## A CLASS OF GEOMETRIC LATTICES

K. ROGERS AND E. G. STRAUS

Communicated by E. F. Beckenbach, December 26, 1959

1. Introduction. By an n-dimensional lattice  $\Lambda$  we mean, as usual, an additive subgroup with n linearly independent generators of the vectors in Euclidean n-space,  $R^n$ . If we denote by  $Z^n$  the lattice of vectors with integral components, then  $\Lambda$  is the image of  $Z^n$  under a nonsingular linear transformation:

$$\Lambda = \{ A u \mid u \in \mathbb{Z}^n \}, \qquad \det A \neq 0.$$

The matrices mapping  $Z^n$  onto  $\Lambda$  constitute a coset AU of the subgroup of all integral unimodular matrices, and so  $\det \Lambda = |\det A|$  is well-defined. It is convenient to use the same name  $\Lambda$  for the point-lattice of all points P such that OP is in  $\Lambda$ .

Minkowski [2] showed that every lattice of determinant one contains a point other than the origin 0 in the cube

$$\{(x_1, \dots, x_n) \mid |x_i| \leq 1, i = 1, \dots, n\},\$$

and that the same holds if any n-1 of the signs are replaced by strict inequality. Those unimodular lattices, such as  $Z^n$ , which have only the origin in common with the open cube shall be called *critical*, as shall the corresponding matrices. Minkowski conjectured, and Hajos [1] proved in 1938, that a critical lattice must contain one of the points  $(\delta_{i1}, \dots, \delta_{in})$ ,  $i=1, \dots, n$ . If A is critical then so is any matrix obtained from it by permuting rows and post-multiplication by integral unimodular matrices: such matrices will be called *equivalent* to A. An induction argument shows that Hajos' theorem is the same as the assertion:

A is critical if and only if it is equivalent to a matrix with ones on the diagonal and all zeros above.

Siegel [3] tried to prove Minkowski's conjecture by showing that, if A is critical, then each point other than 0 of the lattice corresponding to A has at least one coordinate in  $Z^*$ , the set of nonzero integers. If we consider the set of matrices A defined by the property

(P) 
$$u \in Z^n$$
,  $u \neq 0 \Rightarrow Au$  has a component in  $Z^*$ ,

then Hajos' theorem would follow from Siegel's result, if it were true that every A with property (P) has an integral row. For in that case we could prove by induction on n that A is equivalent to a triangular matrix with zeros above the diagonal and positive integers on the

diagonal. Thus if  $|\det A| = 1$ , then the diagonal elements must be 1. Conversely, since every A with property (P) and  $|\det A| = 1$  is clearly critical, Hajos' theorem shows that the combination of (P) with  $|\det A| = 1$  does imply that A has an integral row.

Unfortunately property (P) alone does not suffice for  $n \ge 5$  as is shown by the example

$$A = \begin{pmatrix} 1/3 & 0 & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 3/2 & 3 & 0 & 0 \\ 1 & 3/2 & 0 & 3 & 0 \\ 3/2 & 1 & 0 & 0 & 3 \end{pmatrix}.$$

Here A has property (P) but no row is integral. However we were able to show that property (P) does imply that  $\det A \in \mathbb{Z}^*$  and to obtain various generalizations of that result.

2. The special case of the main theorem enunciated at the end of the introduction, when A is rational, is included in:

THEOREM I. Let K be an algebraic number field of class-number one, and let J be its ring of integers. If an n-by-n matrix A over K has the property

(P) 
$$u \in J^n$$
,  $u \neq 0 \Rightarrow Au$  has a component in  $J^*$ , then  $\det A \in J^*$ .

PROOF. If A has property (P) then  $\det A \neq 0$ , so we only have to show that  $\det A \in J$ . The theorem being trivial for n=1, we use induction. Take an A with (P) and assume that  $\det A$  is not in J. We shall deduce the existence of an A with (P) such that  $\det A = 1/q$ , where q is a prime of J; and then a contradiction follows from a pseudo-analogue of Minkowski's theorem, which we shall prove.

LEMMA 1. If there is an A with (P) such that det A is not in J, then there exists  $A_1$  with (P) such that det  $A_1 = a/q$ , where  $a \in J$  and q is a prime of J which does not divide a.

PROOF. Since J has unique factorization into primes and since det A is not integral, we have det A = a/qb, where a, b, q are in J, q is a prime element, and (a, qb) = J. Multiplying the first row of A by b gives a matrix  $A_1$  with (P) such that det  $A_1 = a/q$ , as required.

It is easy to remove from each row of A any common denominator prime to q without affecting (P) or the fact that the determinant has

denominator q. Thus we may assume that: (i) A has property (P), (ii) det A = a/q, where q is a prime not dividing a, (iii) some power of q is a denominator for A.

LEMMA 2. If there is an A with properties (i), (ii) and (iii), then there exists an A with (P) such that  $\det A = 1/q$ .

PROOF. Since J has only principal ideals, we can find an integral unimodular matrix U such that AU is triangular. By the properties of A we may write the diagonal elements of the new A as  $a_{ii} = a_i q^{b_i}$ ,  $a = \prod a_i$ ,  $\sum b_i = -1$ . Multiplying a column or a row of A by a nonzero integer does not affect (P). Hence, if A' is obtained from A by multiplying the first n-1 columns by  $a_n$ , then A' has (P) and only powers of q occur in the denominators in A'. Since  $a_n$  is prime to q, we get a matrix A'' with (P) when we divide each row of A' by  $a_n$ . The net result is that  $a_{ij}'' = a_{ij}$  if  $(i, j) \neq (n, n)$ ,  $a_{nn}'' = q^{b_n}$ . Similarly we can multiply the first n-2 columns by  $a_{n-1}$  and then divide the first n-1 rows by  $a_{n-1}$ , and so on. We end up with the matrix

$$A^* = \begin{pmatrix} q^{b_1} & 0 & \cdots & 0 \\ a_{21} & q^{b_2} & 0 & \cdots & 0 \\ a_2 a_{31} & & & & \\ \vdots & & & \ddots & \\ a_2 \cdots & a_{n-1} a_{n1}, \cdots & a_n^{b_n} \end{pmatrix}$$

which has property (P) and determinant  $q^{\sum b_i} = q^{-1}$ , as required. Since  $|\text{norm } q^{-1}| < 1$ , the desired contradiction follows from the

Since  $|\text{norm }q^{-1}| < 1$ , the desired contradiction follows from the next theorem.

THEOREM II. If A is an n-by-n matrix over K such that 0 < | norm (det A) | < 1, then there exists  $u \neq 0$  in  $J^n$  such that Au has no component in  $J^*$ .

PROOF. Let  $d_i$  be a common denominator for the elements of the *i*th row of A, and let  $A_1$  denote the matrix obtained by multiplying each row of A by its  $d_i$ . Then

$$0 < |\operatorname{norm} (\operatorname{det} A_1)| = \left| \prod_{i} \operatorname{norm} d_i \cdot \operatorname{norm} (\operatorname{det} A) \right|$$

$$< \left| \prod_{i} \operatorname{norm} d_i \right|.$$

Hence it is sufficient to prove:

LEMMA 3. If B is an n-by-n matrix over J such that  $0 < | \text{norm } (\det B) |$  $< \prod \text{norm } d_i$ , where the  $d_i \in J$ , then there exists a  $u \neq 0$  in  $J^n$  such that Bu = v, where  $v_i = 0$  or  $d_i \nmid v_i$ , for each i.

PROOF. Rado [4] has given a proof of Minkowski's theorem on linear forms which can easily be generalised to prove this lemma. We may assume B has been put in the form of a triangular matrix, with zeros above the diagonal and elements  $a_1, \dots, a_n$  on the diagonal. Hence  $0 < \left| \prod_{i=1}^n \text{norm } a_i \right| < \left| \prod \text{norm } d_i \right|$ . Let  $\alpha_i$ ,  $\delta_i$  run over complete sets of residues mod  $a_i$  and mod  $d_i$ , respectively. Then the number of vectors  $\alpha$  is  $\left| \prod \text{norm } a_i \right|$ , and the number of  $\delta$  is  $\left| \prod \text{norm } d_i \right|$ . Thus, there are more vectors  $\delta$  than  $\alpha$ . Now we assert that for given  $\delta$  there is one and only one  $\alpha$  such that the equation

$$Bu = \delta + \alpha$$

is solvable for  $u \in J^n$ . For n=1, the equation is  $a_1u=\delta_1+\alpha_1$ ; and for given  $\delta_1$  this is solvable with integral u if and only if  $\alpha_1$  is in a certain residue class mod  $a_1$ , hence for one and only one  $\alpha_1$ . Assuming the assertion true for n-1, we know that the first n-1 equations are solvable, for given  $\delta_1, \dots, \delta_{n-1}$ , with integral  $u_1, \dots, u_{n-1}$  for one and only one  $(\alpha_1, \dots, \alpha_{n-1})$ . Finally, for given  $\delta_n$ , the equation

$$(b_{n1}u_1 + \cdots + b_{n'n-1}u_{n-1}) + a_nu_n = \delta_n + \alpha_n$$

is solvable with integral  $u_n$  for one and only one  $\alpha_n$ , as in the case n=1.

Since there are more  $\delta$  than  $\alpha$ , we can find distinct  $\delta$ ,  $\delta'$  and some  $\alpha$  such that  $Bu = \delta + \alpha$  and  $Bu' = \delta' + \alpha$ , where u and u' are in  $J^n$ . Since  $\delta \neq \delta'$ , therefore  $u - u' \neq 0$  and  $B(u - u') = \delta - \delta'$ . Now  $\delta_i$ ,  $\delta_i'$  are either equal or in distinct residue classes mod  $d_i$ ; hence  $\delta_i - \delta_i'$  is either zero or indivisible by  $d_i$ . This proves the lemma, with  $v = \delta - \delta'$ , and also completes the proofs of Theorems I and II.

3. Generalizations. Theorem I holds without the restriction that the elements of A lie in K.

Lemma 4. Let K be any field with at least n elements, and let A be an n-by-n matrix over some K-module, such that

$$(P')_n$$
  $u \in K^n$ ,  $u \neq 0 \Rightarrow Au$  has a component in  $K^*$ .

Then some row of A consists of elements of K, not all zero, and A is equivalent, under interchange of rows and right-multiplication by a non-singular matrix over K, to a triangular matrix whose diagonal elements are in  $K^*$ .

PROOF. Since the lemma is true for n=1, take  $n \ge 2$ . If we write  $L_i = \{u \mid u \in K^n, (Au)_i \in K\}$ , then  $L_i$  is a subspace of  $K^n$ , and  $L_i = K^n$  if the *i*th row of A is zero, an a priori possibility. Condition  $(P')_n$  shows that  $K^n$  is the union of the  $L_i$  which correspond to a nonzero row of A. If one of these  $L_i = K^n$ , then the *i*th row of A is nonzero and all its elements are in K. Otherwise, we must have  $K^n$  equal to a union of at most n proper subspaces. We now show that this is impossible when  $\#(K) \ge n$ . Suppose we have reduced down to the case  $K^n = L_1 \cup L_2 \cdot \cdot \cdot \cup L_m$ , with  $m \le n$  and minimal. Hence there exist u, v in  $K^n$  such that u is not in  $L_2 \cup L_3 \cdot \cdot \cdot \cup L_n$  and v is not in  $L_1$ . By intersecting each side of the above equation with the plane Ku+Kv, we find that the plane equals the union of at most n lines through the origin. This is clearly false if K is an infinite field; and in the case q = #(K), the total number of points would be  $q^2 = m(q-1) + 1$ , hence m = q + 1, in contradiction to  $q \ge n \ge m$ .

We can now switch the row whose elements are in K to the first row and then by linear combinations of columns with coefficients from K reduce A to the form

$$\begin{bmatrix} a_1 & 0 \cdot \cdot \cdot \cdot 0 \\ \vdots & B \end{bmatrix}$$

where  $a_1 \in K^*$ . Since B has property  $(P')_{n-1}$  we can now proceed by induction to prove the last part of the lemma.

COROLLARY. If the field K in Lemma 4 is an algebraic number field of class-number one, then property (P') implies the equivalence of A to a triangular matrix with diagonal elements in  $K^*$  by switching of rows and right-multiplication by a unimodular matrix over J, the integers of K.

PROOF. We again switch the row with elements in K to the first row. Since the class-number is one, we can form a linear combination of the columns with coefficients in J to give a new first column such that in the new matrix  $a_{11}$  divides all terms in the first row, i.e.  $a_{1i} \in a_{11}J$ ,  $i = 1, 2, \dots, n$ . Then by subtracting integral multiples of the first column from other columns we can reduce  $a_{1i}$  to 0 for  $i = 2, \dots, n$ . The induction proceeds as before.

LEMMA 5. If K is the field of Theorem I, A an n-by-n matrix over some K-module,  $K_1$ , and A has property (P), then there is a matrix A' over K with property (P) such that det  $A = \det A'$ .

PROOF. Since (P) implies (P'), we can triangularize A, as in the

corollary. We can regard A as being over the K-module obtained by adjoining the  $a_{ij}$  to K, say K'. If 1,  $\xi_1, \dots, \xi_N$  be a basis for K' over K, then

$$A = A' + A_1 \xi_1 + \cdots + A_N \xi_N,$$

say, where A' and the  $A_i$  are over K, all are triangular, the  $A_i$  having all zeros on the diagonal, while A' coincides with A on the diagonal. Hence det  $A = \det A'$ . Finally, since

$$Au = A'u + \sum_{i=1}^{N} \xi_i(A_iu),$$

it is clear that A' also has property (P).

We have thus proved the desired generalization:

THEOREM I'. Theorem I remains valid under the hypothesis that the matrix A is over some K-module.

In particular, if A is over the reals and transforms every nonzero integer vector into a vector with at least one component in  $Z^*$ , then det A is in  $Z^*$ .

## REFERENCES

- 1. G. Hajos, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Z., vol. 47 (1941) pp. 427-467.
  - 2. H. Minkowski, Geometrie der Zahlen, Leipzig, Teubner, 1910, §30, p. 72.
- 3. C. L. Siegel, Neuer Beweis des Satzes von Minkowski über lineare Formen, Math. Ann. vol. 87 (1922) pp. 36-38.
- 4. R. Rado, A proof of Minkowski's theorem on homogeneous linear forms, J. London Math. Soc. vol. 9 (1934) pp. 164-165.

University of California, Los Angeles