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1. Introduction. For every nonnegative integer n let p$ be the 
w-step transition probabilities of a recurrent, irreducible, aperiodic 
Markov chain, i, j = 0, 1, • • • . We say the chain has the strong ratio 
limit property (SRLP) if there exist positive constants 7r;-,j = 0,1,- • • , 
such that 

(n+m) 

(1) l i m - ^ — = = — , m = 0, ± 1 , ± 2 , • • • . 

I t is well known that SRLP does not hold for all chains of the type 
considered here.2 We here present conditions for SRLP; the continu­
ous parameter case is also considered. 

2. Discrete parameter. Let kpff = Prob [going from i toj in n steps 
without visiting k a t step number 1,2, • • - , # — l ] . Note 

(2.1) 2 iPa = 1 anc* g.c.d.jw: pa > 0} = 1 f or every i, j . 
n - l 

LEMMA 1. SRLP holds if and only if P^+1)/Poo—>1 as n—>*>. 

SKETCH OF PROOF. Assume PW+1)/P(!Q-*1
 a s w-*0 0 . For n>N^l 

we have 

An(a) = poa /poo = /2 opoa poo /poo = 2^ + 2 ^ 
( 2 . 2 ) r « i t,„i «—iv-t-i 

Observe An(a) converges as n—>oo if and only if 

(2.3) lim lim CNfn(oc) 

1 This research was supported by the United States Air Force through the Air 
Force Office of Scientific Research and Development Command, under Contract 
No. AF-49(638)-617. Reproduction in whole or in part is permitted for any purpose 
of the United States Government. 

2 For counterexample, general discussion and references to the literature see [l ] 
under "ratio limit theorem, individual." 

Frequently authors consider only the case m=*0 in relation to (1). We do not 
know whether this is really more restrictive or not. 
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exists. Setting a = 0 in (2.2) we see that the expression in (2.3) equals 
zerowhen a = 0. Let j be an integer, depending on a, such that op^ > 0. 
For aj*0 the estimate o£oo+^ èopo£ opal shows that (2.3) equals zero 
for every a, proving the convergence of An(a). Similar arguments 
establish the lemma in full generality. 

Let Wo = l, Un = Poo> /n = o£oo! » = 1, 2, • • • . We have the familiar 
renewal relation 

n 

(2.4) un = YlfkUn-ky n = 1, 2, • • • . 

According to Lemma 1 SRLP is equivalent to 

(2.5) un+i/un—» 1 as w~^oo, 

We shall need the following simple lemma proved in [3 ] : 

LEMMA 2. If Urn sup (un+i/un) ^1 as n—*v> then (2.5) (and therefore 
SRLP) holds. 

PROOF. Let m = lim inf (wn+i/w»)> ikf=lim sup un+i/un as w—>oo. 
From (2.4) one gets easily 

00 

(2.6) m> Z/AM-**1 . 
jfc»i 

Thus if ilf ^ 1 , m^M so that Af=ra = l. 

THEOREM 1. If for some positive integer m 

(2.7) lim sup Wm(»+i)/wmn ^ 1 as n —> <*> 

Jftew (2.5) holds. 

SKETCH OF PROOF. Assume (2.7). I t is probabilistically evident 
that the sequence {^m»j, n = 0f 1, • • • is also a "renewal sequence" 
for some persistent, aperiodic, recurrent event, so that Lemma 2 ap­
plies to give um(n+i)/umn—^l as n—> °o. Further probabilistic arguments 
lead to umn+j/umn-*l as w—>oo for j = l, 2, • • • , m — l.3 

The next theorem has several interesting probabilistic interpreta­
tions. However, the only proof we know is that given in our joint 
paper [3 ] which uses a fairly intricate analytic argument. 

THEOREM 2. Condition (2.5) is equivalent to 

(2.8) lim sup — Y^fkUn-k = 0. 
N->* Ln^N Un k^N J 

• A purely analytic proof of this theorem seems much harder. In [3] we give an 
analytic proof of a weaker theorem. 
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3. Continuous parameter. Let pa(t) be the transition probability 
matrix of a continuous parameter Markov chain, t^O, iy j = 0 ,1 , • • • . 
We assume pxjif)—*8»y a s I—*0. We take the chain to be irreducible 
and recurrent. The SRLP now becomes 

pij(t + A) TTy 
(3 .1) lim — - = — f - o o < A < o o . 

*-»» pkh(i) Th 

We have 

LEMMA 3. If for some A > 0 

poo(t + Ô) 
(3.2) lim = 1 uniformly for 0 S ô g A 

*-+« ^oo(/) 
/Âew SRLP holds. 

4. Reversible processes. The matrices pi?(pij(t)) of §1 (§2) belong 
to a reversible process if and only if 7Tipij = Trjpji(wipij(t) =Wjp}i(t) for 
all /) for every i and j . 

THEOREM 3. Reversibility implies SRLP, both in the discrete and 
continuous parameter case. 

PROOF. Assume reversibility. According to Kendall [6; 7] we have 
the representation 

(4.1) plT = f *"d¥ij(x), n = 0, 1, • • • , 

in the discrete parameter case and 

(4.2) p^t) = f r*d¥i,(x), t^ 0, 
J o 

in the continuous parmeter case, where the SP»,* are real-valued func­
tions of bounded variation, nondecreasing when i—j. 

Formula (4.1) shows w2n( = ^oow)) 'ls nonincreasing so that SRLP 
follows from Theorem 1. 

In the continuous parameter case the above argument gives us 

(4.3) poo((n + l)Ô)/p0Q(nd) - > 1 as n - > °o 

for every 5 > 0 . Formula (4.2) shows that poo(t) is nonincreasing. Thus 
condition (3.2) must hold, and Lemma 3 applies. 

Representations like (4.1) and (4.2) have been used to establish 
SRLP in [4; 5; 8] . In previously treated cases however, the measures 
^a were known more explicitly and the arguments depend on detailed 
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investigation of the behavior of these measures. In [4; 5] there is 
also some discussion of SRLP in the transient case, which we have 
excluded. We do not know whether convergence of Pw+1)/Poo implies 
SRLP in the transient case. 
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