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The classical theory of Frobenius-Perron concerning the distribu­
tion of eigenvalues of a matrix with non-negative elements has been 
variously extended to positive operators, that is, linear operators on 
function spaces transforming non-negative functions into non-nega­
tive functions. Since the classical work of Jentzsch (see bibliography), 
there have been two kinds of extensions : (a) it has been established 
under various conditions that a positive operator shall have a posi­
tive eigenvector with positive eigenfunction (see e.g. Birkhoff [ l ] , 
Karlin [4], Samelson [7], Schaefer [8]), and (b) at tempts have been 
made to extend the Frobenius theorem stating that, for a non-nega­
tive matrix with spectral radius one, the eigenvalues on the unit 
circle are roots of unity. This result has been extended to positive 
operators under strong additional assumptions, all of them guarantee­
ing that the intersection of the spectrum with the unit circle shall 
consist of isolated points only. Results of this kind are summarized 
in Karlin. I t is our present purpose to establish the second result un­
der fairly general conditions. Our result is the following: 

THEOREM. Let P be a linear operator of norm at most one {a "con­
traction") in Li(5, 2 , M), where (5, 2 , /*) is a measure space of finite 
measure. Suppose that P is bounded, with norm at most one, in L^S, 2 , fi). 
Then : 

If a is an eigenvalue of P, and Pf — af for some nonzero integrable ƒ, 
then a2 is also an eigenvalue of P . 

If ƒ is written in the form f = | ƒ | g, where the function g is of absolute 
value one at every point, then the eigenfunction belonging to a2 is \f\ g2. 

Operators of the type described in this theorem, the so-called dis-
sipative operators, are commonly encountered in various circum­
stances, for instance in the study of semigroups generated by second-
order differential operators. The property of contractivity in L\ is also 
crucially assumed in the pointwise ergodic theorems. 

The proof of this theorem can be based upon elementary func­
tional-analytic techniques, and will be given in full here. We begin 
by making the following two simplifications: (a) It can be assumed 

1 Work done by contract with the Office of Naval Research. 
21 wish to thank Professor Jack Feldman of Berkeley for several enlightening con­

versations on this subject. 
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that fi(S) = 1 ; and (b) by going over to the Stone-Cech compactifica-
tion of LX(S, S, /*), we can assume that all the bounded functions 
treated are continuous on a compact Hausdorff space. This second 
simplification is not strictly necessary, but it is convenient to talk 
about values of a function at a point. The proof results from the fol­
lowing seven steps. 

(1) For a continuous non-negative function/, suppose that Pf=f, 
then P(f) = / 2 . 

Indeed, for a fixed point 5 in the compact Hausdorff space 5, the 
linear functional f—*Pf(s) is positive and continuous. Hence, by the 
Riesz representation theorem, there exists a non-negative measure 
tn(s, dt) such that Pf(s)=ff(t)rn(s, dt) (integrations will always be 
carried out over the whole space). By Schwarz's inequality we have 
Uf{t)m{s, dt))*£flm(s, dt)ff(t)2tn(s, dt), where 1 is the function 
identically equal to one. Letting Pl=ht where h is a non-negative 
function taking values between zero and one, the last inequality can 
be rewritten as (Pf(s))2Sh(s)(Pf2)(s). But Pf=f, hence this gives 
pûP{p)- In view of the assumption that P decreases the integrals of 
positive functions, this can only be true if P(p) = / 2 . 

(2) If | Pf\ = | / | , then P\f\ = |ƒ | , where {ƒ | is the function every­
where equal to \f(s) | . This is shown in the same way as (1), using the 
inequality \ff(t)tn(s, dt)\ ûf\f(s)\m(s, dt). 

(3) From (1) and (2) it follows easily that , if Pf=f and Pg = g 
for any two functions ƒ and g, then P(fg) =fg. Therefore, the fix-
points of P form a subalgebra which, in view of the assumption, will 
be isomorphic to one of the form L^E, 2o, /x) on the original measure 
space, where So is a (r-subfield of 2 , and E a subset of S. In particular, 
the characteristic function (also known as the indicator) XE of the 
subset E will belong to the subalgebra, that is PXE = XE. 

(4) Now let F be the complement of E in the set 5, and let 
PXF^Q.- Then the function q lives on F; for otherwise, PI —P(XE+XF) 
> 1 at some point of £ , contradicting the assumption that P is a 
contraction in LM. Hence the subspace Li(E, S, /*), (where wTe 
denote by S the <r-field obtained by intersecting the sets of S with 
the set E) is invariant under P . Now, if Pf=af for some a of ab­
solute value one, then, by (2), P\f\ = | / | , hence ƒ lives on E. We con­
clude that it suffices to prove the theorem under the additional 
assumption that P l = l, an assumption which we shall make from 
now on. 

(5) If Pf =ƒ and g is arbitrary, then P(fg) = /Pg . I t suffices to 
prove this when ƒ ^ 0 . Using the device of (1), we have Jf{t)m{si dt) 
—fis) for each s. By Schwarz's inequality (ff(,t)m(s,dt))2 
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=ijf(02w(s> dt). But by (1), equality holds in Schwarz's inequality. 
Hence f(t) is, for fixed s, constant almost everywhere relative to the 
measure m(s, dt). The assertion now becomes obvious when rewritten 
in terms of integrals relative to the measure m(s, dt). 

(6) Now let Pf=af for some a such that \a\ = 1. Write ƒ = | ƒ | g, 
where | g(s) \ = 1 for all s in its support, and let G be the support of/. 
By (5), to complete the proof of the theorem, it suffices to prove that 
P(g2) = a2g2. Since the characteristic function of G is invariant under 
P , we can restrict ourselves to functions living on G. Hence we shall 
assume that | g(s) | = 1 for all 5. 

(7) The proof is now completed as follows. By Schwarz's in­
equality, | Jg(t)m(sy dt) | 2 ^ ƒ | g{t) 12m(s, dt) = l. But, since | Pg\ = | g\, 
equality holds in the inequality, and this can only happen if g(j) is 
constant almost everywhere relative to the measure m(s, dt). In view 
of the identity fg(t)m(st dt)=ag(s), it follows that , for fixed s, 
g{t) =ag(s) for a set of points / of m(s, d/)-measure one. But if this is 
the case, then also g(t)2 = a2g(s)2 for a set of points of m(st dt)-
measure one. Integrating, we obtain /^(/)2m(5, dt)=a2g(s), tha t is, 
changing notation, P(g2)=a2g2> q.e.d. 

We conjecture that the assumptions of the above theorem are 
essentially sharp, that is, any significant class of operators for which 
the assertion holds is equivalent, after a change of measure, to the 
one considered above. For example, it is easy to see that those quasi-
compact operators for which the assertion is true are equivalent, 
after a change of measure, to contractions. 
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