LIFTING THE ACTION OF A GROUP IN A FIBRE BUNDLE

BY T. E. STEWART¹

Communicated by Deane Montgomery, January 8, 1960

1. Suppose that B is a G-space for a given topological group G. That is we are given a continuous map $\bar{\alpha}: G \times B \rightarrow B$ satisfying the equations

$$\bar{\alpha}(u_1 \cdot u_2, b) = \bar{\alpha}(u_1, \bar{\alpha}(u_2, b)),$$
 $u_1, u_2 \in G, b \in B,$ $\bar{\alpha}(e, b) = b,$ e the identity of G .

Let @ be a principal bundle over B, [5, p. 35] with total space E and H the structural group so that B may be regarded as the orbit space of E by H. We wish to consider here the problem of putting the two actions together in E in a sense to be made precise below.

2. Let $\mathfrak B$ be a bundle with base B and total space E. Suppose B is a G-space given by a function $\overline{\alpha}$ as above. We say that action $(G, \overline{\alpha})$ can be lifted to E in $\mathfrak B$ if E can be given the structure of a G-space so that the projection of E onto E in $\mathfrak B$ is an equivariant map, i.e. so that if E gives the action of E we have the following commutative diagram:

(2.1)
$$G \times E \xrightarrow{\alpha} E$$

$$(1, p) \downarrow \qquad \downarrow p$$

$$G \times B \xrightarrow{\alpha} B$$

 (G, α) will then be called a lifting of the action $(G, \bar{\alpha})$. A lifting will be called a bundle lifting in \mathfrak{B} if for each $u \in G$ the map $x \to \alpha(u, x)$ of E onto E is a bundle mapping.

For example, a group of diffeomorphisms of a manifold B in the C^r -topology has a bundle lifting in the tangent bundle to B in taking the differential of each element.

PROPOSITION 2.1. If the action $(G, \bar{\alpha})$ on B has a bundle lifting in the principal bundle $\mathfrak B$ with structural group H and total space E, then $G \times H$ acts on E in a canonical way. If $(G, \bar{\alpha})$ is a transitive action so is the action of $G \times H$. If the action $(G, \bar{\alpha})$ is free so is that of $G \times H$.

If (G, α) is the bundle lifting in B of $(G, \overline{\alpha})$ define the action $(G \times H, \beta)$ in E by $\beta((u, h), x) = \alpha(u, x) \cdot h$.

¹ The author holds a National Science Foundation Postdoctoral Fellowship.

PROPOSITION 2.2. Let \mathfrak{B} be a principal bundle over a topological group G. The action of G on itself by left translation can be lifted to E in B if and only if \mathfrak{B} is the product bundle.

Indeed, each orbit of G in E will be a cross-section. Since there are nontrivial bundles over almost all topological groups, this shows that the lifting in general is impossible. However, a measure of what stops the lifting will then be a measure of the nontrivialness of the bundle in this case. Similarly, in the case of Proposition 2.1 such a measure would tell us those bundles not obtained in the canonical way of factoring out a suitable isotropy group in a transitive action.

3. This section gives the statement and sketches the proof of the main theorem. We assume throughout this section that $\mathfrak B$ is a principal bundle with structural group H, a torus of dimension m. We also assume that G is a semi-simple, compact, connected Lie group. To avoid coverings we suppose G is simply connected. Nothing is lost in this last assumption as we have not demanded that the action of G be effective.

THEOREM 3.1. Under the above hypothesis, if B is paracompact and satisfies the first countability axiom then there is a bundle lifting of $(G, \bar{\alpha})$.²

LEMMA 3.2. In order that there be a bundle lifting under our hypothesis, it is sufficient that we have a bundle lifting over a fixed neighborhood U of the identity in G.

This follows from the monodromy theorem [1, p. 49].

LEMMA 3.3. The mapping $\bar{\alpha}$ restricted to $U \times B$ where U is a suitably chosen neighborhood of e in G can be lifted to a bundle map $\alpha: U \times E \rightarrow E$ such that $\alpha(e, x) = x$, $x \in E$.

Choose U homeomorphic to a cube and apply the covering homotopy theorem, [4, p. 555]. (The paracompactness is needed here.)

DEFINITION 3.1. Let V be a neighborhood of e in G with $V^{\mathfrak{d}} \subset U$. We define the error function $\overline{f} \colon V \times V \times B \to H$ by the equation

(3.1)
$$\alpha(u_1 \cdot u_2, x) = \alpha(u_1, \alpha(u_2, x)) \cdot \bar{f}(u_1, u_2; p(x)), \qquad x \in E$$

where α is given by Lemma 3.3. \overline{f} is clearly continuous.

From the associative law we have

² The author wishes to express his appreciation to Dr. R. S. Palais for pointing out that a hypothesis of simple connectivity is not needed.

where we use the notation $u \cdot b = \bar{\alpha}(u, b)$. If $\bar{g} : V \times B \rightarrow H$ is a continuous map then we define a new covering α' by

 $\bar{f}(u_1, u_2; u_3b)^{-1} \cdot \bar{f}(u_2, u_3; b) \cdot \bar{f}(u_1, u_2, u_3; b) \cdot \bar{f}(u_1 \cdot u_2, u_3; b)^{-1} = 1,$

$$(3.3) \alpha'(u, x) = \alpha(u, x) \cdot \bar{g}(u; x).$$

In order that α' give the action of a local group it is necessary and sufficient that we have

$$\bar{f}(u_1, u_2; b) = \bar{g}(u_2; b) \cdot \bar{g}(u_1; u_2 \cdot b) \cdot \bar{g}(u_1 \cdot u_2; b)^{-1}.$$

Taking V contractible, we see that the map \overline{f} is homotopic to the constant map $V \times V \times B \to 1 \subset H$. Then there is a unique lifting of \overline{f} to a map $f: V \times V \times B \to E^m$, euclidean m-space, satisfying $f(e, e, b_0) = 0$. Then f will satisfy the equation (3.2) in E^m , (with the notation changed to additive notation). It is sufficient then to find $g: V \times B \to E^m$ satisfying (3.4) for f in place of \overline{f} . We make now the following conversions.

$$(3.5) P(u_1, u_2, u_3)(b) = f(u_1^{-1}u_2, u_2^{-1}u_3; u_3^{-1} \cdot b)$$

then (3.2) becomes

1960

$$(3.6) P(u_2, u_3, u_4)(b) - P(u_1, u_3, u_4)(b) + P(u_1, u_2, u_4)(b) - P(u_1, u_2, u_3)(b) = 0.$$

Furthermore it is easily seen that

(3.7)
$$P(uu_1, uu_2, uu_3)(ub) = P(u_1, u_2, u_3)(b),$$
$$P(e, e, e)(b) = 0.$$

We consider P as a continuous function defined in a neighborhood of the diagonal Δ in $G \times G \times G$ and taking values in the topological group $(E^m)^B$ of continuous functions of B into E^m in the compact open topology. This group is easily seen to be an AR-space. Now suppose we have a continuous function Q defined on some neighborhood of the diagonal in $G \times G$ and satisfying

$$(3.8) P(u_1, u_2, u_3) = Q(u_2, u_3) - Q(u_1, u_3) + Q(u_1, u_2),$$

$$(3.9) Q(uu_1, uu_2)(ub) = Q(u_1, u_2)(b).$$

Then if we define $g(u; b) = Q(e, u)(u \cdot b)$ g will satisfy 2.4. g is simultaneously continuous in both variables since B satisfies the first axiom of countability [3, p. 103], and we could then conclude that the desired lifting exists.

We might as well assume that P is defined on all of $G \times G \times G$ since

 $(E^m)^B$ is an AR space. Now consider the sheaf of germs of continuous Alexander-Spanier cochains of degree n with coefficients in $(E^m)^B$. This sequence of sheaves forms a soft, (since $(E^m)^B$ is an AR space), acyclic resolution of the simple sheaf over G with coefficients in $(E^m)^B$. By the Cartan uniqueness theorem, [2, p. 181] it follows that it yields the same cohomology for G as does the usual Alexander Spanier cohomology. Since $H^2(G; (E^m)^B) = 0$ in this last theory it follows that there exists a continuous function $Q: G \times G \rightarrow (E^m)^B$ which satisfies (3.8) in a neighborhood of the diagonal Δ in $G \times G$. Since G is compact we might as well assume this neighborhood homogeneous. Define

$$Q(u_1, u_2)(b) = \int_{a} Q(uu_1, uu_2)(ub)du$$

where the integral is the usual normalized Haar measure. Q is the desired cochain. It also can be shown that the lifting is unique up to a bundle equivalence.

References

- 1. C. Chevalley, Theory of Lie groups, Princeton University Press, 1946.
- 2. R. Godement, Theorie des faisceaux, Actualités Sci. Ind., 1958, p. 1252.
- 3. S. T. Hu, Homotopy theory, New York, Academic Press, 1959.
- 4. W. Huebsch, On the covering homotopy theorem, Ann. of Math. vol. 61 (1955) pp. 555-563.
 - 5. N. E. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.

INSTITUTE FOR ADVANCED STUDY