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1. Let I f be a complete, C00 Riemannian manifold, Xo a point of M, 
and N a subspace of MXo, the tangent space to M at XQ. In this note 
we give necessary and sufficient conditions that there be a complete, 
immersed, C00, totally geodesic submanifold of M through XQ, whose 
tangent space at Xo is precisely N. 

A once-broken geodesic starting from XQ is said to be admissible if 
(a) the tangent vector at any point of the geodesic belongs to N 

when parallel-translated back along the geodesic to XQ 
(b) the second piece of the geodesic lies in a geodesic-convex 

neighborhood of the end-point of the first piece. 
For xÇzM, vi& v2(EMx, let Rx(pi, v2) be the skew-symmetric linear 

transformatiou of Mx induced by the Riemann curvature tensor. For 
each admissible, once-broken geodesic g let NgCMend g be the sub-
space obtained by parallel-translating N along g to its end-point. 

With these notations, we can state the result: 

THEOREM. Suppose that Rend g(N0, Ng) (Ng)C.Ng for each admissible, 
once-broken geodesic g. Then, there is an immersed, C00, complete sub-
manifold X of M whose tangent space at XQ is N. 

The local version of this theorem was (more or less) given by 
Cartan [2]. Our job is to extend this globally by some sort of "ana­
lytic continuation." The proof, which is only sketched here, is in­
spired by the proof of Ambrose's isometry theorem [ l ] . One should 
notice then that conversely Ambrose's theorem is a consequence. 
Given two Riemannian manifolds M' and M" that one hopes to 
show isometric, one looks for the graph of the isometry as a totally 
geodesic submanifold of M=M'XM". 

I wish to thank H. Samelson for valuable suggestions. 

2. The proof. First, we are going to define X and a map <f>: X—>M 
as a set of points, and then try to make X into a C°° manifold in 
such a way that <j> is an immersion. 

We need some local facts. Recall the definition of the map 
Exp: MX—>M for x£ikf. If vÇ.Mx, Exp v is the end point of the 

1 This research was supported in part by OOR, U. S. Army under contract number 
DA 19-020-ORD-3778. 
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geodesic starting at x, which points in the direction of vt and whose 
length is the length of v. 

LEMMA 1.1. For fixed xÇLM, let U be an open set of Mx such that 
(a) for vÇzU, tvÇ~TJ for Og t f^ l and (b) Exp: Ü7—>ikf is a diffeomor-
phism of U with an open neighborhood of x. 

Let N be a subspace of Mx. For v£.Nr\U, let NV(Z.M^XVV be the 
subspace obtained by parallel translating N along the unique geodesic 
in Exp U joining x to Exp v. Suppose that R-EXPV (NV, NV)(NV)C.NV. 

Then, Exp{NC\U) is a totally geodesic submanifold of M. In par­
ticular, its tangent space at each Exp v is just Nv. For vi, V^ÇLNCW 

the result of parallel-translating Nv, along any path joining Exp v\ to 
Exp V2 in Exp(NC\U) is just NV2. Any sufficiently small geodesic in 
Exp(J7) whose end-points lie on Exp(NC\U) lies completely in 
Exp(Nr\U). 

The proof is in [2]. 
Now, define X as follows: A point x of X is a pair (x, Nx) consisting 

of a point # £ i t f such that x = end-point of g and Nx~Ng for at least 
one admissible, once-broken geodesic g. <f>: X—>M is then defined by: 
<f>(x) = x. 

For any sufficiently small open neighborhood U of 0 in Nx, define 
a subset U of X as follows: 

y = (y, Ny) G U if and only if y = Exp v for some Î /ÇC/ , and Ny is 
the result of parallel-translating Nx along the geodesic t—»Exp tv 
( O ^ / ^ l ) , from x to y. 

(Notice that the condition (b) for admissible geodesies and the 
local properties of totally geodesic submanifolds guarantee that 
Exp(i7)C0(-XF) if U is sufficiently small.) 

Define the topology on X so that these sets U are a basis for the 
open sets. One proves, using the local Lemma 1.1, that 

(a) the topology is Hausdorff; 
(b) the intersection UC\U' of two such sets associated to (x, Nx) 

&(x', NX')(EX correspond, under the identifications U<->UC.NX, 
U'<r*U'CNx>, to open sets of U and U'. 

Then, we can use the identification of U with Z7, an open subset 
of Euclidean space, to make X into a C00 manifold. <t> is then a C°° 
immersion of X in M, since 0 : U—>M can be identified with 
Exp: 17-»ikf. 

Now, Exp(U) is an imbedded, totally geodesic submanifold of M. 
Hence, if we make X into a Riemannian manifold in the obvious way, 
i.e. so U is isometric with Exp(C/), then X is a totally geodesic sub-
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manifold of M in the sense that 4> maps geodesies of X into geodesies 
of M. I t is complete, since all geodesies starting from x 0 = (xo, N) can 
be indefinitely extended. The proof is then finished. 

3. Further remarks. The theorem raises two general problems. 
First, what is the most general range of applicability in differential 
geometry of the method of "analytic continuation" ? Second, how may 
global families of geodesies be put together to form nonsingular sub-
manifolds? 

If M and the metric are real analytic, the hypothesis of the theo­
rem can be given a strictly local form. To do this, introduce AnRXQ, 
the nth covariant derivative of R a t XQ: For »i, • • • , vn+2G-W*0» 
AnRXQ(vi, v2:vz, • • • , Vn+2) is a skew-symmetric endomorphism of 
MXQ. The condition we have in mind is then that it always maps N 
into itself. 

Following the pattern established by N. Hicks [3] in generalizing 
Ambrose's theorem, there seem to be no real difficulties in extending 
the constructions made above to the case of a complete affine con­
nection, provided of course that one extends the class of admissible 
curves to include geodesies with an arbitrary number of components. 
I t is not clear however whether one can prove that the resulting mani­
fold is complete, since a powerful tool, the Hopf-Rinow theorem is not 
available. 
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