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1. Suppose that B is a G-space for a given topological group G. 
Tha t is we are given a continuous map a: GXB—>B satisfying the 
equations 

a(«i-«2, b) = â(uh â(u2, b)), uh u2 G G, b E B, 

a(e, b) = by e the identity of G. 

Let (B be a principal bundle over B, [5, p. 35] with total space E and 
H the structural group so that B may be regarded as the orbit space 
of E by H. We wish to consider here the problem of putting the two 
actions together in E in a sense to be made precise below. 

2. Let (B be a bundle with base B and total space E. Suppose B is a 
G-space given by a function â as above. We say that action (G, a) 
can be lifted to E in (B if E can be given the structure of a G-space so 
that the projection of E onto B in (B is an equivariant map, i.e. so 
that if a gives the action of G on £ we have the following commuta­
tive diagram: 

GX E^E 

(2.1) (1,#H ÏP 
GXB-+B 

a 
(G, a) will then be called a lifting of the action (G, a) . A lifting will be 
called a bundle lifting in (B if for each w £ G the map #—>a(w, x) of £ 
onto £ is a bundle mapping. 

For example, a group of diffeomorphisms of a manifold B in the 
Cr-topology has a bundle lifting in the tangent bundle to B in taking 
the differential of each element. 

PROPOSITION 2.1. If the action (G, â) on B has a bundle lifting in the 
principal bundle (B with structural group H and total space £ , then 
GXH acts on E in a canonical way. If (G, a) is a transitive action so is 
the action of GXH. If the action (G, a) is free so is that of GXH. 

If (G, a) is the bundle lifting in B of (G, s) define the action (GXHt 

]8) in E by /3((w, A), #) =a(w, #) • h. 
1 The author holds a National Science Foundation Postdoctoral Fellowship. 
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PROPOSITION 2.2. Let (&be a principal bundle over a topological group 
G. The action of G on itself by left translation can be lifted to E in B if 
and only if (B is the product bundle. 

Indeed, each orbit of G in E will be a cross-section. Since there are 
nontrivial bundles over almost all topological groups, this shows that 
the lifting in general is impossible. However, a measure of what stops 
the lifting will then be a measure of the nontrivialness of the bundle 
in this case. Similarly, in the case of Proposition 2.1 such a measure 
would tell us those bundles not obtained in the canonical way of 
factoring out a suitable isotropy group in a transitive action. 

3. This section gives the statement and sketches the proof of the 
main theorem. We assume throughout this section that (B is a prin­
cipal bundle with structural group H, a torus of dimension m. We also 
assume that G is a semi-simple, compact, connected Lie group. To 
avoid coverings we suppose G is simply connected. Nothing is lost 
in this last assumption as we have not demanded that the action of 
G be effective. 

THEOREM 3.1. Under the above hypothesis, if B is paracompact and 
satisfies the first countability axiom then there is a bundle lifting of 
(G, a)} 

LEMMA 3.2. In order that there be a bundle lifting under our hypothe­
sis, it is sufficient that we have a bundle lifting over a fixed neighborhood 
U of the identity in G. 

This follows from the monodromy theorem [l, p. 49]. 

LEMMA 3.3, The mapping â restricted to UXB where U is a suitably 
chosen neighborhood of e in G can be lifted to a bundle map a: UXE-+E 
such that a(e, x) =x, x £ E . 

Choose U homeomorphic to a cube and apply the covering homo-
topy theorem, [4, p. 555]. (The paracompactness is needed here.) 

DEFINITION 3.1. Let F be a neighborhood of e in G with V*CU. 
We define the error function/: VX VXB—+H by the equation 

(3.1) a(ui-U2, x) = a(ui, a(u2, %))*Kui, U2; p(%)), % G E 

where a is given by Lemma 3.3. J is clearly continuous. 
From the associative law we have 

2 The author wishes to express his appreciation to Dr. R. S. Palais for pointing 
out that a hypothesis of simple connectivity is not needed. 
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(3.2) f(uh u2\ Uzb)~l*j(u2, Uz\ b)-f(uh u2, u%\ b)'f(ui-u2j u%\ b)~l = 1, 

where we use the notation u-b — â(u, b). If g: VXB—+H is a continu­
ous map then we define a new covering a' by 

(3.3) a'(u, x) = <x(u, x)-g(u\ x). 

In order that a! give the action of a local group it is necessary and 
sufficient that we have 

(3.4) f(uh u2;b) = g(u2; b)-g(ui\ urb)-g(uvu2\ b)~l. 

Taking V contractible, we see that the map ƒ is homotopic to the 
constant map VX VXB—>IÇ:H. Then there is a unique lifting of ƒ 
to a m a p / : VX VXB—>Em, euclidean ra-space, satisfying/(e, e, b0) 
= 0. Then ƒ will satisfy the equation (3.2) in Em, (with the notation 
changed to additive notation). I t is sufficient then to find g : VXB—>Em 

satisfying (3.4) fo r / i n place of/. We make now the following conver­
sions. 

(3.5) P(uh u2, uz)(b) = f(uïlu2, W2xuz\ uTl-b) 

then (3.2) becomes 

P(u2) uz, u4)(b) - P(uh fi8, «0(6) + P(ui, u2, Ui)(b) 
(3.6) 

— P(ui, u2, Uz)(b) = 0. 

Furthermore it is easily seen that 

P(uuh uu2, uuz){ub) = P(ui, u2) Uz)(b), 
( 3 < 7 ) P(e, e, e)(b)= 0. 

We consider P as a continuous function defined in a neighborhood 
of the diagonal A in GXGXG and taking values in the topological 
group (Em)B of continuous functions of B into Em in the compact open 
topology. This group is easily seen to be an ^4i?-space. Now suppose 
we have a continuous function Q defined on some neighborhood of the 
diagonal in GXG and satisfying 

(3.8) P(«i, u2, uz) = Q(u2, uz) - Q(ui, uz) + Q(uh u2), 

(3.9) Q(uu% uu2)(ub) = Q(ui, u2)(b). 

Then if we define g(u; b)=Q(e, u)(u-b) g will satisfy 2.4. g is simul­
taneously continuous in both variables since B satisfies the first axiom 
of countability [3, p. 103], and we could then conclude that the de­
sired lifting exists. 

We might as well assume that P is defined on all of G X GXG since 
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(Em)B is an AR space. Now consider the sheaf of germs of continuous 
Alexander-Spanier cochains of degree n with coefficients in (Em)B. 
This sequence of sheaves forms a soft, (since (Em)B is an AR space), 
acyclic resolution of the simple sheaf over G with coefficients in 
(Em)B. By the Cartan uniqueness theorem, [2, p. 181 ] it follows that 
it yields the same cohomology for G as does the usual Alexander 
Spanier cohomology. Since H2(G; (Em)B)=0 in this last theory it 
follows that there exists a continuous function Q: GXG—>(Em)B 

which satisfies (3.8) in a neighborhood of the diagonal A in GXG. 
Since G is compact we might as well assume this neighborhood homo­
geneous. Define 

Q(ui, U2) (ô) = I Q(uui, uu2)(ub)du 
Jo 

where the integral is the usual normalized Haar measure. Q is the de­
sired cochain. I t also can be shown that the lifting is unique up to a 
bundle equivalence. 
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