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Let P(x, ;y)=P(0, y — x) be the transition function of a random 
walk on the set of lattice points i ?= {x: x has integer valued coordi­
nates} in d-dimensional Euclidean space, d^l. Thus 05^P(0, x), 
^2XER P(0, x) — l and it is also assumed that the additive group gen­
erated by {x: P(0, x) > 0 } is R itself. Probabilities of events concern­
ing the resulting Markov process (random walk) xn, n}zO, starting 
at the point XQ — x are denoted by P*[ - ] , in particular Px[xn — y\ 
= Pn(#, y), the nth iterate over R of the convolution operator P{x, y). 

If the random variable T is the time of the first visit of the random 
walk to the origin after time 0, then rn = Po[T>n], which may also 
be defined analytically by 

1 = Z P*(0, OK-*, n^O, 
A-0 

has the property 

(1) lim ^ ± L = 1. 
n—>oo rn 

Equation (1) which was proved independently, and by different 
methods, by two of the authors is the crucial lemma in the proof of 
the 

THEOREM. For x-^0 

P*[T > n] 
(2) lim — \ \ = a(x) 

*-*oo Po[T> n] 
where a(x) = ]££,o [-P*(0> 0) —Pk(x, 0)] , which converges for all x in R 
according to [3]. 

Both (1) and (2) are trivial in case the random walk is transient. 
We give a proof of (2) for every recurrent random walk, with the 
exception of the case when d = l and a2= X)#2-P(0> #) < °°. (In this 
case equation (3) below is false, but more direct methods are avail­
able.) 

Let Q(x, y) be P(x, y) with x and y restricted to R— {0}, with 
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Qn(x, y) the iterates of Q over R — {0}. For x, y?*0 
00 

«(*> y) = Z &(X, ^) < 00 

is the expected number of visits of xn to y before T if XQ —- # . From [3] 
we need the result that 

(3) lim g(x, y) = a(x). 

For X5^0 
00 00 

p.[r > «] = Z PX[T = H i l = E E &(*, y) *(y, o) 

= £ * 0 M ) Se.fty)P(y,o). 
MO j ^ O 

Setting 

~~P 

PX[T > n] rn+i 

v»(0 = - ^ r~ > * 5̂  0, 
Po[T > n + 1] 

Pol i > ft] Tn MO 

Using (1) and (3) the proof can be completed by an obvious com­
pactness argument if we show that 

]C *n(d = * for » è 1, 
MO 

lim »„(/) = 0 for each / ?̂  0. 

Letting yn be the "reversed" random walk with transition function 
P*(x, y) = P(y, x), T* the first visit of yn to the origin after time 0, 
one has 

v»-iO) = Pobn = t\ T*> n] 

so that each vn is a probability measure on R— {o}. Finally, selecting 
an integer m such that PZ(t, 0) >0, 

vn^(t)Pm(t} 0) £. = 
Potr* > wj rn 

so that (1) implies that vn(t)—>0. 
Hunt [l] first obtained a theorem analogous to (2) for two dimen-
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sional Brownian motion, and Kac [2] for a restricted class of random 
walks. 
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The class G of all closed prenex schemata in the form AxEuAyMxuy 
whose quantifier-free matrices Mxuy contain only dyadic schematic 
letters was shown in [2] to be a reduction class for quantification 
theory. Here we shall study the decision problems of various sub­
classes of this unsolvable class. Since a dyadic schematic letter may be 
followed by xx, xu, ux, uu, yy, xy, yx, uy, or yu, any letter atom occur­
ring in a given matrix Mxuy is in one of these nine letter atomic forms. 
The subclasses of G to be studied will be specified in terms of these 
forms. 

Consider the four letter atomic forms xy, yx, uy, yu. First take any 
three of them. From [2] we know that any subclass of G which in­
cludes all schemata whose letter atoms are in just these three forms 
is a reduction class and hence is unsolvable. Now take any two of the 
four forms. Combining them with the other five forms yields a sub­
class of G. In this way we obtain six subclasses of G which divide into 
three pairs: J = {xy, uy}, J * = {yx, yu\, L = {xy, yx}, L*= {uy, yu}, 
Q = {%y> yu}, (?* == {yXy uy}. We discuss these three pairs of classes in 
turn. 

The subclasses J and / * are solvable and contain axioms of infin­
ity, i.e., contain some schemata having just infinite models. This is 
significant because thus far no naturally specifiable infinite class of 
schemata containing axioms of infinity has been shown solvable. Since 


