STRONG RATIO LIMIT PROPERTY

BY STEVEN OREY1

Communicated by M. Loève, August 8, 1961

1. Introduction. For every nonnegative integer n let $p_{ij}^{(n)}$ be the n-step transition probabilities of a recurrent, irreducible, aperiodic Markov chain, $i, j = 0, 1, \cdots$. We say the chain has the strong ratio limit property (SRLP) if there exist positive constants $\pi_j, j = 0, 1, \cdots$, such that

(1)
$$\lim_{n\to\infty} \frac{p_{ij}^{(n+m)}}{p_{h1}^{(n)}} = \frac{\pi_j}{\pi_h}, \qquad m=0, \pm 1, \pm 2, \cdots.$$

It is well known that SRLP does not hold for all chains of the type considered here.² We here present conditions for SRLP; the continuous parameter case is also considered.

2. Discrete parameter. Let $_kp_{ij}^{(n)} = \text{Prob}$ [going from i to j in n steps without visiting k at step number $1, 2, \dots, n-1$]. Note

(2.1)
$$\sum_{n=1}^{\infty} {}_{i} p_{ij}^{(n)} = 1$$
 and g.c.d. $\{n: p_{ii}^{(n)} > 0\} = 1$ for every i, j .

LEMMA 1. SRLP holds if and only if $p_{00}^{(n+1)}/p_{00}^{(n)} \rightarrow 1$ as $n \rightarrow \infty$.

Sketch of proof. Assume $p_{00}^{(n+1)}/p_{00}^{(n)} \to 1$ as $n \to \infty$. For $n > N \ge 1$ we have

$$(2.2) A_n(\alpha) = p_{0\alpha}^{(n)}/p_{00}^{(n)} = \sum_{v=1}^n {}_{0}p_{0\alpha}^{(v)}p_{00}^{(n-v)}/p_{00}^{(n)} = \sum_{v=1}^N + \sum_{v=N+1}^n = B_{N,n}(\alpha) + C_{N,n}(\alpha).$$

Observe $A_n(\alpha)$ converges as $n \to \infty$ if and only if

(2.3)
$$\lim_{N\to\infty} \lim_{n\to\infty} C_{N,n}(\alpha)$$

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research and Development Command, under Contract No. AF-49(638)-617. Reproduction in whole or in part is permitted for any purpose of the United States Government.

² For counterexample, general discussion and references to the literature see [1] under "ratio limit theorem, individual."

Frequently authors consider only the case m=0 in relation to (1). We do not know whether this is really more restrictive or not.

exists. Setting $\alpha = 0$ in (2.2) we see that the expression in (2.3) equals zerowhen $\alpha = 0$. Let j be an integer, depending on α , such that ${}_{0}p_{\alpha 0}^{(j)} > 0$. For $\alpha \neq 0$ the estimate ${}_{0}p_{00}^{(n+j)} \geq {}_{0}p_{0\alpha}^{(n)} {}_{0}p_{\alpha 0}^{(j)}$ shows that (2.3) equals zero for every α , proving the convergence of $A_n(\alpha)$. Similar arguments establish the lemma in full generality.

Let $u_0 = 1$, $u_n = p_{00}^{(n)}$, $f_n = {}_{0}p_{00}^{(n)}$, $n = 1, 2, \cdots$. We have the familiar renewal relation

(2.4)
$$u_n = \sum_{k=1}^n f_k u_{n-k}, \qquad n = 1, 2, \cdots.$$

According to Lemma 1 SRLP is equivalent to

$$(2.5) u_{n+1}/u_n \to 1 \text{ as } n \to \infty.$$

We shall need the following simple lemma proved in [3]:

LEMMA 2. If $\limsup (u_{n+1}/u_n) \le 1$ as $n \to \infty$ then (2.5) (and therefore SRLP) holds.

PROOF. Let $m = \lim \inf (u_{n+1}/u_n)$, $M = \lim \sup u_{n+1}/u_n$ as $n \to \infty$. From (2.4) one gets easily

$$(2.6) m > \sum_{k=1}^{\infty} f_k M^{-k+1}.$$

Thus if $M \leq 1$, $m \geq M$ so that M = m = 1.

THEOREM 1. If for some positive integer m

(2.7)
$$\lim \sup u_{m(n+1)}/u_{mn} \leq 1 \text{ as } n \to \infty$$

then (2.5) holds.

Sketch of proof. Assume (2.7). It is probabilistically evident that the sequence $\{u_{mn}\}$, $n=0,1,\cdots$ is also a "renewal sequence" for some persistent, aperiodic, recurrent event, so that Lemma 2 applies to give $u_{m(n+1)}/u_{mn} \rightarrow 1$ as $n \rightarrow \infty$. Further probabilistic arguments lead to $u_{mn+j}/u_{mn} \rightarrow 1$ as $n \rightarrow \infty$ for $j=1, 2, \cdots, m-1$.

The next theorem has several interesting probabilistic interpretations. However, the only proof we know is that given in our joint paper [3] which uses a fairly intricate analytic argument.

THEOREM 2. Condition (2.5) is equivalent to

(2.8)
$$\lim_{N\to\infty} \left[\sup_{n\geq N} \frac{1}{u_n} \sum_{k=N}^n f_k u_{n-k} \right] = 0.$$

³ A purely analytic proof of this theorem seems much harder. In [3] we give an analytic proof of a weaker theorem.

3. Continuous parameter. Let $p_{ij}(t)$ be the transition probability matrix of a continuous parameter Markov chain, $t \ge 0$, $i, j = 0, 1, \cdots$. We assume $p_{ij}(t) \rightarrow \delta_{ij}$ as $t \rightarrow 0$. We take the chain to be irreducible and recurrent. The SRLP now becomes

(3.1)
$$\lim_{t\to\infty}\frac{p_{ij}(t+\Delta)}{p_{kh}(t)}=\frac{\pi_j}{\pi_h}, \qquad -\infty < \Delta < \infty.$$

We have

LEMMA 3. If for some $\Delta > 0$

(3.2)
$$\lim_{t\to\infty} \frac{p_{00}(t+\delta)}{p_{00}(t)} = 1 \text{ uniformly for } 0 \le \delta \le \Delta$$

then SRLP holds.

4. Reversible processes. The matrices $p_{ij}^{(n)}(p_{ij}(t))$ of §1 (§2) belong to a reversible process if and only if $\pi_i p_{ij} = \pi_j p_{ji}(\pi_i p_{ij}(t) = \pi_j p_{ji}(t)$ for all t) for every i and j.

THEOREM 3. Reversibility implies SRLP, both in the discrete and continuous parameter case.

PROOF. Assume reversibility. According to Kendall [6; 7] we have the representation

(4.1)
$$p_{ij}^{(n)} = \int_{-1}^{1} x^n d\Psi_{ij}(x), \qquad n = 0, 1, \dots,$$

in the discrete parameter case and

$$p_{ij}(t) = \int_0^\infty e^{-tx} d\Psi_{ij}(x), \qquad t \ge 0,$$

in the continuous parmeter case, where the Ψ_{ij} are real-valued functions of bounded variation, nondecreasing when i=j.

Formula (4.1) shows $u_{2n}(=p_{00}^{(2n)})$ is nonincreasing so that SRLP follows from Theorem 1.

In the continuous parameter case the above argument gives us

$$(4.3) p_{00}((n+1)\delta)/p_{00}(n\delta) \to 1 \text{ as } n \to \infty$$

for every $\delta > 0$. Formula (4.2) shows that $p_{00}(t)$ is nonincreasing. Thus condition (3.2) must hold, and Lemma 3 applies.

Representations like (4.1) and (4.2) have been used to establish SRLP in [4;5;8]. In previously treated cases however, the measures Ψ_{ij} were known more explicitly and the arguments depend on detailed

investigation of the behavior of these measures. In [4; 5] there is also some discussion of SRLP in the transient case, which we have excluded. We do not know whether convergence of $p_{00}^{(n+1)}/p_{00}^{(n)}$ implies SRLP in the transient case.

BIBLIOGRAPHY

- 1. K. L. Chung, Markov chains with stationary transition probabilities, Berlin, Springer, 1960.
- 2. W. Feller, An introduction to probability theory and its applications, New York, Wiley, 1950.
- 3. A. Garsia, S. Orey, and E. Rodemich, Asymptotic behavior of successive coefficients of some power series, to appear.
- 4. S. Karlin and J. McGregor, The classification of birth and death processes, Trans. Amer. Math. Soc. vol. 86 (1957) pp. 366-400.
 - 5. ——, Random walks, Illinois J. Math. vol. 3 (1959) pp. 66-81.
- 6. D. G. Kendall, Unitary dilations of Markov transition operators, and the corresponding integral representation for transition-probability matrices, Harold Cramér Volume (Ed. U. Grenander) Stockholm (1960) pp. 139-161.
- 7. ——, Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states, Proc. London Math. Soc. vol. 9 (1959) pp. 417–431.
- 8. W. Pruitt, Bilateral birth and death processes, ONR Technical Report No. 22, Contract Nonr-225(28) (NR-047-019), Applied Math. and Stat. Lab., Stanford, (1960).

University of Minnesota