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Introduction. The three classical set-theoretic concepts of dimen­
sions for topological spaces are [2, p. 153]: small inductive dimension 
—denoted by ind—such that ind (5) = — 1 if S is empty, ind(S) ^ n if 
for every point p £ S and open set U containing p there is an open set 
F with pG VC Uand ind(bdry V)^n-1, and ind(5) = n if ind(5) Sn 
but ind(5) l^n — 1 is not true; large inductive dimension—denoted by 
Ind—such that I n d ( 5 ) = — 1 if 5 is empty, I nd (5 )^w if for every 
closed set C and open set U containing C there is an open set V 
with CC VQUand Ind(bdry V) Sn-l, and Ind(S) =n if Ind(S) ^n 
but lnd(S)^n — 1 is not true; and covering dimension—denoted by 
dim—such that dim(S) = — 1 if 5 is empty, dim(S) ^ n if every open 
cover of S has an open refinement of order ^n + 1—no point of S 
belongs to more than n + 1 many members of the refinement, and 
dim(S)=w if dim(S)^n but dim(5):gw — 1 is not true. I t is well 
known [2, p. 153] that for separable metric spaces S> ind(S) = Ind(S) 
= dim(5). For arbitrary metric spaces 5, only recently Katëtov [3] 
showed that Ind(S) =d im(5) . However, the question [l , p. 3 ] : 

is ind(5) = dim(5) for arbitrary metric spaces 5? 

remained open. We answer this question in the negative by demon­
strating the following assertion. 

THEOREM. There is a complete metric space A such that ind(A) = 0 
but dim (A) = 1. 

We shall give here only a description of the space A, accompanied 
with remarks intended to aid in visualizing the space, and some idea 
of the proof. The details of the proof will be published elsewhere. 

NOTATION. The symbol 0 will denote the empty set. By a sequence 
we shall mean a function defined on either the set of non-negative 
integers, or the set of positive integers, or any initial segment of either 
of them. With this in mind the following notations are adopted. X 
= the set of all finite sequences of real numbers defined on initial 
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segments of the non-negative integers such that if x<EX then x(i) = 0 
only in case i = 0. Furthermore if xÇ^X then \x\ will denote the great­
est integer for which x is defined. F = t h e set of all reversible ( = one-
to-one) sequences of positive numbers defined on the set of all positive 
integers. Z = the set of all infinite sequences of positive numbers de­
fined on the set of all positive integers. If r is a positive number then 
Yr will denote the set of all members of Y which take on the value r, 
and Fr will denote a reversible function from the positive numbers 
onto Yr. 

Points of A. There are two types of points of A and they will be 
denoted by P i and P2 . 

P i = the set of all infinite sequences of nonzero real numbers defined 
on the set of all positive integers. 

REMARK. One may visualize P i by imagining two rows of balls 
from some power-of-the-continuum dimensional complete Hilbert 
space, each row having as many balls as there are real numbers, with 
the top row being matched up with the set of positive numbers and 
the bottom row being matched up in a natural fashion with the nega­
tive numbers. Now imagine that inside each of the balls we have again 
two rows of balls as originally and so on (countably many times). 
Thus for each point in P i one can choose a systematic nested sequence 
of balls and conversely. 

P 2 = X X YXZ, with px, PY, and pz denoting the coordinates of a 
point pCz.Pi. 

REMARK. The points in P 2 are best visualized in pair wise disjoint 
sets of the form S(X,y) = {pÇzP2\px=x and py — y] with xÇ.X and 
3>G Y. Given an x £ X and y G Y and viewing the whole space A as a 
ball we have that x picks out an unique ball B. In the two rows of 
next smaller sized balls inside B, y picks out a sequence of balls from 
the top rows and the corresponding sequence from the bottom row. 
Imagine that S(X,y) is located inside B and at the "end" of the two 
parallel sequences of balls indicated by y. Now since the location with 
regard to S(XtV) of a point ^G5(, l t f) is dependent only on pz (an infinite 
sequence of positive numbers), we can view S(XtV) itself as a "cantor" 
type set obtained by taking a row of power-of-the-continuum many 
balls (matched up with the positive numbers) and a similar row of 
smaller balls inside each of previous balls and so on (countably many 
times). 

Regions of A. By regions we mean what is often called a topological 
basis. Tha t the sets described below indeed form a topological basis is 
not proved here. There are two types of regions and they are denoted 
by Ti and r2 . 

pCz.Pi
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R is a member of T\ only in case there is an xE:X such that 
R = RlVR2, where 

R1 = {p G P i | p{i) = x{i) for i = 1, • • - , | x\ , if | x\ > 0} 

and 

£ 2 = { ^ e P 2 | \px\ è | * | ;px(ü~x(ü f o r i = l , • • -, | * | , if | * | > ° } « 

Such a region R will be denoted by Rx. 
REMARK. The members of Ti can be thought of as dilapidated ver­

sions of the balls involved in the description of Pi—each modified 
ball consists of the points of P\ that are left in the ball and the points 
of P2 tha t are placed in the ball. 

R is a member of T2 only in case there is a positive integer n and a 
point P&P2 such that R = R°KJR+\JR~, where 

(1) R° = {q G P21 qx = />*; ?r = ^ r ; gz(i) = M*) 

for i = 1, • • • , n — 1, if n > l } , 

CO 00 

(2) R+ = U Ry(p,n,+)i and i£~~ = U Ry(P,nt-)i 

where { Y ( £ , ?*> +)*•}" a n d {Y(£> n, — )i}? are two infinite reversible 
sequences of members of X such that if j is a positive integer, then 

(3) \y(P,n, ±)j\ - \px\ + n + 1, 

(4) <y(j, », ±)y(i) = ^x(0 for i = 0, • • • , I fx|, 

(5) y(p,n,±),(\px\ + 1) = ± pY(n+j- l)i 

(6) 7 ( p , n , ± ) X | * x | + 2) = T F ^ ( n + H ) ^ r ) , and if » > 1, 

(7) 7 ( j , », ±)y( J px I + 2 + i) = + pz(i) for * = 1, • • • , n - 1. 

Such a region P will be denoted by R(p,n)-
REMARK. The members of T2 are the crucial items in the space A 

for they hold together the hitherto highly scattered space to the pre­
cise extent necessary to produce the peculiar disparity of dimensions. 
In order to picture a member R(p,n) of T2, since it is a neighborhood of 
pCz.Pi, recall the definition of P2 and the remark following it. Condi­
tions (1) and (4) state that R(p>n) lies inside that ball B designated by 
px. The part of S(PXtPY) belonging to R(p,n) is determined by (1). The 
rest of R(p,n) consists of two sequences of balls (as indicated by (2)) of 
which the sequence {Ry(Ptn,+)j}i is obtained as follows: to begin with, 
as indicated by (5), discard the first n — \ balls in the top sequence of 
balls determined by py', secondly, inside each of the remaining balls 
B', select a next sized ball from the bottom row as specified by (6) 

pCz.Pi
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(note that the latest ball obtained will not be selected at this stage 
for any other R(p>,n') with p' ^S(PXtPY)) and continue the process n — 1 
many more times, always selecting a ball from the bottom row of the 
previous ball as stated precisely in (7), until a small ball is determined, 
whose size is given by (3) and whose position in the structure of "bot­
tom rows of bottom rows" of balls inside B' is the same as the position 
of the ball corresponding to R° is to the structure of balls involved 
in the "cantor" type generation of S(PXtPY); finally, the region in I \ 
corresponding to this latest ball obtained will be a term in the se­
quence of balls we are describing. The sequence {Ry(Ptnt-).} * is ob­
tained by the "mirror image" of the above process—of course applied 
to the bottom sequence of balls determined by py, as is specified in 
the change of signs in (6) and (7). 

A sequence of open coverings of A. For each positive integer n let 

Gn = {R\ R = ^ G IV, | x\ ^ n} 

U{R\R= i? ( g ,w )er2 ; \qx\ +m^n}. 

That {Gn}* is a decreasing sequence of open covers of À follows 
directly from the definition. 

The space A is metrizable. To prove this we use the above sequence 
of coverings in applying the following theorem: 

M O O R E ' S METRIZATION THEOREM [4, pp. 18, 19, 21]. A topological 
space S is metrizable if 

(i) S is a Hausdorff space, and 
(ii) there is decreasing sequence 

{ i l O H O H s D • • • } of open 
coverings of S such that for every point p and every open set U containing 
p there is a positive integer N with the property that if hi and hi belong 
to HN, pÇzhi, and hiC\h<i7^0, then hi^Jh^ÇLU. 

The space A is complete. In fact the space A is complete with re­
spect to the sequence {Gn}f of open coverings—that is, if {Cn}j° is 
a sequence of non void closed sets and {gn} J° is a sequence of regions 
such tha t for each positive integer n, Cn+iC.CnC.gnÇzGn, then 

ind(A)=0. This follows from the fact that none of the regions— 
which form a topological basis for A—has a boundary. 

dim(A)>0. To prove this in view of Katëtov's result, it is enough 
to show that Ind(A)>0. In particular we show that the space A is 
not the union of two disjoint open sets U+ and U~~ containing respec-
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tively the disjoint closed sets C + = {^GPi |^ (^ )>0 for i = 1,2, 3, • • •} 
and C~ = {pE:Pi\p(i)<0 for i = l, 2, 3, • • • }, and this may be done 
by using the completeness of A in conjunction with the following 
observation : 

LEMMA. IfxÇzX and A is the union of two open sets U+ and U~ which 
have on the region Rx the following effect : 

U+DK+ and U"DK~ 

where K+ and K~~ are disjoint closed sets contained in PxC\Rx with the 
property that if p(~K+ (respectively K~) and nis a positive integer then 
there is an infinite set T of positive numbers such that for each number 
tÇzT there is a point q<EK+ (resp. K~) with q(\x\ +i)=p(\x\ +i) for 
i = l , • • • , n — 1 if n>ly and q_(\x\ +n) =t (resp. —/); then U+ and 
U~~ have the same effect on Rx* for some x''GJ with \x'\ = | x\ + 1 , and 
x'(i) =x(i) for i = 0, • • • , \x\. 

REMARK. In other words if U+ and U~ contain respectively a closed 
set K+ a t the very top of Rx and a closed set K~ a t the very bottom of 
Rx where each of K+ and K~ is generated by "cantor" type process of 
taking "infinitely many balls inside each previous ball" (sticking with 
top rows for K+ and bottom rows for K~), then U+ and U~ do the 
same for some next sized region Rx> inside Rx. Note that K~~ is not 
required to be the "mirror" image of K+ nor is it claimed that the 
appropriate closed sets in R& are smaller copies of K+ and K~. 

dim(A) g 1. This can be proved in a straightforward manner : given 
an open cover of A, we can get a refinement of order ^ 2 consisting of 
regions. 
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