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1. Introduction. By an w-dimensional lattice A we mean, as usual, 
an additive subgroup with n linearly independent generators of the 
vectors in Euclidean w-space, Rn. If we denote by Zn the lattice of 
vectors with integral components, then A is the image of Zn under a 
nonsingular linear transformation: 

A = { i u | u G ^ n } , det A ?± 0. 

The matrices mapping Zn onto A constitute a coset A U of the sub­
group of all integral unimodular matrices, and so det A = | det A | is 
well-defined. I t is convenient to use the same name A for the point-
lattice of all points P such that OP is in A. 

Minkowski [2] showed that every lattice of determinant one con­
tains a point other than the origin 0 in the cube 

{ (*1, • • • , Xn) | \xi\ ^ 1, i = 1, • • ' , ft} , 

and that the same holds if any n— 1 of the signs are replaced by 
strict inequality. Those unimodular lattices, such as Zn , which have 
only the origin in common with the open cube shall be called critical, 
as shall the corresponding matrices. Minkowski conjectured, and 
Hajos [ l ] proved in 1938, that a critical lattice must contain one of 
the points (5»i, • • • , 5,-»), i = 1, • • • , n. If A is critical then so is any 
matrix obtained from it by permuting rows and post-multiplication 
by integral unimodular matrices: such matrices will be called equiva­
lent to A. An induction argument shows that Hajos' theorem is the 
same as the assertion: 

A is critical if and only if it is equivalent to a matrix with ones on 
the diagonal and all zeros above, 

Siegel [3] tried to prove Minkowski's conjecture by showing that, 
if A is critical, then each point other than 0 of the lattice correspond­
ing to A has at least one coordinate in Z*, the set of nonzero integers. 
If we consider the set of matrices A denned by the property 

(P) u G Zn, u 7* 0=$ Au has a component in Z*, 

then Hajos' theorem would follow from Siegel's result, if it were true 
that every A with property (P) has an integral row. For in that case 
we could prove by induction on n that A is equivalent to a triangular 
matrix with zeros above the diagonal and positive integers on the 
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diagonal. Thus if | det A\ = 1 , then the diagonal elements must be 1. 
Conversely, since every A with property (P) and | det A \ = 1 is 

clearly critical, Hajos' theorem shows that the combination of (P) 
with | det A | = 1 does imply that A has an integral row. 

Unfortunately property (P) alone does not suffice for n^S as is 
shown by the example 

fl/3 0 0 0 0 

0 1/3 0 0 0 

^ = 1 1 / 2 3 / 2 3 0 0 

1 3/2 0 3 0 

[3/2 1 0 0 3 

Here A has property (P) but no row is integral. However we were 
able to show that property (P) does imply that det A £ Z * and to 
obtain various generalizations of that result. 

2. The special case of the main theorem enunciated at the end of 
the introduction, when A is rational, is included in: 

THEOREM I. Let K be an algebraic number field of class-number one1 

and let J be its ring of integers. If an n-by-n matrix A over K has the 
property 

(P) u G Jn
y ti 5* 0 => Au has a component in ƒ*, 

then d e t . 4 £ J * . 

PROOF. If A has property (P) then det . 4 ^ 0 , so we only have to 
show that det AÇzJ- The theorem being trivial for n — 1, we use in­
duction. Take an A with (P) and assume that det A is not in / . We 
shall deduce the existence of an A with (P) such that det-4 = l /g, 
where g is a prime of J; and then a contradiction follows from a 
pseudo-analogue of Minkowski's theorem, which we shall prove. 

LEMMA 1. If there is an A with (P) such that det A is not in J, then 
there exists A\ with (P) such that det Ai—a/q> where a £ / and q is a 
prime of J which does not divide a. 

PROOF. Since / has unique factorization into primes and since 
det A is not integral, we have det A — a/qbf where af b, q are in / , q 
is a prime element, and (a, qb)=J. Multiplying the first row of A 
by b gives a matrix Ai with (P) such that detAi = a/q, as required. 

I t is easy to remove from each row of A any common denominator 
prime to q without affecting (P) or the fact that the determinant has 
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denominator q. Thus we may assume that : (i) A has property (P), 
(ii) det A = a/qf where g is a prime not dividing a, (iii) some power of 
q is a denominator for A. 

LEMMA 2. If there is an A with properties (i), (ii) and (iii), then there 
exists an A with (P) such that det A = 1/q. 

PROOF. Since J has only principal ideals, we can find an integral 
unimodular matrix U such that A U is triangular. By the properties 
of A we may write the diagonal elements of the new A as aii — aiqb\ 
a~ YLaiy iL/bi— — 1. Multiplying a column or a row of A by a non­
zero integer does not affect (P). Hence, if A' is obtained from A by 
multiplying the first n — 1 columns by an, then A' has (P) and only 
powers of q occur in the denominators in A''. Since an is prime to g, 
we get a matrix A" with (P) when we divide each row of A' by an. 
The net result is that ay—a^ii (i, i)?z£(^, n), a'nn~(^n. Similarly we 
can multiply the first n — 2 columns by an-\ and then divide the first 
n — 1 rows by an_i, and so on. We end up with the matrix 

A* = 

7*1 0 

02i q° 

02#31 

[02 ' ' ' ön-10nl, ' * ' , q 

which has property (P) and determinant q^bi = q~1, as required. 
Since jnorm^""1! < 1 , the desired contradiction follows from the 

next theorem. 

THEOREM I I . If A is an n-by-n matrix over K such that 
0 < | norm (det ^4) | < 1, then there exists u ^ O in Jn such that Au has 
no component in J*. 

PROOF. Let di be a common denominator for the elements of the 
i th row of A, and let A\ denote the matrix obtained by multiplying 
each row of A by its dit Then 

0 < | norm (det-41) I = n norm di-norm (det A) 

< XI norm di 

Hence it is sufficient to prove: 
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LEMMA 3.IfB is an n-by-n matrix over J such that 0 < | norm (det B) \ 
< H norm diy where the d^J, then there exists a up^O in Jn such that 
Bu — v, where Vi = 0 or di\vi, for each i. 

PROOF. Rado [4] has given a proof of Minkowski's theorem on 
linear forms which can easily be generalised to prove this lemma. We 
may assume B has been put in the form of a triangular matrix, with 
zeros above the diagonal and elements a\, • • • , an on the diagonal. 
Hence 0 < | II*-1 norm a»| < | H norm di\. Let <xif 8j run over com­
plete sets of residues mod a* and mod dif respectively. Then the num­
ber of vectors a is | H norm a<|, and the number of 5 is | H norm di\. 
Thus, there are more vectors 5 than a. Now we assert that for given 
5 there is one and only one a such that the equation 

Bu = 5 + a 

is solvable for u £ / w . For n — l, the equation is aiu~8i+ai; and for 
given Si this is solvable with integral u if and only if a\ is in a certain 
residue class mod a\, hence for one and only one a.\. Assuming the 
assertion true for n-~ 1, we know that the first n — l equations are 
solvable, for given 8i, • • • , 8n_i, with integral u\, • • - , un-\ for one 
and only one («i, • • • , an-i)- Finally, for given 8n, the equation 

(bnlUi - ) - • • • + bn>n-lUn-l) + &nUn = dn + &n 

is solvable with integral un for one and only one any as in the case 
n = l. 

Since there are more 5 than a, we can find distinct 5, 5' and some 
a such that Bu = h+a and J5u/ = 5 / + « , where tar and u' are in Jn. 
Since 5 ^ 5 ' , therefore u - u ' ^ O and B(u-u') = h-h'. Now 5,-, 5/ 
are either equal or in distinct residue classes mod d{\ hence S< — 8/ is 
either zero or indivisible by d{. This proves the lemma, with v = 5 — 5', 
and also completes the proofs of Theorems I and II . 

3. Generalizations. Theorem I holds without the restriction that 
the elements of A lie in K. 

LEMMA 4. Let K be any field with at least n elements, and let A be an 
n-by-n matrix over some K-module, such that 

(P')n i* G Kn, tt 5* 0 =» Au has a component in K*. 

Then some row of A consists of elements of K, not all zero, and A is 
equivalent, under interchange of rows and right-multiplication by a non-
singular matrix over K, to a triangular matrix whose diagonal elements 
are in K*. 
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PROOF. Since the lemma is true for n — ly take n*t2. If we write 
L ; = {u | uGi£ n , (Au)iÇzK}> then Li is a subspace of Kn, and 
Li — Kn if the ith row of A is zero, an a priori possibility. Condition 
(P')n shows that i£n is the union of the Li which correspond to a 
nonzero row of A, If one of these Li = Kn, then the ith row of A is 
nonzero and all its elements are in K. Otherwise, we must havei£n 

equal to a union of at most n proper subspaces. We now show that 
this is impossible when #(K)*tn. Suppose we have reduced down to 
the case Kn — LiVJL2 • • • \JLmy with mSn and minimal. Hence there 
exist u, v in Kn such that u is not in L^VJLz • • • ^JLn and v is not in 
Lu By intersecting each side of the above equation with the plane 
Ku+Kvj we find that the plane equals the union of at most n lines 
through the origin. This is clearly false if K is an infinite field; and 
in the case q = #(K)f the total number of points would be q2 = m(q — l) 
+ 1, hence m = q + l, in contradiction to q^n^m. 

We can now switch the row whose elements are in K to the first 
row and then by linear combinations of columns with coefficients 
from K reduce A to the form 

fax 0 • • • 0] 

I B 

where #iG^£*. Since B has property (P')w-i we can now proceed by 
induction to prove the last part of the lemma. 

COROLLARY. If the field K in Lemma 4 is an algebraic number field of 
class-number one, then property (P') implies the equivalence of A to a 
triangular matrix with diagonal elements in K* by switching of rows 
and right-multiplication by a unimodular matrix over J, the integers of 
K. 

PROOF. We again switch the row with elements in K to the first 
row. Since the class-number is one, we can form a linear combination 
of the columns with coefficients in / to give a new first column such 
that in the new matrix an divides all terms in the first row, i.e. 
au&d'iiJ, i = ly 2, • • • , n. Then by subtracting integral multiples of 
the first column from other columns we can reduce au to 0 for 
i = 2, • • • , n. The induction proceeds as before. 

LEMMA 5. If K is the field of Theorem I, A an n-by-n matrix over 
some K-module, Ku and A has property (P), then there is a matrix A' 
over K with property (P) such that det A = d e t A'. 

PROOF. Since (P) implies (P')> we can triangularize -4, as in the 
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corollary. We can regard A as being over the X-module obtained by 
adjoining the a^ to K, say K'. If 1, £1, • • • , £# be a basis for K' over 
K, then 

A = A' + A&+ • • • + ANi-N, 

say, where Af and the Ai are over K, all are triangular, the Ai having 
all zeros on the diagonal, while A' coincides with A on the diagonal. 
Hence det A = d e t A'. Finally, since 

N 

Au = A'u + ^2 %i(Aiu), 
« v - l 

it is clear that A' also has property (P). 
We have thus proved the desired generalization : 

THEOREM I'. Theorem I remains valid under the hypothesis that the 
matrix A is over some K-module. 

In particular, if A is over the reals and transforms every nonzero 
integer vector into a vector with at least one component in Z*, then 
det A is in Z*. 
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