RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

COVERINGS IN FREE LATTICES

BY RICHARD A. DEAN

Communicated by F. Bohnenblust, June 12, 1961

The purpose of this note is to exhibit some new coverings in the free lattice, FL(n), generated by a finite number of elements. Free lattices were studied extensively by P. M. Whitman [1; 2] who found a number of coverings. Theorem 1 of this note guarantees an infinite number of distinct pairs of covering elements.

Let FL(n) have generators x_1, \dots, x_n . The definition of the words (elements) of the lattice and the ordering of the words are those of Whitman [1]. We make use of his Lemma 1.1 appearing in [2]:

In FL(n), if w is any word and x_r is any generator, then either $w \ge x_r$ or $\bigcup_{i \ne r} x_i \ge w$, but not both.

LEMMA. In FL(n) let $w \ge x_r$. If $[w \cap (\bigcup_{i \ne r} x_i)] \cup x_r \ge w$ then w covers $w \cap (\bigcup_{i \ne r} x_i)$.

PROOF. First note that $w \neq w \cap (U_{i \neq r} x_i)$ as $w \geq x_r$, but $U_{i \neq r} x_i \geq x_r$. Now suppose that $w \geq y \geq w \cap (U_{i \neq r} x_i)$. If $y \geq x_r$, then $U_{i \neq r} x_i \geq y$ and hence $y = w \cap (U_{i \neq r} x_i)$. If $y \geq x_r$, then $w \leq [w \cap (U_{i \neq r} x_i)] \cup x_r \leq y \cup x_r = y \leq w$ and hence y = w.

THEOREM 1. In FL(n), let $\bigcup_{i\neq r} x_i \geq y$. Then $x_r \cup y$ covers $(x_r \cup y) \cap (\bigcup_{i\neq r} x_i)$.

PROOF. We set $w = x_r \cup y$ and verify the criteria of the lemma. Since $\bigcup_{i \neq r} x_i \geq y$ it follows that $(x_r \cup y) \cap (\bigcup_{i \neq r} x_i) \geq y$ and hence $[(x_r \cup y) \cap (\bigcup_{i \neq r} x_i)] \cup x_r \geq x_r \cup y$. The theorem now follows.

COROLLARY. Let FL(3) have generators a, b, and c. If w is any word, then $a \cup (b \cap w)$ covers $[(a \cup (b \cap w)] \cap (b \cup c)$.

PROOF. $b \cup c \ge b \ge b \cap w$.

Note that $a \cup (b \cap w)$ is the form of a typical element in an infinite ascending chain of elements in FL(3) as established in [2], thus this corollary gives an infinite number of pairs of distinct coverings in FL(3).

If $w \ge x_r$, the criterion of the lemma really states that $w = [w \cap (U_{i \ne r} \ x_i)] \cup x_r$. This is certainly a necessary condition for a word w such that $w \ge x_r$ to cover $w \cap (U_{i \ne r} \ x_i)$. Since no element of FL(n) is both meet and join reducible, it follows that if $w \ge x_r$ and w is meet reducible then w properly contains $x_r \cup [w \cap (U_{i \ne r} \ x_i)]$ which, by Theorem 1 does cover $(x_r \cup [w \cap (U_{i \ne r} \ x_i)]) \cap (U_{i \ne r} \ x_i)$. The characterization of those w such that w covers or equals $x_r \cup [w \cap (U_{i \ne r} \ x_i)]$ seems difficult. However the following converse for Theorem 1 does hold.

THEOREM 2. In FL(n), if $w \ge x_r$ and w covers $w \cap (\bigcup_{i \ne r} x_i)$, then $w = x_r \cup y$ where $\bigcup_{i \ne r} x_i \ge y$.

PROOF. The remarks of the preceding paragraph show that we may suppose that w has a canonical form $w_1 \cup \cdots \cup w_m$ where w_j is a generator or $w_j = \bigcap_i w_{ij}$. Since $w = [w \cap (\bigcup_{i \neq r} x_i)] \cup x_r$, we can make use of Corollary 2 of Theorem 2 in [1] to infer that for every j, either

(a)
$$w_j \leq w \cap \left(\bigcup_{i \neq r} x_i\right) \leq \bigcup_{i \neq r} x_i,$$

or

(b)
$$w_j \leq x_r$$
.

Now if (a) holds for all j, then $\bigcup_{i\neq r} x_i \geq w \geq x_r$, a contradiction. Hence $w_j \leq x_r$ for some j. On the other hand, $w \geq x_r$ implies $w_k \geq x_r$ for some k. But then the canonicity of the form $w_1 \cup \cdots \cup w_m$ implies that k=j (say = 1) and so $w_1 = x_r$. But then canonicity implies that (a) must hold for $j=2, 3, \cdots, m$, or that $y=w_2 \cup \cdots \cup w_m \leq \bigcup_{i\neq r} x_i$, as was to be proved.

REFERENCES

- 1. P. M. Whitman, Free lattices. I, Ann. of Math. vol. 42 (1941) pp. 325-330.
- 2. ——, Free lattices. II, Ann. of Math. vol. 43 (1942) pp. 104-115.

CALIFORNIA INSTITUE OF TECHNOLOGY