J o 

We suppose that Uo(x) is a fluctuating function with positive and 
negative values in equal probability; in that case the integral curve 
s(£) also will represent a fluctuating function. Next we introduce a 
parabola Z(£) = (?--x)2 /2t+C (C being a constant), where x and t 
refer to the point and the instant for which we wish to know the value 
of u. When C is positive and very large, the parabola will be situated 
far above the curve s(£). We gradually reduce C, until the parabola 
touches the curve z(%) from above for the first time. The point of contact 
%m then fixes the value of u(x, t) through the relations: 

z = Z; dz/d£ = dZ/d£; 

leading to 

U(X, t) = U0(U) = (# — £m)/t, 

21 The reduction was given by E. Hopf and J. D. Cole. See [33; 34] . 
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so that: 

u(x, t) = uo(x — ut). 

All interesting features of the problem are contained in this pro­
cedure. One can imagine that it is carried out by a machine, which 
makes the parabola glide over the s-curve and which reads off the 
points of contact and the directions of the common tangents to the 
parabola and the s-curve. Time and again there will be cases where 
the parabola touches the z-curve in two points simultaneously, so 
that the contact point suddenly jumps from one position to another 
position, at a finite distance from the first one. This means that 
there is a sudden change in the value of u(x, t) ; thus the solution of 
the equation presents "discontinuities." The jumps are always down­
ward:22 on the right hand side of a jump u has a value below the one 
it had on the left hand side. (Actually the jumps are not mathemati­
cal discontinuities: du/dx assumes negative values of the order 1/v.) 

The fact that such jumps appear in the solution shows that out of 
the randomness of the initial data the mechanism represented by the 
differential equation produces something which has greater specificity 
than was apparent at first sight. There is an analogy with the appear­
ance of shock waves in a gas, of which this mathematical example 
gives a simplified version. 

The procedure for solving the equation brings a mechanical separa­
tion between the initial data, which are embodied in the z-curve; and 
the operation of the differential equation, represented by the gliding 
parabola, which can be machined according to the value of t to be 
considered. Consequently the method is eminently suitable for the 
investigation of features which may appear when a random collection 
of initial data is considered. We have only to prepare a random set of 
2-curves and to study various statistical aspects of the behavior of 
the parabola gliding over them. The randomness of the initial data 
may be limited by some condition of general nature; for instance, 
there may be a limitation for |u^{x)\. More important is to require 
the existence of a finite and integrable correlation function R(a) = 
(uo(x)uo(x+a)), where a can go from zero to infinity, while the 
value of R(a) must be independent of x. 

Statistical features of great interest are the distribution function 
governing the widths of the jumps and the statistical relations in­
volved in the position of the two contact points on a parabola with 
respect to the axis of the parabola. It can be shown that all the 

22 Upward jumps would occur when the plus sign before the second term on the 
left hand side of the equation is replaced by a minus sign. 
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correlative properties of the function u(x, t) with reference to x for 
a given t, can be calculated from these statistical data. 

When t increases more and more, an asymptotic theory of the sta­
tistics of the jumps can be worked out. For this purpose the 2-curve 
is considered as picturing the vertical motion of a particle subjected 
to random up and down disturbances, while at the same time the 
particle is transported in the horizontal direction with constant unit 
velocity. A random collection of initial data can then be considered 
as the picture of a set of particles, subjected to a process of "diffu­
sion " in the vertical direction. It is found that the coefficient of diffu­
sion is ultimately determined by the integral of the correlation func­
tion for the initial data: 

-ƒ' 
J 0 

da{uo(x)uo(x + a)). 

The statistics of double contacts can then be obtained from a calcula­
tion of the chance that a particle, whose path comes close to the 
parabola at a point £1, reaches the parabola again at a point £2, while 
the path remains below the parabola everywhere else (also before it 
reaches £1, and after it has passed £2). 

The calculation of this chance requires that certain special solu­
tions are constructed of the diffusion equation for a domain bounded 
by a parabolic curve. The difficulties involved in defining the measure 
associated with the notion of probability can be evaded for a large 
part by considering an asymptotic case referring to very large values 
of the time ; this is a requirement that occurs on several occasions in 
the treatment of the problem. It then appears to be possible to work 
out the probability relations and to write down a set of expressions 
describing the asymptotic statistics of the jumps. The expressions 
require only quadratures, but each of them contains a large series of 
integrations and the integrands depend upon solutions of the diffu­
sion equation. All expressions are completely definite; the only param­
eters which remain in the results are the quantity J defined above, 
and the time /; there are no coefficients which are not fully determined 
by the integrals.28 

*3 In the asymptotic case the auxiliary diffusion problem is governed by the 
equation 

(*) rr«/-Z, 
dÇ dz* 

where \p measures the density of the diffusing particles in a small element of the £, 
«-plane. In the asymptotic case, moreover, we may consider the motions before the 
point & is reached, those between & and £2, and those beyond the point £2 as prac-
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8. Concluding remarks. We have gone, rather rapidly, through a 
few examples exhibiting the appearance of forms of order. In each 
case we have looked for the features which were responsible for the 
order. 

The most pronounced forms of order are directly related to the 
fundamental laws of nature governing the behavior of electrons, pro­
tons and other elementary particles involved in the structure of atoms 
and molecules. In other problems of mathematical physics the pat­
tern was dependent, sometimes partially and sometimes completely, 
upon boundary conditions or initial conditions. In comparison with 
the fundamental laws we have used the term "accidental circum­
stances" for these conditions. However, the "accidental circum­
stances" are the outcome of previous happenings; in other words, 

tically independent of each other. This has the consequence that the probability of 
making contact with the parabola at the points & and £2, while remaining below the 
parabola everywhere else, can be expressed as a product of three functions: 

const. £(-&)•¥(&, &-E(£ddLdH, 

with L « £2 - £1 ; JET- Z2 - Zi - (£2
a - if) lit. 

In order to define the functions appearing in this formula we consider a solution 
(̂£2, 22; £1, Zi) of equation (*) which gives the density of diffusing particles at the 

point £2, z2, when there is a unit source at £1, si, under the conditions: 

H > «1; 
Ai « ixllt - zx > 0; A3 = £2

2/2* - z% > 0 

(the latter two conditions ensure that both the source point and the point of obser­
vation are situated below the parabola) ; and finally: 

^ « 0 on the parabola £2/2* - z « 0. 

We then reduce the values of Ai and A2, and introduce the limit: 

r/f. >\ r l(&, *l? £l, Zi) 
*(£i, £2) » hm — 

Ai=0,Aa=0 AiAj 
Next we consider a solution ^(£, 2; £2, S2), with the unit source at £2, 02, while £, 

z is the observation point, with £>£2î ?/2J—*>0; a nd A2 as before. We introduce the 
limit: 

£(£2) « hm I dz • 
AJ=O,$-*OO J_oo Aa 

The function E(-~£i) can be defined by means of a diffusion process with a flow of 
unit velocity going in the negative £-direction; the result is that E( — £1) is the same 
function as the one defined by the limit above, with — £1 substituting for £2. 

Expressions for the correlation functions associated with the asymptotic form of 
the solution of the partial differential equation given at the beginning of section 7 of 
the text, have been developed in [35]; their connection with integrals depending 
upon the functions \p and E has been considered in [32], pp. 417-421. The integrals 
are of a complicated nature. In order to work them out the solution of the diffusion 
equation with ^«=0 on a parabolic boundary must be obtained. 
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they are dependent upon previous forms of order. In this sense we 
have already spoken of a transmission of order. We have also pointed 
out that in this scheme of thought the large-scale nonuniformities in 
the universe must be counted as forms of order; this refers, for in­
stance, to the presence of concentrated matter and of concentrated 
sources of energy amidst almost empty space. It is well known that 
in all theories about the origin of the solar system or the origin of 
galaxies assumptions turn up concerning the effects of such nonuni­
formities. 

Hence every explanation of order must refer to "given things/' 
whether these be distribution of matter, or the nature of space and 
time, or quantum physical laws. 

Transmission of order is, of course, nothing else than the network 
of causal relationship. From quantum theory it follows that this 
relationship is imperfect when we attempt to describe phenomena of 
atomic dimensions in the way in which one is accustomed to do this 
with large scale phenomena. Inseparably connected with this result 
is the fact that no physical observation can be carried through with­
out disturbing the system upon which the observation is made and 
that the most complete observation (the so-called "maximum ob­
servation ") can give us no more than half of the data which we 
would need in a classical description of motions taking place in space 
and time. The consequence is that each situation, in so far as it can 
be known to us through an observation, will give rise, in its develop­
ment, to the appearance of a complex of competing configurations 
instead of leading to a single completely determined result. In broad 
terms this is the consequence of the existence of a great number of 
different quantum states corresponding to a single energy level for 
the system plus those surroundings which are needed in the observa­
tion. The multiplicity of states can be reduced when we can bring the 
system to a level of lower energy, by radiation of energy into empty 
space or by other means for detracting energy from it. This is the way 
in which order is produced in an important number of forms in non­
living nature, and it is conditioned by the existence in our universe 
of large domains which are practically devoid of matter and energy. 

We also found that forms of order can arise in patterns of flow, 
when there is a constant transport of energy through the system, 
which keeps the system in motion against the damping influences of 
viscous friction, or of heat conduction, and in other cases, of diffusion. 
Here again the order is a by-product, so to say, from a more embrac­
ing process in which order is dissipated. 

Thus in connection with all cases of emergence of order we found 
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accompanying forms of loss of order. This has sometimes raised the 
question whether the universe is only "running down," or whether 
there could be creation of new order. 

In considering the problem which presents itself here, we must keep 
in mind that the distinction between order and disorder is a distinc­
tion outside the subject matter of physics. Physical nature is a whole 
and no configuration counts for more in it than any other configura­
tion. The analytic point of view which studies forms of order and 
compares them and classifies them, is an outside point of view. When 
we say that crystallization produces order, at the expense of disorder 
in the liquid out of which the crystals have come forward, it is our 
distinction which fixes attention upon the crystals and treats them 
as something that has more meaning than the liquid. When we 
speak of a statistical order, it is we who are interested in certain mean 
values or in recurrent events, and who count them and describe 
them by means of some formula. In any description of nature, in 
any formulation of a physical situation, we bring in subjective fea­
tures. We see and act upon what is around us only through the effect 
of operations which introduce demarcations, that is, which give local 
accents and introduce spotlights. Our biological structure, of which 
our spiritual structure is an outcome, apparently drives us to make 
distinctions. Without this we would be no more than another physi­
cal process and there would be no understanding and no science. This 
feature of making distinctions, of having conceptions, is something 
which is not itself embodied in the description of physics. It makes 
possible logical and mathematical analysis and permits us to conceive 
alternative situations. It may stand in relation to physics as a "meta­
physics," in a somewhat similar sense as the term "metamathematics" 
is used in the analysis of the structure of mathematics. 

I believe that this power of accentuating, this power of selection is 
a feature which pervades all phenomena of life. It must derive from 
something which has a meaning in the whole of nature. I believe that 
there is some form of coordination in the universe which is left out 
when we construct our descriptions according to the current methods 
of mathematics and physics. This omission has proved its good right 
and usefulness in physical theory, but perhaps it may not be applica­
ble to all that happens. It may be that the bookkeeping of statistical 
mechanics, in which every configuration is counted as having the 
same weight, is too crude for a deeper form of understanding and 
cannot lead to the right answers in all cases. The cases where it does 
not hold completely might be those where we say: here is a feature 
of life; here we perceive that we have not a physical system, but a 
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living organism before us. 
In our minds this particular feature gives us the feeling of being 

an experiencing subject, integrating its experiences with valuations. 
It leads us to make distinctions between situations which are not 
based exclusively on causal relationship with past situations, but are 
conceived in view of possibilities for a future tempting us to make 
selections. The diversity of configurations will then not be just a 
number, only to be counted in the calculation of entropy, but pre­
sents itself as a meaningful diversity, offering a possibility of rich­
ness in anticipated experience. The idea of perceiving a purpose 
might be a reflection of this feature. 

The living world presents many aspects which, when taken in their 
entirety, go far beyond what we know from nonliving things, notwith­
standing obvious and extensive forms of analogy observed when iso­
lated reactions in living organisms are compared with reactions 
known from nonliving nature. With a few species of atoms, there is a 
far greater diversity in molecular structures than is found in all the 
minerals. We find composite organs, in which ordered parts are com­
bined hierarchically as elements in highly elaborate arrangements, 
reaching in complexity and coordination far beyond all that we 
know from inorganic systems (here I mean, of course, systems not 
built by man, for systems built by man are part of life's activity). 
We find systems of complicated responses to stimuli coming from out­
side. Moreover, there is a stability in the transmission of order, which 
transmission has taken place uninterruptedly through more than a 
billion years of geologic history, with a precision compared to which 
the transmission of order in the lattice structure of even the largest 
single crystal known in nature is almost futile. Finally, out of life 
have arisen the notions of individuality, of consciousness and per­
sonality, of aesthetic and of moral order, and of generosity. We have 
found a sense in order—a conception extraneous to mathematical 
and physical relations. 

I would believe that these features are the outcome of something 
acting in the whole universe. It must be as fundamental as the as­
pects which are studied in physics and mathematics. It would be 
something which embodies an appreciation for contrasts. Apparently 
it has found its widest scope on Earth in the possibilities afforded by 
what we call the "organic compounds," but it might be that we owe 
to its grace also something of the beauty of nonliving things, as 
crystals. Extending the usual meaning of the word, I would call bi­
ology the study of this coordinating activity in all its forms. 

Thus in the living world the subject of order has extra dimensions, 
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dimensions which we leave aside in the picture of physics, although 
we make use of them when we bring this picture into words and 
equations. 

I t will be recognized that the ideas which I have discussed in these 
last remarks, have been derived from the writings of Alfred North 
Whitehead.24 I have taken the liberty to bring them in as a kind of 
counterpart to the statistical picture which is paramount in physics, 
and which has been an important part of the work of Josiah Willard 
Gibbs. 

In my main talk I have restricted myself to forms of order which 
we find in nonliving nature, as was proper. But I would not omit to 
hint a t the possibility of a wider point of view, in which the notion of 
order must find a more complete realization. For it is only in the 
realm of conceptual activity that we can analyze order and present 
it in a mathematical form, and what is not less important, tha t we 
can find joy and inspiration in relations which we have understood. 
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