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1. Introduction. By an n-dimensional lattice A we mean, as usual,
an additive subgroup with #» linearly independent generators of the
vectors in Euclidean n-space, R* If we denote by Z» the lattice of
vectors with integral components, then A is the image of Z”» under a
nonsingular linear transformation:

A= {4u|uec 2z, det 4 = 0.

The matrices mapping Z”» onto A constitute a coset AU of the sub-
group of all integral unimodular matrices, and so det A= I det A| is
well-defined. It is convenient to use the same name A for the point-
lattice of all points P such that OP is in A.

Minkowski [2] showed that every lattice of determinant one con-
tains a point other than the origin 0 in the cube

{(xly"',xn)‘ Ixt‘ él,i=1,"‘,ﬂ},

and that the same holds if any #—1 of the signs are replaced by
strict inequality. Those unimodular lattices, such as Z», which have
only the origin in common with the open cube shall be called critical,
as shall the corresponding matrices. Minkowski conjectured, and
Hajos [1] proved in 1938, that a critical lattice must contain one of
the points (841, - + +, 0in), 2=1, - - -, m. If 4 is critical then so is any
matrix obtained from it by permuting rows and post-multiplication
by integral unimodular matrices: such matrices will be called equiva-
lent to A. An induction argument shows that Hajos’ theorem is the
same as the assertion:

A is critical of and only if it is equivalent to a matrix with ones on
the diagonal and all zeros above.

Siegel [3] tried to prove Minkowski’s conjecture by showing that,
if A is critical, then each point other than 0 of the lattice correspond-
ing to A has at least one coordinate in Z*, the set of nonzero integers.
If we consider the set of matrices 4 defined by the property

P) uezn u #% 0= Au has a component in Z*,

then Hajos’ theorem would follow from Siegel’s result, if it were true
that every 4 with property (P) has an integral row. For in that case
we could prove by induction on # that 4 is equivalent to a triangular
matrix with zeros above the diagonal and positive integers on the
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diagonal. Thus if |det 4| =1, then the diagonal elements must be 1.
Conversely, since every A with property (P) and ldetAl =1 is
clearly critical, Hajos’ theorem shows that the combination of (P)
with |det 4| =1 does imply that 4 has an integral row.
Unfortunately property (P) alone does not suffice for #=35 as is
shown by the example

1/3 0 0 0 0
0 1/3 0 0 0
4=11/2 3/2 3 0 0.
1 320 3 0
32 1 00 3

Here A has property (P) but no row is integral. However we were
able to show that property (P) does imply that det A EZ* and to
obtain various generalizations of that result.

2. The special case of the main theorem enunciated at the end of
the introduction, when 4 is rational, is included in:

THEOREM 1. Let K be an algebraic number field of class-number one,
and let J be its ring of integers. If an n-by-n matrix A over K has the

property
P) ueJe, u % 0= Au has a component in J*,
then det A & J*,

ProoF. If A has property (P) then det A0, so we only have to
show that det 4 €J. The theorem being trivial for n=1, we use in-
duction. Take an 4 with (P) and assume that det 4 is not in J. We
shall deduce the existence of an A with (P) such that det A=1/g,
where ¢ is a prime of J; and then a contradiction follows from a
pseudo-analogue of Minkowski's theorem, which we shall prove.

LeMMA 1. If there is an A with (P) such that det A is not in J, then
there exists Ay with (P) such that det A1=a/q, where a&SJ and q is a
prime of J which does not divide a.

Proor. Since J has unique factorization into primes and since
det A4 is not integral, we have det 4 =a/gb, where a, b, g are in J, ¢
is a prime element, and (a, ¢b) =J. Multiplying the first row of 4
by b gives a matrix 4; with (P) such that det A1=a/¢, as required.

It is easy to remove from each row of 4 any common denominator
prime to ¢ without affecting (P) or the fact that the determinant has
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denominator g. Thus we may assume that: (i) 4 has property (P),
(ii) det A =a/q, where ¢ is a prime not dividing @, (iii) some power of
¢ is a denominator for 4.

LeMMA 2. If there is an A with properties (i), (ii) and (iii), then there
exists an A with (P) such that det A=1/q.

Proor. Since J has only principal ideals, we can find an integral
unimodular matrix U such that 4 U is triangular. By the properties
of 4 we may write the diagonal elements of the new A4 as a;;=a.g",
a=]]ai, D_b;=—1. Multiplying a column or a row of 4 by a non-
zero integer does not affect (P). Hence, if 4’ is obtained from 4 by
multiplying the first #—1 columns by @,, then A’ has (P) and only
powers of ¢ occur in the denominators in 4’. Since @, is prime to ¢,
we get a matrix A" with (P) when we divide each row of 4’ by a.,.
The net result is that ey =a; if (2, j) #(n, #n), a,,=g¢%. Similarly we
can multiply the first #—2 columns by @,—; and then divide the first
n—1 rows by @,-1, and so on. We end up with the matrix

qb1 0 ce e 0

A21 qb2 0 “ e 0
A* = Q2031

; PP e bn

/2] An—10n1, y 4

which has property (P) and determinant ¢=*=g~!, as required.
Since |norm ¢~!| <1, the desired contradiction follows from the
next theorem.

Tueorem II. If A is an n-by-n matrix over K such that
0< | norm (det A)I <1, then there exists u£0 in J* such that Au has
no component in J*,

ProorF. Let d; be a common denominator for the elements of the
ith row of 4, and let 4, denote the matrix obtained by multiplying
each row of 4 by its d;. Then

0< I norm (det 4;) I = I 11 norm d;-norm (det A)l

< | Hnormd,'l.

Hence it is sufficient to prove:
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LeMMA 3. If B is an n-by-n matrix over J such that 0 < | norm (det B)|
< H norm d;, where the d;&J, then there exists a u0 in J* such that
Bu=v, where v;=0 or d;|v;, for each 1.

Proor. Rado [4] has given a proof of Minkowski’s theorem on
linear forms which can easily be generalised to prove this lemma. We
may assume B has been put in the form of a triangular matrix, with
zeros above the diagonal and elements a4, + + -, @, on the diagonal.
Hence 0<| ]I, norm a;| <| I] norm d.|. Let a;, §; run over com-
plete sets of residues mod @; and mod d;, respectively. Then the num-
ber of vectors atis | ]| norm a;|, and the number of 8 is | ]| norm d;|.
Thus, there are more vectors § than . Now we assert that for given
8 there is one and only one @ such that the equation

Bu=%+4+a«a

is solvable for u&J». For n=1, the equation is a % =& +4a1; and for
given 0, this is solvable with integral » if and only if o is in a certain
residue class mod @, hence for one and only one a;. Assuming the
assertion true for »—1, we know that the first »—1 equations are
solvable, for given &, + « «, 8,1, with integral %, - - -, #,—1 for one
and only one (i, * - *, @s,—1). Finally, for given é,, the equation

(bnlul + 4 bn'n—lun—l) + @ty = 6p + an

is solvable with integral u, for one and only one «a,, as in the case
n=1,.

Since there are more & than &, we can find distinct §, § and some
o such that Bu=9%+a and Bu'=9%+a, where u and u’ are in J%.
Since 879, therefore u—u'#0 and B(u—u')=%—-3%". Now §;, 8/
are either equal or in distinct residue classes mod d;; hence 8;— 8/ is
either zero or indivisible by d;. This proves the lemma, with v=3—19’,
and also completes the proofs of Theorems I and II.

3. Generalizations. Theorem I holds without the restriction that
the elements of 4 lie in K.

LEMMA 4. Let K be any field with at least n elements, and let A be an
n-by-n matrix over some K-module, such that

®")a uE K», u# 0= Au has a component in K*.

Then some row of A consists of elements of K, not all zero, and A is
equivalent, under interchange of rows and right-multiplication by a non-
singular matrix over K, to a triangular matrix whose diagonal elements
are in K*,
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Proor. Since the lemma is true for n=1, take n=2. If we write
L;={u|u€K®, (Au);€K}, then L; is a subspace of K", and
L;=Kn if the ith row of 4 is zero, an a priori possibility. Condition
(P"), shows that K" is the union of the L; which correspond to a
nonzero row of 4. If one of these L;=K", then the ¢th row of 4 is
nonzero and all its elements are in K. Otherwise, we must have K»
equal to a union of at most # proper subspaces. We now show that
this is impossible when #(K) =#. Suppose we have reduced down to
the case Krn=L,\UL; - - - \UL,,, with m <# and minimal. Hence there
exist u, vin K* such that u is not in Ly\UL;3 - - - \UL, and v is not in
L,. By intersecting each side of the above equation with the plane
Ku+Kv, we find that the plane equals the union of at most # lines
through the origin. This is clearly false if K is an infinite field; and
in the case ¢ =#(K), the total number of points would be g?=m(¢—1)
+1, hence m=¢-1, in contradiction to ¢g=n=m.

We can now switch the row whose elements are in K to the first
row and then by linear combinations of columns with coefficients
from K reduce 4 to the form

a1 0---0
B

where a; &K *. Since B has property (P’).—1 we can now proceed by
induction to prove the last part of the lemma.

COROLLARY. If the field K in Lemma 4 is an algebraic number field of
class-number one, then property (P’) implies the equivalence of A to a
triangular matrix with diagonal elements in K* by switching of rows

and right-multiplication by o unimodular matrix over J, the integers of
K.

Proor. We again switch the row with elements in K to the first
row. Since the class-number is one, we can form a linear combination
of the columns with coefficients in J to give a new first column such
that in the new matrix a;; divides all terms in the first row, i.e.
a1:€anJ, 1=1, 2, - - -, n. Then by subtracting integral multiples of
the first column from other columns we can reduce a;; to 0 for
1=2, - - -, n. The induction proceeds as before.

LemMA 5. If K s the field of Theorem 1, A an n-by-n mairix over
some K-module, K1, and A has property (P), then there is a matrix 4’
over K with property (P) such that det A =det 4.

Proor. Since (P) implies (P’), we can triangularize A4, as in the
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corollary. We can regard A as being over the K-module obtained by
adjoining the a;; to K,say K’. If 1, &, + + -, £y be a basis for K’ over
K, then

A4 =A4"+ 4t + - - - + Antw,

say, where 4’ and the 4 ; are over K, all are triangular, the 4; having
all zeros on the diagonal, while 4’ coincides with 4 on the diagonal.
Hence det 4 =det A’. Finally, since

N
Au = A'u+ D t(4,u),
7=1
it is clear that 4’ also has property (P).
We have thus proved the desired generalization:

THEOREM 1. Theorem 1 remains valid under the hypothesis that the
matrix A is over some K-module.

In particular, if A is over the reals and transforms every nonzero
integer vector into a vector with at least one component in Z*, then
det 4 is in Z*.
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