
INEQUALITIES OF CRITICAL POINT THEORY1 

EVERETT PITCHER 

A purpose of critical point theory is the counting of critical points 
of functions. Principal theorems in the subject state in precise terms 
that topological complexity of the underlying space is reflected in 
the existence and nature of critical points of any smooth real-valued 
function defined on the space. 

The initial development of critical point theory is peculiarly the 
work of one man, Marston Morse. Readers of the fundamental papers 
of Morse,2 particularly his Calculus of Variations in the Large [MM1 ], 
have found them difficult not only because of the intrinsic difficulties 
but for another reason. The work was done at a time when the requi­
site algebraic topology was not so adequately or systematically de­
veloped as at present. As a consequence, a substantial part of his ex­
position is concerned with proof of purely topological results in the 
special context of critical point theory. Thus part of his exposition 
deals with various aspects of the exactness of the homology sequence 
of a pair of spaces and part with the relation between deformations 
and the homomorphisms of homology theory. 

I t will be supposed that the reader knows a modest amount of 
homology theory, which may be summarized in the statement that 
the axioms of Eilenberg and Steenrod [E-Sl ] are theorems in singular 
homology theory. 

In this paper an account is given of a specific problem in critical 
point theory, namely the problem of a smooth function on a Rie-
mannian manifold. The form of statements is chosen in such fashion 
that they may be extended reasonably to a wider class of problems. 
Thus this is intended simultaneously as an exposition of a particular 
useful case and a model. Critical points are defined locally and are 
classified locally in the neighborhood of separated sets of such points. 
Theorem 7.3 states that the local classification is possible, Corollary 
7.4 permits direct sum decomposition, and Theorem 10.2 details the 
computation for nondegenerate critical points. The end result of this 
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portion of the exposition, which occupies the first eleven sections, is 
the inequalities of Morse in Theorem 11.1. 

Certain desiderata not obtained in the Morse inequalities are de­
scribed by example in §12, and the related lines of development are 
discussed briefly. In particular, the need for integer coefficients in 
the homology groups is noted. The development of strengthened in­
equalities is the subject of §§13 through IS. The method was sug­
gested by an effort to reformulate for general coefficient groups the 
group theoretic formulation of the Morse inequalities, in [MM2] 
Theorem 8.7, which depends on the use of a field of coefficients. 

Attention is given to degenerate critical points and to the class of 
functions without degenerate critical points. There are inequalities 
which give the lower bound of the number of critical points of a non-
degenerate approximating function. 

The approach of Deheuvels [Dl ] through spectral theory, which is 
of substantial interest, will not be discussed here. The reader who is 
interested in this point may wish to read the paper [DGBl] of Bour-
gin. 

§§1 through 12 are an exposition of classical material, but §§13-15 
contain material previously unpublished except in abstract [PI, 2] . 

1. The space and the function. Suppose X is a compact w-dimen-
sional Riemannian manifold of class C3 and ƒ : X—*R, where R is the 
real numbers, is a function of class C3. It will be supposed that X is 
defined in terms of overlapping local coordinates, and (x) = (x1, • • *,xn) 
will be used for a typical set. The element of arc will be supposed 
given in local coordinates by 

ds2 = gijàxiàxi 

with the usual convention that i, j are summed from 1 to n and with 
the understanding that the gy are functions of x of class C2, sym­
metric in indices i and j , which transform in the covariant manner 
(to which it will be unnecessary to refer formally again, so that the 
explicit statement of the well known concept can be omitted). 

The element of arc is used to define length of sufficiently smooth 
curves by integration. The greatest lower bound of lengths of curves 
joining two points is a metric on the space. It is the topology of this 
metric which is used throughout. 

The gradient of ƒ is the vector whose covariant components are 
(ƒ**)• A point P is a critical point if the gradient of ƒ at P is (0) and is 
an ordinary point otherwise. The set of critical points is closed. 

Pictorially, one may suppose that X is embedded in a euclidean 
space of suitable dimension m with ƒ itself as the last coordinate ym. 
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One can surely do this by embedding X in a euclidean space of di­
mension m — 1 and then introducing ƒ as the mth. coordinate, though 
other embeddings may have the desired property also. Then the criti­
cal points of ƒ are the points where the tangent plane to X is per­
pendicular to the ^m-axis. Easy examples for illustrative purposes are 
furnished by two dimensional manifolds embedded in 3-space. 

Of the intuitively reasonable definitions of critical point of a smooth 
function, this is probably the most inclusive. In particular, there are 
points called critical which are trivial in theorems on existence and 
number of critical points. For easy example, let X be the circle and 
0 an angular coordinate on it and let ƒ be a function of class C3 taking 
on the value 03 for 6 near 0. (The circle is used only because this is an 
exposition limited to compact manifolds.) Then the direct summand 
(Corollary 7.4) of the critical groups at level 0 (§7) associated with 
0 = 0 as a critical point is trivial. 

The critical points are the points neighboring which there is no 
deformation of class C1 such that along the trajectory of each point 
in the deformation, ƒ has a negative derivative with respect to the 
parameter ("time") of the deformation. 

The set of points P with ƒ (P) = c will be called the points at the level 
c. The words level and value will be used interchangeably as con­
venient. A level is critical if there is a critical point at the level and is 
ordinary otherwise. 

The set of critical levels of ƒ is closed, and of course bounded by the 
absolute maximum and absolute minimum of/, which are themselves 
critical levels. 

The set a of critical points at the level c will be called the critical 
set at the level c. 

I t is possible that the function ƒ be not constant on a connected 
set of critical points. An example is given by Whitney in [Wl] . A 
theorem of A. P. Morse in [APMl] states that this cannot occur if ƒ 
is of class Cn, where n is the dimension of X. In preference to assump­
tions that X and ƒ are highly differentiate, it will be assumed that 
the critical levels of ƒ are isolated. In consequence, ƒ is constant on 
connected critical sets. 

The notations 

/ a = {x\f(x)Sa}, 

fa°= {*!/(*) <<*} 

will be used.8 

8 The notation ƒ ~ would be used by some in preference to fa but there is the nota-
tional difficulty that A~ is to be used for the closure of the set A. 
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2. The deformations A and T. The advantage to the particular 
problem under consideration as a model is the ease with which useful 
deformations4 are constructed. The first is described in the following 
lemma. 

LEMMA 2.1. The space X admits a deformation 

A: XX [0, 1]-+X 

with the properties that 
(a) The critical points off are fixed under A. 
(b) The function ƒ on the path of any ordinary point under the de­

formation A is a decreasing function. 

The deformation A(P, •) is defined in local coordinates (x) in 
which P has the coordinates (x0) as the solution of the system 

dxi 

which satisfies the initial conditions 
X{(0) = XQ. 

Here, as usual, gi]' is defined so that gikgkJ=:Si3' (the Kronecker delta) 
and the quantities (giJfx>) are the contravariant components of the 
gradient vector. The definition of A in terms of local coordinates is 
readily seen to be invariant. Along a trajectory under A, one finds 
that 

1 7 = -Ug%*= - |grad/ | 2 

at 

so that (a) and (b) of the lemma follow. 
It should be remarked that the deformation A in fact establishes a 

homeomorphism of X with itself in which (x) and A(#, 1) correspond. 
However, this does not remain true in a larger class of problems for 
which the theorems of this paper might serve as model. Accordingly 
properties of A beyond those stated in Lemma 2.1 are not used except 
where specifically introduced in §8. 

The deformation T is associated with a pair of levels, a<b, with 
the property that the interval [a, b) is free of critical levels. It is de­
scribed in the following lemma. 

4 In §3, the vocabulary of deformations is reviewed in preparation for more com­
plex statements about deformations which are to follow. It may be read before §2. 
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LEMMA 2.2. If [a, b) is free of critical levels, the subspacefb0 admits a 
deformation 

T:fh«X [0, l]->/b° 

such that 
(a) The points of fa remain on fa during the deformation. 

(b) r(*f i)eu 
One does in fact prove more, namely that points of fa are fixed and 

that along any trajectory ƒ is a nonincreasing function, decreasing as 
long as the functional value exceeds a. Neither of these facts is used 
later, so they are not included in the lemma itself. 

The deformation T is defined as follows. Through each point of 
/&° — fa0, say (x0) in local coordinates, there is the solution of the 
differential equation 

dx* 
—- = - Kg%i/g>*UU, 
at 

x%0) = xl 

where K is a constant yet to be specified. Along any solution 

df 
— = - ÜT. 
dt 

Each point (x0) oîfb°—fa
0 is to be deformed along the solution initiat­

ing at that point with K=f(x0)—a and will be at the level a when 
/ = 1. Points at level a remain fixed according to this definition and by 
further definition all points of fa are to be fixed under Y. The defini­
tion of T in terms of local coordinates is seen to be invariant. 

3. Vocabulary of deformations. In this section some remarks on 
the vocabulary of deformations are recorded for precision and easy 
reference. 

With 
ADCDE 
U U \J 
BD DDF 

as subsets of a space, one says that 8 deforms (C, D) over {A, B) into 
(E, F) if 

6: (C X [0, 1], D X [0, l]) -» (A, B) 

is a continuous function for which 5| CXO is the identity while 
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d(C X1,DX1)C (E, F). 

Empty sets may be suppressed in the notation, so that one may speak 
of deforming C over A into E. The statement that (C, D) is deformed 
over (C, D) into (E, F) is shortened to the statement that (C, D) is 
deformed into (E, F). The language is applied to collections of more 
than two sets in the obvious fashion. Thus the statement that (C, D) 
is deformed into (E, F) and that the trajectories of points of E and F 
lie on E and F respectively can be shortened to the statement that 
(C, D, E, F) is deformed into (E, F, E, F.) 

With spaces ADB and CDD, two maps 

0o, * i : (il , 5) -> (C, Z>) 

are homotopic if there is a map 

<*>: ( 4 X [0, 1], B X [0, 1]) -> (C, D) 
such that 

*(P, s) = *.(P) j = 0, 1. 

The two pairs (A, B) and (C, D) are then said to be of the same 
homotopy type if there are maps 

£: (A, B) -> (C, Z?) n : ( C , Z ? ) ^ ( i l , J B ) 

for which rç£ and £77 are each homotopic to identity maps. Then $ and 
rj are said to be homotopy inverses. The relation of belonging to the 
same homotopy type is transitive. The pair (A, B) is said to be of 
trivial homotopy type if it is of the same homotopy type as (5 , J5). 

If 
AD B 
KJ U 
CDD 

and if there is a deformation of (Af B} C, D) into (C, P , C, P ) then 
{A, B) is of the same homotopy type as (C, D). 

4. Invariants of critical levels. Throughout this section it will be 
supposed that c is a level, which is either ordinary or critical, of spe­
cial interest. Further it is supposed that a' <c<b' where the levels on 
[a', c) and (c, bf] are ordinary, and that a'<a, au a2 <c<b, &i, 
b%<V. 

THEOREM 4.1. The homotopy type of (ƒ&, fa) is independent of (a, b) 
and the homotopy type is the same if fa or ƒ& is replaced by fa° and /&° 
respectively. The homotopy type is trivial if c is ordinary. 
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The use of the deformation A shows that (/&°, fa) and (ƒ&, fa°) and 
(fb°, fa0) have the same homotopy type as (ƒ&, ƒ<,). 

Now suppose c is ordinary. Then the deformation A, iterated suffi­
ciently often, deforms (ƒ&, fa) into (Jay fa)* For there is a constant h>0 
such that grad f^h on /&—/a

0. Thus A deforms (ƒ&, ƒ«) onto (ƒ&_&, ƒ«) 
and need be repeated at most l-\-(b—a)/h times to deform (ƒ&, fa) 
into (fay fa)» This proves the last statement of the theorem. 

Suppose 

(4.1) a\ g a2 bi â #2 

then the inclusion map of (ƒ&!, fai) into (/&2, /02) admits a homotopy 
inverse. For, as just shown, sufficient iteration of A deforms (fb2>fav 

fbvfai) into (Jbv fav fbv fai) since [fa, b2] and [ai, a2] are free of critical 
levels. 

Now remove the restriction (4.1). One sets a = max (ai, a2) and 
6 = max (61, b2) and applies the result of the previous paragraph to 
(A> / 0 a n d (ƒ&> ƒ«) with s = l , 2. Since homotopy equivalence is 
transitive, the proof is complete. 

In the particular problem under discussion the topological type of 
(fby fa) is independent of a, b, but this fact does not follow in more 
general problems for which one might wish to use this problem as a 
model. 

The force of Theorem 4.1 is that invariants of homotopy type can 
be attached to critical levels. In the critical point theory of Morse, 
it is the relations arising from the use of relative homology groups 
which are sought. 

The following special theorem is useful. 

THEOREM 4.2. If there is no critical level on [a, c), then the homotopy 
type of (/c°, fa) is trivial. 

This is established through the use of the deformation V of §2 
associated with the levels a, c. 

5. Remarks on the homology theory. The developments to be ex­
plained in the following paragraphs will be made in terms of singular 
homology theory. In the work of Morse a field was used for the coeffi­
cient group. In this exposition, the coefficient group G will be a prin­
cipal ideal domain (see [Jl, I, 77 and 121]). The cases of interest 
appear to be that G be a field or the integers. The integers are useful 
in the specific problem under discussion because they are a universal 
coefficient group. Their merits are brought out in §§12-15. 



8 EVERETT PITCHER [January 

6. A deformation lemma. The following lemma is well known but 
no reference is at hand, so the proof is given. 

LEMMA 6.1. Suppose WDZDYDA is a nest of spaces. Suppose 
there is a deformation 8 of (W, F, A) over (W> Z, A) into (F , F, A). 
Then in the sequence of inclusion maps 

(Y,A)-?(Z,A)-?(W,A) 
* J 

the induced map j*\i*Hk(Y> A) is an isomorphism onto Hk(W, A). 

For proof consider the diagram 

(Y, A) 

(Z, il) T> (W, A) ~> (Z, A) -+ (W, A) 
i tôt J 

in which 8 i (P)=S(P, 1). Consider the induced maps 

(fii)*--Bk(W,A)->nk(Z9A), 

i* | i*Hk(Y, A):i*Hk(Y, A) -+ Hk(W, A). 

The map j*i*ôi* is the identity map on Hk(W, A) because jiôi is 
homotopic to the identity map. But 

i*i*$i* = C/*| i*Hk(Y, 4))(i8i)* 

so that j* \ i*H k (F , A) is a homomorphism onto Hk(W, A). Again, 
ii<ôi*j* is the identity map on Hk(Zy A) because iôij is homotopic to 
the identity. Thus, cut down in domain and range to i*Hk(Y, A), it 
is still an identity map. Thus j*\i#Hk(Y9 A) is an isomorphism into 
Hk(W, A). The statement affirmed in the lemma follows. 

7. General considerations about critical groups. We continue with 
the situation of §4 in which c is a level on which attention is focused 
and [a, c) and (c, b] are free from critical levels. The set of critical 
points a t level c is denoted by o\ 

Following Theorem 4.1, the relative homology groups Hk(fh,fa; G) 
will be called the critical groups at the level c. The notation for the 
coefficient group G will usually be suppressed. For convenience in 
statement and proof specific representations or isomorphic copies of 
the critical groups will sometimes be used. 

Critical groups are discussed in this section and the next. In this 
section the emphasis is on the conclusions which can be drawn from 
Lemmas 2.1 and 2.2 (the latter through its single application in 
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Theorem 4.2) and general topological considerations. The properties 
considered in this section are capable of extension to a much wider 
class of problems. 

On the one hand, the critical groups will be shown to depend only 
on the function in an arbitrary neighborhood of the critical set. On 
the other hand, conditions will be considered under which the critical 
groups can be determined without the use of points at levels greater 
than or equal to c except for the points of a. 

Two lemmas are needed. 

LEMMA 7.1. The homomorphism on Hk(fb,fa) to Hk(fb,f0°) induced by 
inclusion is an isomorphism onto the latter. 

In proof one notes that the homology sequence of the triple 
(fb,fe°,fa)9 namely 

> Hk(fo*, fa) ~> Hk(fb, fa) -> Hk(fb, /c°) -> 2 W / A ƒ , ) - > . . . , 

is exact. But the pair fc°, fa is homotopically trivial by virtue of 
Theorem 4.2 so that its homology groups vanish. 

The force of Lemma 7.1 is to describe the injection under which 
the groups Hk(fb,fc°) may be taken to represent the critical groups at the 
level c. 

LEMMA 7.2. If U is an open set with crQ UÇJb there is an open set V 
with a(ZVC.U such that in the sequence of maps 

(fc° VJ V, ƒ<<>) - ? (/c° U U, /c°) -+ (ƒ>, ƒ.*) 
* J 

the induced map 

j*\i*Hk(fJ"JV,f0*) 

is an isomorphism onto Hk(fb, /c°). 

Let Vi denote a neighborhood of a deformed over U by A. Let e 
with c < e S b be such that fe is deformed by A onto /C°VJ V\. That Vi ex­
ists follows from the fact that points of <r are left fixed by A. That e 
exists is seen as follows. The set fcC\ Vi is compact. Every point of 
fcr\Vi at level c is displaced by A so that on for\Vi', max/(A(-, 1)) 
<c. Thus fcr\Vi has a neighborhood S which is deformed onto/ c° . 
The union 5 U V\ is an open set which contains fc and therefore contains 
fe if e is sufficiently near c. 

Set 

F = / e ° n vh Ui = fe°n u 
and consider the diagram 
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(fo° VVJC°) * (ƒ.• ^ Ut,f.<) '-X (U ƒ„») 
hi \h% 

J 

in which all the maps are inclusions and which is commutative. First, 

f.Dfo'VUxDfJWDfS. 

These sets with the deformation A (cut down to fe) satisfy the 
hypotheses of Lemma 6.1. Consequently ji*\ii*Hk(fc°\JV, fc°) is an 
isomorphism onto Hk(fe, /c°). Further A2* is an isomorphism and 
A2*ji*=j*^i* so that j*h&\ii*Hk (fc°\JV, fc°) is an isomorphism onto 
#*(ƒ*,/c°). Thus 

i» | kv>i*iHk(f0* U V, fc°) = h I i*nk(f0* U V, fc°) 

is an isomorphism onto Hk(fbyfc°) as required. 
A basic theorem is the following. 

THEOREM 7.3. If U is an open set with <rC UQfb there is an open set 
V with <TQVC.U such that in the sequence of inclusion maps 

(v,/c° n v) -+ (u, fc° n io -? (f* fc°) 

the map j*\i*Hk(V, Vr\fc°) is an isomorphism onto the representative 
Hk(fby fc°) of the critical group in dimension k. 

For proof, let Ui be an open set with aQUi and £/f"C U and let 
Vi with Ui and the sequence of maps 

(/c° VJ Vl9 /o0) -+ (ƒ„<> U î / l , /c°) T> ( A , /c°) 
*1 Jl 

satisfy Lemma 7.2. Then the excision of fc°r\U' from the first two 
pairs of the sequence is admissible, so that in the sequence of inclusion 
maps 

((/con tou vhfc°np)f ((/c°np)u uh/c°n toT>(A,/c°) 
t2 J2 

the map ^ I ^ W ^ U / c ^ L O W F i , fe
0f\U) is an isomorphism onto 

Hk(fb,fc0)- If one factors J2 into the inclusion maps 

((/c° n t / ) u uh /c° n £/) ^ (u, fc° r^u)^ (/6, /c°) 
H J 

and sets 7 = (Jc°(^U)UVh whence / c ° n [ / = / c ° n F , one finds that 
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j*i9*\i»Hk(V, / c °nV) is an isomorphism onto Hk(fhi fc°). With the 
observation that izi2 = i, the theorem follows readily. 

The force of Theorem 7.3 is that the critical groups at the level c 
are determined by the function ƒ cut down to any neighborhood of the 
critical set at the level cr. 

If a is the union of two separated subsets ai and 0*2, there is a 
neighborhood U of <r which is the union of two disjoint neighborhoods 
U\ of <Ti and U2 of (r2. Associated with U in Theorem 7.2 is VQU 
which is necessarily the union of neighborhoods V\ and V2 with 
01C ViC. U\ and 0*2C V%C ^2. Let ii and H denote the inclusion maps 
of Vi and V2 on U\ and Î/2. Then the following corollary to Theorem 
7.3 holds. 

COROLLARY 7.4. 

Bk(fb,fe) « ti*fl*(7i, FxH/ , 0 ) + *2*£r*(F2, F 2 n / C ° ) . 

The direct sum is established by the injections induced by the in­
clusion maps of Ui and U2 into U followed by the inclusion j of 
Theorem 7.3. 

One now considers the exclusion from (ƒ&, fc°) of points at levels c 
and higher, except for the points of o\ 

One considers the possibility that the inclusion map of (fc,fc°) into 
(ƒ*>, fc°) may induce isomorphism 

Sk(fc,fc°) «£T,(/&,/c°). 

Examination of the exact sequence of the triple (ƒ&, ƒ<., /c°) shows that 
this is the case if and only if Hk(fb, fc) = 0 for all k. It is clear in any 
event that the inclusion map of (/c°W(r, ƒ«,) into (ƒ„, /c°) induces iso­
morphism of the corresponding homology groups, for A deforms 
(ƒ., /o°W(r, /c°) into (/C°U(7, fc«KJ<r, /flo). 

The critical set 0- will be called regularly situated if there is a neigh­
borhood U of <r, say on ƒ&, such that (£/, UC\fe) admits a deformation 
A over (ƒ&,ƒ,) into (ƒ«,,ƒ„). 

THEOREM 7.5. If a is regularly situated, the inclusion map of 
(/c°U(r, fc°) into (fb, fc°) induces isomorphism between the homology 
groups of (/C°U(7, fc°) and the critical groups at level c. 

The proof that (ƒ&, fc) can be deformed into (ƒ«,ƒ?) will not be given 
in detail. I t can be accomplished through use of A and A. 

8. Special considerations about critical groups. The gradient curves 
of ƒ permit the definition of deformations with properties beyond 
those stated in Lemma 2.1. These will be exploited here to obtain a 
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localization of critical groups which is simpler than Theorem 7.1 and 
to obtain an instance of regularly situated critical sets. These theo­
rems presumably do not admit such wide generalization as those of §7. 

The notation 

A(S,t) = {A(x, t)\ xES} 

will be used. 
Special properties of the deformation A beyond those stated in 

Lemma 2.1 are the following. 

LEMMA 8.1. The deformation A has the properties 
(a) A(-, 1) is a homeomorphism on X to itself, 
(b) A(A(f„ l),0CA(f., 1) for alle. 

Both properties follow from uniqueness properties of the solutions 
of ordinary differential equations. Property (a) is used only to imply 
A(-, 1) is open. 

The following "single neighborhood" localization of the critical 
groups is now possible. The symbols a, c1 b, a continue to be used as 
described at the beginning of §7. 

THEOREM 8.2. The critical set a has arbitrarily small neighborhoods 
WQfb with the property that the inclusion map 

i:(W,Wr\fc«)-^(fb,fe°) 

induces maps i* which are isomorphisms onto the representatives 
Hk(fb, fc°) of the critical groups of the level c. 

Let U denote a neighborhood of <r with Z7C/&. The neighborhood 
W is to lie on [7. Suppose Ui is a neighborhood of a with Ufd U. 
Suppose as in the proof of Lenima 7.2 that c<e<b and that ƒ« is 
deformed by A into/c°UC7i. Let S=A(fe°, 1). It is open by virtue of 
Lemma 8.1. Under A, points of (5, SC\fc°) are deformed over (5, 
Sr\fc°), again by virtue of Lemma 8.1. Thus the inclusion 

induces isomorphisms of the corresponding homology groups. Now 
the excision of SHU' from (5, Sr\fc°) is admissible. Let W=SC\U 
and map (fe,fc°) by inclusion into (ƒ&, /c°). Thus the inclusion 

i: (W, Wr\fc) -*(fhfe) 

induces isomorphism on the corresponding homology groups as re­
quired. 

It is easy to prove Theorem 7.3 from Theorem 8.2 but the proof 
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will not serve as a model in similar situations where Theorem 7.3 is 
valid but presumably Theorem 8.2 is not. 

Next the consideration of regularly situated critical sets is resumed. 

LEMMA 8.3. If the critical set <r consists of isolated points the pair 
(fbi fc) is homotopically trivial. 

For proof, a deformation B of (ƒ&, fc) is defined as follows. Under B, 
points offc remain fixed. For 0 S t < 1 the point with local coordinates 
(xo) lying on ƒ&—•ƒ<. ° is deformed into the point B(XQ, t) at the point t 
on the solution of the system 

ÊÜL - - . ******* 
dt ~~ ghkUU ' 

#*(0) = #o 

with K =f(xo) — c. Further, one defines 

B(xo, 1) = Urn B(XQ, t). 

The limit can be shown to exist because o* is a finite set. The function 
B is seen to be continuous and to have the required properties. 

From Lemma 8.3 and either Theorem 7.5 or direct observation, the 
following theorem is deduced. 

THEOREM 8.4. If the critical set a consists of isolated points the inclu­
sion map on (/c°W(r, /c°) to (ƒ&, /c°) induces isomorphism between the 
homology groups of (fc

0^Jcr, fc°) and the critical groups at level c. 

By use of excision, the critical groups can be determined as the 
homology groups of the pair ( ( / c °n U)\J<r,fc°r\ U) where U is a neigh­
borhood of <r. Further, taking U as the union of separated neighbor­
hoods of the points of a shows that the critical groups can be written 
as a direct sum with a summand Hk((fc0(^V)yjPf / c ° n F ) for each 
point P of cr, where F is a neighborhood of P . 

A specific instance of a connected set of degenerate critical points 
which is regularly situated is considered by Bott in [RBl ] . 

9. Local representation of the function. Neighboring a critical 
point of/, there is a simple form for / in terms of any local coordinates. 
For convenience the development is restricted to coordinates in which 
the critical point is the origin. 

THEOREM 9'.1. If P is a critical point of f and (x) is a local coordinate 
system for which P = (0) then there are functions a^(x) of class Cf such 
that 



14 EVERETT PITCHER [January 

f{x) - /(O) = aij{x)xlx\ 

1 
ai3{x) = aji(x), aij(0) = — /*v(0). 

The functions a»-, are determined by expanding ƒ by Taylor's Theo­
rem with integral form of the remainder in the terms of the second 
order. One finds 

ƒ(*)-ƒ(<))= r r -—mans 
•/ o J o <w 

"~— Q"ij\X)X X 

where 

a#(#) = I I fx
ij(tx)dtds 

J 0 " O 

= f (1 - t)ttj(tx)dL 

The required properties of the a#(x) follow. 

10. The nondegenerate critical point. Suppose that P is a critical 
point with local coordinates (x0). Then P is called a degenerate critical 
point if the determinant |/k»/(#o)| = 0 and a nondegenerate critical 
point otherwise. This is an invariant condition as may be verified by 
direct computation or from the following discussion which relates 
the condition to the general background. 

Introduce temporarily the notation ft =fxi. For any covariant vec­
tor (X;), recall that the covariant derivative (X,-,,-), given by X*,, 
=\ij—\hTijh, is a tensor which is covariant of order 2. Thus (ƒ,-,,-) is 
a covariant tensor of order 2. Butfij=fxixj at a critical point, so that 
the covariance of (fxixi(xo)) is established. The invariance of the van­
ishing of the determinant follows since under a change of variable 
the matrix (fxixj(xo)) is transformed by congruence. 

I t is readily seen from use of the implicit function theorem that if 
(xo) is a nondegenerate critical point, it is isolated. 

The representation of ƒ presented in Theorem 9.1 permits a simple 
representation of ƒ neighboring a nondegenerate critical point. 

THEOREM 10.1. If P is a nondegenerate critical point there are local 
coordinates (y), related to admissible local coordinates (x) on X by a 
transformation of class C with nonvanishing Jacobian, such that 



1958] INEQUALITIES OF CRITICAL POINT THEORY 15 

f(y) ~ /(O) = Ê «<** « = ± 1, « £ «*f 1. 

One does not expect the coordinates (y) to belong to the admissible 
coordinates of the space X. However they facilitate a computation. 

For proof, one uses the Lagrange reduction of a quadratic form 
with constant coefficients to diagonal form as a model. The method 
is sketched briefly. Two kinds of transformations are used. The first 
kind is used if at least one of the numbers at-t-(0) 5^0. One may suppose 
it is an(0), for this may be achieved by renaming variables. Then one 
sets 

z1 = aij(x)x>/\ an(x) |1/2, 

zi = x\ i ^ 2. 

Thus 

ƒ(*) - /(O) = vi*1)2 + Q(z2, • • • , s»), v = sgn an(0) 

where Ç is a quadratic function in z2, • • • , zn with coefficients which 
are functions of z1, • • • , zn. The second kind of transformation is 
used if all a»»(0) = 0. There is a number a#(0) ?*0 since the determinant 
|u»y(0)| 5^0. Suppose the fact which may be obtained by renaming 
variables that #12(0) 5«*0. One then makes the preparatory change of 
variable 

X1 — U1 — U2, 

x2 = u1 + w2, 

x* = «* i à 2, 

to write ƒ(#) — /(O) as a quadratic function in « \ • • • , wn, with coeffi­
cients which are functions of («), such that the coefficient of (u1)2 is 
not 0 at (w) = (0). Then the first kind of transformation is again 
available. 

By a succession of n transformations of the first kind, with re­
naming of variables and the intervention of the transformation of 
the second kind when necessary, f(x)—f(P) is written as a signed 
sum of squares. A final renaming of variables brings all minus signs 
together in an initial block so that the form required in the theorem 
is obtained. 

One verifies that the renaming of variables and the transformations 
of the first and second kind are all of class C with nonvanishing 
Jacobian. 

The number of e<<0 in the representation of ƒ in Theorem 10.1 
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is called the index of the critical point. The linear approximation to 
the transformation from variables (x) to variables (3/) in Theorem 10.1 
changes a# (0)aW into X)ï€<V»2> S 0 that the index defined in this way 
is seen to be the same as the classical index of the quadratic form 
a#(0)#W which approximates ƒ (x) —/(O). In particular it is seen to be 
independent of the choice of transformation. 

Theorem 8.4 and Theorem 10.1 permit the computation of the 
critical groups of a nondegenerate critical point (or of the direct 
summand contributed by a nondegenerate critical point). 

THEOREM 10.2. If P is a critical set consisting of a single nondegener­
ate critical point, the groups UZA;(/C

0UP, fc°) are trivial except in the 
dimension q which is the index of P; Hq{fc

Q\JP, fc°) =G. 

One computes Hq((fc°r\ U)\JP, / c ° n U) where U is a neighborhood 
of P on which the representation of ƒ of Theorem 10.1 holds. One 
further restricts U for convenience to consist of the points (3/) for 
which ] C ï ( y ) 2 < ^ f° r suitably small positive h. Two subsets of U 
are distinguished, the set D where ^,i(yi)2<h and yq+i= • • • = yn 

= 0, and the subset Do where 0 < ]Cï(y)2- Then the collection 
((/c°nZ7)VJP, /c°nZ7, D, Do) is deformed into the collection (D, D0, 
D, Do) (with points of (D, Do) actually fixed during the deformation) 
as follows. The image of y1, • • • , yn at time t, O ^ / ^ l , isy1, • • • , yq, 
(1— t)yq+1

f • • • , (l—t)yn. Thus the inclusion map on (D, D0) to 
((fc°r\U)yJP, fc°r^U) induces isomorphism of the corresponding ho­
mology groups, whence the conclusion of the theorem follows. 

11. The inequalities of Morse. The inequalities of Morse, and 
similar inequalities which come from the use of coefficient groups 
which are not fields, can be obtained from the following observations 
about a module over a principal ideal domain G. 

Associated with a free module F over G (i.e. a direct sum of copies 
of G) is the cardinal number of generators in an independent basis for 
F, called the rank of F and denoted by i?[-F]. A module H over G 
is a group with operators from G (a useful example being an abelian 
group H with the usual operation by integers). The rank R[H] is 
defined as the maximum of numbers RIF] over free modules FC.H. 

The usefulness of rank depends on the fact that if 0 is a homo-
morphism of H onto L with kernel K, as expressed in the exact 
sequence 

6 

then 
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R[H] - R[L] + R[K]. 

It follows that if 

• • • —> Hi —> Hi—i —• • • • 

is an exact sequence of finitely generated modules Hi over G, with 
image-kernel Ki in Hi, then 

R[Hi] = R[Ki] + R[K^t]. 

Thus 

R[Hm] - R[Hi] + R[H*-i] = R[Ki+1] + R[K*-%]. 

Now suppose the critical levels Ci of ƒ are isolated and let at be 
convenient constants which separate them, so that 

do < C\ < a\ < C2 < • • • < a>i-.i< c* < a» < • • • < ÜN-I < CN < a#. 

To avoid the repeated use of double subscripts, let/a< = -4t. In particu­
lar 0 =AoC.Ai(Z • • • C.AN — X. Thehomomorphism sequence of the 
pair (Aiy Ai-i) is then 

7# CK# /3# 
• Hk(Ai-!) -> ff*(il<) -> ff*(il<, 4 ^ i ) -> #*-iU;_i) -* • • • 

• #0 (^ -1 ) -> Ho(Ai) -> Ho(A{, Ai-X) -> 0 

where 7* and a* are induced by inclusion maps and j8* is the boundary 
homomorphism. The notation for the coefficient group G has been 
suppressed. The sequence is an exact sequence of finitely generated 
modules5 over G. The groups Hk(Ai, Ai^i) are the critical groups of 
the level c». 

The following notations are introduced. 

Rk* 

MS 

h< 
Rk 

Mk 

h 

= R[Hh(At)], 

= R[Hk(Ai, Ai-0], 
= R\p*Hn.1(Ai, Ai-x)] 
= Rk

N = R[Hk(X)], 
N 

= £ V, 

6 In fact the pair (Ai, Ai-i) can be triangulated in this particular problem. The 
technique introduced in Lemma 13.1 does not require that the groups be finitely 
generated. 
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The inequalities of Morse are expressed in the following theorem. 

THEOREM 11.1. The inequalities 

Mk^ Rk k = 0, 1, • • • , n 

and the inequalities 

Mo ^ R0, 

Mi - Mo è Ri - Ro, 

Mk - Mk-i + • • • + (- l)*Jfo ^Rk- Rk-i + • • • + ( - l )**o, 

Mn - Mn-! + • • • + (~1)WM0 = Rn~ Rn-1 + • • • + (—1)*220 

are va/id. 

The proof consists of observing that the exact homology sequence 
on the pair (Ai} Ai-i) implies that 

J?**-1 - Rh* + MK* = bn' + bh*-1 

whence, summing on i, 

Mh — Rh = bh + bh-x. 

This yields the first set of inequalities. Further, the signed sum on h 
between 0 and k is 

Mk - Mt-i + • • • + (-l)*Jf0 = Rk - Rk-i + • • • + ( - l )**o + J* 

which yields the second set of inequalities. The equality for the case 
k~n can be obtained from the inequalities for k = n, n + 1 and the 
fact that Mn+i = Rn+i = 0. 

Observe that the right hand member of the equality is the Euler-
Poincaré characteristic of X, multiplied by ( — l ) n . Observe also that 
the second set of inequalities implies the first, but not conversely. 

The force of the inequalities of Morse lies in the fact that, with a 
fixed group G, the right hand members depend only on the space X, 
being combinations of Betti numbers with reference to the coefficient 
group G, while the left hand members depend only on the function ƒ 
in arbitrary neighborhoods of the critical sets of/. If all critical points 
o f / a r e nondegenerate, it follows from Theorems 8.4 and 10.2 that 
Mk is the cardinal number of critical points of/of index k. I f / admi t s 
degenerate critical points, Morse has shown, with G a field (see 
[MM1, Chapter VI] for the case of analytic functions and integers 
modulo 2 as the coefficients) that any function g with nondegenerate 
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critical points which approximates ƒ sufficiently closely has at least 
Mk1 critical points of index k near the critical set o\- at level d, and 
no other critical points. He thus counts a critical set <rt- as the ideal 
equivalent of M^ nondegenerate critical points of index k. A more 
precise statement of a stronger theorem will be made in §15. 

12. Examples. This section is devoted to examples illustrating 
what the inequalities of Morse do not do. 

EXAMPLE 1. The number ^oRk does not provide a lower bound 
to the cardinal number of critical points of/. For let X be the torus, 
represented by a rectangle with matched opposite edges in which one 
diagonal has been drawn. Then ƒ can be denned by class Cz so that 
it is 0 on the edges and the diagonal and nowhere else, is positive and 
has an absolute nondegenerate maximum interior to one triangle, is 
negative and has a proper nondegenerate minimum interior to the 
other triangle, has a monkey saddle at the point represented by the 
four vertices, and no other critical points. Thus ƒ has 3 critical points 
although Ro+Ri+R2 = 4:. The Morse inequalities do imply that every 
function on the torus whose critical points are nondegenerate has at 
least 4 critical points. 

This example was taken from Lusternik and Schnirelmann [L-S], 
where an introduction to their use of category to supply a lower bound 
to the cardinal number of critical points can be found. 

EXAMPLE 2. There exist manifolds X which admit no function ƒ 
with nondegenerate critical points for which 

Mk = Rk, k = 0, 1, • • • ,n. 

The existence of such examples shows the possibility of stronger 
inequalities for functions with nondegenerate critical points.6 The 
requirement that the critical points of ƒ be nondegenerate is essential, 
for the equality is satisfied for the constant functions on any mani­
fold, where there is one critical level and the entire space X is the 
critical set. 

Examples are of two kinds, depending on whether the difficulty is 
approached through the fundamental group or through torsion. 

First, let X be a homology 3-sphere with d-fold universal covering 
by the 3-sphere S3, where Kd<*>. The Poincaré "sphere," whose 
description is readily available in [S-Tl, Chapter I X ] , is such a 

6 This is a different statement from that of Morse (see [Ml, 145]) that his in­
equalities are the only ones which always hold between the numbers Mk and Rk alone. 
His statement means that any set of numbers Mk and Rk satisfying his inequalities 
can be realized by a region 2 and a function ƒ on it satisfying appropriate boundary 
conditions. In our statement above, the space X is specified in advance. 
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space. Let ƒ : X—+R be a function on X with nondegenerate critical 
points. With any admissible coefficient domain Ro = 1 = Rz and Ri = 0 
= R2; it follows from Theorem 11.1 that M0£l, AfièO, AfaèO, 
MB à 1. The purpose of this example is to show that Mi = 0 (or M2 = 0) 
is impossible. To that end, let 0 : 53—>X denote the covering map and 
set ƒ =ƒ$. Let Ĵ jb and Jf& refer to Betti numbers and numbers of 
critical points of S3, ƒ. Since 0 is locally a homeomorphism, each in­
verse of a critical point of ƒ is a critical point of ƒ of the same index, 
and Mk = dJIf*. Further £ 0 = 1 = Rz and i?i = 0 = R2. Thus 

dMo ^ 1, rfMi - dMo ^ - 1. 

But dMo^d so that dikfièd —1>0. Thus A f i ^ l . Similar argument 
shows M2 è 1 also. 

The critical point theory of a function on a space is in fact the 
critical point theory of the special class of functions on the universal 
covering space which are invariant under the action of the funda­
mental group on the universal covering. The writer has developed 
such a theory, as yet unpublished. 

The second kind of difficulty which prevents the realization of 
equalities Mk — Rk with a function whose critical points are non-
degenerate will be described in more general terms. If X has torsion 
and Zp denotes the integers modulo p, then there are dimensions k 
and primes p and coefficient groups G for which Rk(Zv) >Rk(G). The 
group notation refers to the coefficient group used in the computa­
tion. But Mk is independent of the coefficient group, so that 
Mk>Rk(G). One might suppose one could deal systematically with 
this problem through the use of integer coefficients followed by the 
universal coefficient theorem with appropriate primes p. In fact, the 
difficulty which is raised by torsion associated with different primes 
in different dimensions can be overcome for nondegenerate critical 
points by that approach (see §14). But the similar issue relative to 
degenerate critical sets is more difficult, because there is also torsion 
associated with different primes for different critical levels in the 
same dimension. A direct attack on stronger inequalities in the theory 
based on a principal ideal domain of coefficients, with integers as 
the primary example, is desired and will be considered in the sections 
which follow. 

13. Skeleta. The difficulty with counting critical points and, in 
an idealized fashion, counting critical sets, lies in the fact that the 
chain groups are too large. This is overcome by the introduction of 
skeleta, which in application will be taken in the spirit of algebraic 
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minimal subcomplexes sufficient to describe the homology. Their 
definition and fundamental properties are undertaken here. 

The context of the definition and construction is a Mayer chain 
complex with associated subcomplexes and quotient complexes. See 
[K-P, §§1—3 and references to the papers of Mayer] or [E-S, Chapter 
V] . A Mayer chain complex { C, d} is a system of abelian groups (the 
chain groups) CV, r = — 1, 0, 1, • • • , with C_i = 0, and a sequence of 
homomorphisms (the boundary operation) dr: Cr—>Cr-i of order 2, 
that is, such that dr~idr = 0. A subcomplex { C, 3'} C { C, d} is a chain 
complex { C', d'} for which Cr'C Cr and7 5 / =d r | C/\ \ Cr". The system 
{C, C> d) is then a chain pair. The quotient complex {C/C, d/Cr} 
has the chain groups Cr/Cr' and the boundary operator d/C defined 
by (d/C)r(x) =drx + Cr-i. Homology groups Hr(C)} chain maps 
(which commute with boundary), induced maps, and the exact hom­
ology sequence of a pair are defined as usual. 

The groups Cr in {C, d} will be assumed to be modules over a 
coefficient group G which is a principal ideal domain. Operation by 
elements of G commutes with the boundary operator. A principal 
case is the case that G is the integers. Another case of interest is the 
case that G is a field. The complex {C, d} is free if the groups Cr are 
free modules over G. 

A skeleton of a chain complex {C, d} is defined as a subcomplex 
{ C , d'} such that the inclusion maps ir\ Cr'—^Cr induce homomor­
phisms ir*: Hr(C

f)-^Hr(C) which are isomorphisms onto Hr{C) for all 
r. It is free if the subcomplex is free. Where more convenient, the 
skeleton will be regarded as mapped isomorphically into the chain 
complex rather than as a subcomplex of the chain complex. 

The basic lemma states precisely how to construct a skeleton of a 
complex from a skeleton of a subcomplex and a free skeleton of the 
quotient complex; the chain groups are direct sums in the respective 
dimensions and the boundary operation is consistent with those of 
the subcomplex and quotient complex. The form chosen for the lemma 
is just strong enough for the use to be made of it here, since the proof 
is thereby made substantially easier. The requirements about free 
groups can be removed at the expense of introducing appropriate 
group extensions, and the chain groups overlying the homology 
groups can be removed at the expense of constructing appropriate 
substitutes. See [PI, 2] . 

LEMMA 13.1. Suppose 

7 If <f>: A-+C, BC A, <I>B CDC C, the function $\ B->D denned by yftx) =<t>(x) 
s denoted by #|J3||.D. The shortened notation $| J3=4> |B | |C will be used as required. 
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{K,d*} C{C',d'} C{C,d}. 
k 

Suppose {K, dK} is a skeleton for {C, df), that is, that the homo-
morphisms kr* are isomorphisms. Suppose {Q, dQ} is a free skeleton of 
{C/C', d/C'}, that is, that chain maps qr: Qr—*Cr/Cr

f on free modules 
Qr induce isomorphisms gr*. Let Lr = Kr+Qr, and let nr: Cr—>Cr/Cr' 
and pr\ Lr-^>Qr denote the natural homomorphisms. Then there are homo-
morphisms hr\ Lr—^Crfor which 

(i) hr\Kr = kr, 
(ii) nrhr = qrpr, 
(iii) hr is an isomorphism into Cr, 
(iv) dr

L — hr-i~
ldrhr is defined and is of order 2, 

(v) ftr* is an isomorphism onto Hr(C). 
The complex {L, dL\ under h is a skeleton of {C, d}. 

The proof is in several steps. 
(a) If ur: Qr-*Cr, defined for each r, is any set of homomorphisms f or 

which nrur = qr, then drurx — ur-.idr
QxÇ:Cr^i. 

Suppose x G (?r. Then qrx = nrurx = urx + Cr' and qr-idr
Qx 

= nr-iUr-idr
Qx + CV-/. Further, qr~idr

Qx = (d/C')rqrx = (d/Cf)rnrurx 
= drUrX + Cr-l . Thus drUrX + Cr-\ = Ur-ldr

QX + C r - i ' %U Cr-l/ Cr-1 , 
whence (a) follows. 

(b) There is a homomorphism vr: Qr—>Crfor each r such that nrvr = qr 

and drvrx—vr~idr
Qx GK r - i . 

First, there is a set of homomorphisms ur: Qr—^Cr satisfying the 
relation nrur — qr because Qr is free and nr is a homomorphism onto 
Cr/C/ for each r. The set v is constructed inductively on r by modi­
fication of such a set u. The homomorphism vr is trivial if r = — 1 (if 
one makes all chain groups trivial in dimension — 2 so that relations 
involving boundary are trivially satisfied, then no other special con­
siderations are necessary in the first step of the induction). To pro­
ceed with the induction, suppose that vr, r<s, and ur, r^s, form a set 
of homomorphisms on Qr to Cr such that nrwr = qr when wr = vr or ur 

and such that drvrx — ̂ ^ x G ^ - i if r<s. Of course (a) applies to wr 

for all r. 
The homomorphism v8 is constructed for the elements of an inde­

pendent basis of Q8, Let x be such an element and let t\ = d8u8x 
— v8-id8

Qx. Then d8„ih= —d8-iV8-id8
Qx = —v8-2d8-i

Qd8
Qx+t2 = t2 where 

h by virtue of the inductive hypothesis is a chain (necessarily a cycle) 
of K8-2 and a boundary of CB-J£. Then h — à8-\y\ where y\ is a chain of 
i£s_i because jfes_2* is an isomorphism. Thus h—yi is a cycle of C- . / 
and, because k8-i* is an isomorphism, there are a cycle y2 of K8~i 
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and a chain z of C8 such that h —yx—y*+d8z. Finally, d8(u8x —z) 
—v8-id8

Qx — y2+yi* On setting v8x = u8x — z one finds n8v8x = n8u8x 
= q8x and d8v8x — v8-id8

QxÇzK8-.i. Now v9 is extended linearly over Q8. 
This completes the inductive step in the proof of (b). 

(c) The homomorphisms vr are isomorphisms into Cr. 
Since nrVr = qr is an isomorphism it follows that vr is. 
(d) The homomorphism hr defined by hr(y, x) —y+vrx has the prop­

erties (i)-(iv). 
First, hr{y, 0) = y = kry so that (i) holds. Second, nrhr(y, x) 

= nr(y+vrx)=:nrVrx^=qrX = qrpr(y1 x) so that (ii) holds. Third, if 
hr(yf x)~0 then nrhrx = 0 so that x = 0, and hr(y, 0)=jfery = 0 so that 
y = 0. Thus (iii) is verified. Fourth, drhr(yt x)=dry+drVrX = dry 
+vr-idrQx+z = hr-i(dr-iy+z} drx), where 3£i£r__i. Since hr is an iso­
morphism, hr-f

ldrhr=!Zdr
L is now well defined on Lr to Lr-i. Further 

dr-\
Ldr

L{y, x) —hr-2~1dr-idr{y^ x) =Ar_2~"10 = 0, so that dr
L is of order 2 

and hr-idrL=zdrLhr. Thus (iv) holds and (d) is proved. 
(e) The homomorphism has the property (v). 
Statements (iii) and (iv) show that the homomorphisms hr form 

a set of chain maps of the pair {L, K, dL} to the pair {C, C , d} 
which are isomorphisms into the groups Cr. Accordingly the diagram 

>Hr+i(Q) —-^ Hr(K) > Hr(L) - ^ Hr(Q) > Hr-i(K) > • • • 

J, Qr* i kr* i hr* ï Qr* t kr* 

>Hr+i(C/C') —-> Hr(C') > Hr(C) > Hr(C/C') > H,_i(C') • • • • , 
Or+l* fir* 

in which lines are the exact sequences of homology on the chain pair 
{L, K, dL} and the chain pair { C, C , d}, is a commutative diagram. 
The groups Qr have been identified with the factor groups Lr/Kr, 
and the maps previously used in the proof have been labeled. Since 
qr* and kr* are isomorphisms onto their respective images for all r, 
it follows from the five-lemma (see [E-S, p. 16]) that Ar* is an iso­
morphism onto Hr(C). Thus (e) is proved. 

Since hr is an isomorphism into Cr and hr* an isomorphism onto 
Hr(C)} the proof that { i , dL} is a skeleton of {C, d} is complete. 

The existence of certain especially useful skeleta is shown as fol­
lows. 

LEMMA 13.2. Suppose the free chain complex {C, d} has homology 
groups Hk(C)y k = 0, 1, • • • , such that Hk(C) has rank pu and rjk torsion 
coefficients. Then {C, d} has a skeleton {L, dL} for which the chain 
group Lk has rank Pk+rjk+rjk-v 

The group Hk(C) is the internal direct sum of a free module 5* 
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with rank pk and the submodule Tk of elements of finite order. (See 
[J l , II , Chapter I I I , §9].) The latter can be described by an exact 
sequence 

\k ilk 
0-*Fk-*Fk->Tk->0 

in which Fk is a free module on rjk generators. The number rjk is the 
smallest number of cyclic submodules of which Tk is a direct sum. 
It is easily shown that the module Fk is the smallest which can be so 
used to describe Tk in the sense that if v\ A—>Tk is a homomorphism 
of a free module onto Tk and fXk is factored through v according to the 
diagram 

A 

/ \ 
F f »Tk 

fik 

so that jj,k = VTr, then w is an isomorphism into A. This will be cited 
as the minimal property of (Fk, X*, /**). Let 

Lk = Sk + Fk + Fk-i (external direct sum) 

and define 

dkL : Lk —> Lk-i 

by 

dk
L(x, y, z) = (0, \k-iz, 0). 

Then dk-iLdkL=:0 so that {L, dL] is a free chain complex for which 
Lk has rank pk+rjk+rik-i- The group Sk+Fk is the group of fe-cycles 
and the group \kFk is the group of ^-boundaries. 

To make {L, dL} a skeleton for {C, d}, the imbedding must be 
defined. The group Sk is imbedded in the group Zk(C) of cycles of C 
by a homomorphism 6k' factoring the identity homomorphism of Sk 
through the natural homomorphism 0* on Zk(C) to Hk(C) as indicated 
in the diagram 

Ok (Pk 

Sk-*Zk(C)-*Sk+Tk = Hk(C). 

This is possible since <j>k is a homomorphism onto Hk(C), and 6k is an 
isomorphism into Zk(C) since </>kdk is the identity on Sk. The group 
Fk is imbedded in ZA(C) by a homomorphism 0 / ' factoring fXk through 
<t>k so that <f>kOk" =Hk, as indicated in the diagram 
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Ok Ók 

Fk -* Zk(C) ^Sk+Tk = Hk(C). 

Again, this is possible because 0* is a map onto -H*(C), and 6k" is an 
isomorphism into Zk{C) because of the minimal property of (F*, X*, JU*). 
Further, the direct sum map 

Ok + Ok": Sk + Fk —* £*(C) 

is an isomorphism into Z*(C) because <£*0*'S* and 0*0*".F* lie in 
complementary direct summands of Hk(C). 

The group 7<*_i is imbedded in C* by a homomorphism 0*'" which 
factors 0*"d*I'| F*~i through the homomorphism d*. In order to do 
this, one must know that Ok"dkLFk-xCdCk=<t>k-\-l{Q). But 0k"dkLFk^i 
= 0*"X*_iF*_i and <t>k-i6k"'\k~iFk-i=tXk~i^k-iFk-i = 0 as required. Thus 
0*'" is well defined and 3*0*'" = 0*"d*L| .F*-i = 0*"X*-i. Since X*_i and 
Ok" are isomorphisms into the respective ranges, so is 0 / " . Further, 
the direct sum 0* = 0*'+0*"+0*'" is an isomorphism into C*, since 
0k+0k" is an isomorphism into Ck and 3*0*1 (Sk + Fk) = 0 while 
3*0*1 Fk-i = dk6k" is an isomorphism into C*-i. 

The imbedding of L* in C* with the property 9*0* = 0*-id*L has been 
completed. I t remains to show 0** is an isomorphism onto Hk(C). 
To that end consider the commutative diagram 

Z*(C) — - > Hk(C) =Sk+Tk 

Î Ok + Ok" I 0&* 

5* + Fk = Z*(Z) - > Hk(L) 
Wk 

in which ^* is the natural homomorphism with kernel d*+iLL*+i 

=X*F*. Since 0*(0*'+0*") is onto Hk(C), so is 0**. Since the kernel of 
<t>k(Qk+0k") is X*F* and ^*X*7?* = 0, it follows that 0** is an isomor­
phism onto Hk(C), as required to complete the proof of the lemma. 

14. Strengthened inequalities of critical point theory. The situa­
tion of §11, with the same notation, will be considered again. 

The singular chain complex {C(Ai), d} with groups Ck(Ai) and 
boundary operator d*| Ck(Ai) \ \dCk-i(Ai), shortened to d, is free and 
Ck(Ai-i) is a direct summand of Ck(A%). Consequently, the relative 
homology groups Hk(Ai, ^4«-i) are the homology groups of a free 
complex. Let R^ and 77** denote the rank and number of torsion 
coefficients of Hk(Ai, -4*_i). Then the quotient complex, with chain 
groups Ck(Ai)/Ck(Ai^i)y admits a skeleton with a basis of Mk

{ 

= 22jfc*+tyb*+tyfc*-1 generators according to Lemma 13.2. Set 
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N 

Mk = Z 37**. 

Then Lemma 13.1 can be applied for i — 1, 2, • • • , N to yield the 
following theorem. 

THEOREM 14.1. The singular chain complex {C(X), d} of the space 
X admits a skeleton {L, dL\ in which the groups Lk have rank 37*. 

A sharper statement could have been developed. The idea of a 
skeleton of a chain complex could be enlarged to the idea of a skeleton 
of a filtered chain complex, and in those terms, the statement made 
that {L, dL} is a skeleton of {C(X), d} filtered by the function/. 
(See [P2].) _ _ 

The strengthened inequalities relate the numbers Af&, the rank Rk 

of Hk(X) and the number rjk of torsion coefficients of Hk{X) (recall 
that 770 = 0 = rjn) as follows. 

THEOREM 14.2. The inequalities 

Mo è RQ, 

MI è Ri + riu 

"Ml è -#2 + V2 + Vh 

Mk ^ Rk + rjk + T?*-I, 

Mn è Rn + Vn-l 

and the inequalities 

Mo ^ Ro, 

Mi-M0^Ri-Ro + Vh 

Mk - Mk-i + • • • + ( - 1 ) % è Rk - Rk-i + • • • + ( - l )**o + Vk, 

Mn - M»-i + • • • + (-l)nMo = Rn~ Rn-l + • ' • + (-1)**0, 

are z/afo'd. 

The boundary operator on L can be described by an incidence 
matrix between basis elements in dimensions h + 1 and h. (See 
[S-Tl, Chapter I I I ] , and [Jl , II , Ch. I l l , §§9, 10].) Let ph denote 
its rank. Then 
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Mh = Rh + ph + ph-i. 

Since ph^Vh, the first set of inequalities follows. Taking signed sums 
on h for O^h^k and using pk èrç/t, the second set of inequalities fol­
lows. The equality in the last case follows from the inequalities for 
h — n and n + 1. 

COROLLARY 14.3. If all critical points of f are nondegenerate, the in­
equalities of Theorem 14.2 hold with Mk computed as the cardinal num­
ber of critical points o f f of index k. 

Forrester and the writer, working together, produced a proof of 
the strengthened inequalities based on the universal coefficient theo­
rem, when the added assumption is made that all the critical points 
are nondegenerate. In outline it is as follows. With p a prime as yet 
unspecified, and with Z and Zv denoting integers and integers modulo 
p, the universal coefficient theorem states that 

Hh(X; Zp) = Hh(X; Z) ® Zp + Hh^(X; Z)*ZPJ 

where the notation specifies coefficient groups and ® and * are tensor 
and torsion products. (See [E-S, Chapter V, particularly p. 161].) 
Suppose p divides rjk of the rjk torsion coefficients of Hk{X\ Z). Then 
it follows that 

Rh(Zp) = Rh(Z) + rjh' + IM' 

where the group notation again refers to the coefficient group used. 
Then from Theorem 11.1 

Mk - Mk-! + • • • + (- l)*Jfo * & - Rk-i + • • • + ( - l )**o + vu', 

Rh = Rh(Z). 

Letting p be a prime dividing the smallest torsion coefficient in dimen­
sion k makes Vk=Vk1 leading to the second set of inequalities in 
Theorem 14.2 for integer coefficients under the additional assumption. 
This in turn, implies the first set. 

This proof, it must be emphasized, does not prove Theorem 14.2 
as it applies to functions with degenerate critical points. In using 
properties of a specific function to learn about the underlying space, 
one may be faced inescapably with degenerate critical points. 

15. Idealized critical sets and lower semi-continuity of Mfc. The 
strengthened inequalities suggest that a critical set for which the 
critical groups have rank rk and f* torsion coefficients be regarded 
as equivalent to mk = rk+Çk+Çk-i nondegenerate critical points of 
index k. This point of view will be justified as follows. 
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With a fixed manifold X of class C3 associate the admissible class 
of functions of class C8, each with only a finite number of critical 
levels. Introduce two metrics into the admissible class, defined as 

rfo(/,s) = max | / ( P ) - « ( P ) | , PeX 

di(f, g) = do(f, g) + max | grad (/(P) - g(P)) \ . 

Suppose o- is the critical set of an admissible function ƒ at level c, with 
tk and fk as the rank and number of torsion coefficients of the critical 
group and w* = rjk+f;fe+f*-.i. If U is any neighborhood of <r and g is 
any admissible function which is sufficiently near ƒ in the metric d\ 
and has only nondegenerate critical points, then it will be shown that 
g has at least mk critical points of index k in U. This is the required 
justification. Whether the statement remains true with d\ replaced by 
do is not clear to the writer. 

I t will further be shown that in the metric d0 (and hence also in 
the metric di), the numbers M h of §14 are lower semi-continuous func­
tions on the class of admissible functions. 

Suppose first that 

a = ao < Co < ai < • • • < a,i-i < d < di < • • • < ayr-i < CN < Q>N =j8 

where a and j8 are ordinary levels of ƒ and c* is the only critical level 
of ƒ on [af-_i, at-]. The notation fai = Ai will be continued. The exact 
homology sequences on the triples (Aif Ai-i, A0) admit analysis 
similar to that applied in §14. Let rj^if) and rjk(f; a, fi) denote the 
number of torsion coefficients of Hk(Ai, Ai-i) and Hk(fp, ƒ«) respec­
tively and let 

Rk(f;a,fi) = R[Hk(U,fa)), 

W(f) = R[Hk(Ait At-0] + VkW + Vk'-Kf), 

Mk(f; a, 0) = Z MuHf). 

Then the following theorem holds. 

THEOREM 15.1. The inequalities of Theorem 14.2 are valid when 
Mhl Rh and r)h are replaced by "Mh{f\ a, j3), Rh(f; a, j8), ^ ( / ; a, j3). 

Suppose now that a<c<b with c the only critical level of ƒ on 
[a, b] and let cr denote the critical set at level c 

LEMMA 15.2. Corresponding to an open set U with <rC.UC.fb, there 
is a number € > 0 such that if di(f, g) <€, every critical point of g on 
fbr\fa°' is on U. 

rC.UC.fb,%20thereis%20a%20number%20�
rC.UC.fb,%20thereis%20a%20number%20�
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This follows from the fact that | g r a d / | is bounded from 0 on 
fbr\fa°'nuf. 

LEMMA 15.3. If d0(f, g)<h = min (& — c, c—a)/4 and a+h<a'<c 
— 2h, c+2h<p' <b-hJhenfa°Cga>0Clti>Cfb. The numbers Mk(g;a'fi') 
satisfy the inequalities Mk(g\oi', /3') è Mk{f\ a, b). If all critical points of 
g are nondegenerate, and a' and /3' are ordinary levels of g, then the cardi­
nal number of critical points of g of index k at levels between a! and $' 
is at least Mk(f; a, &). 

In fact, with d~c — h and e = c+h the inclusions faQga'dfd and 
feCg&'Qfb are clear. Then the sequence of inclusion maps 

(fe, fa) -> (» ' , ga>) ~> (fb, fd) 

induces homomorphisms 

Hk(fe, fa) ~> Hk(gfi', g«') -> Hh(fb, fd) 

for which the composite homomorphisms is the identity according to 
Theorem 4.1. Thus the critical group of <r in dimension fe is a direct 
summand of Hkigp', ga

f). The weaker inequalities of Theorem 15.1 
apply to the function g on the interval [ce', /3'], whence the truth of 
the lemma. 

The first statement in Lemma 15.3 implies the following theorem, 
in which the notation M h is that of section 14. 

THEOREM 15.4. The numbers "Mk are lower semi-continuous functions 
on the class of admissible functions in the metric dQ. 

Since do(f, g) H*di(f, g), Lemmas 15.2 and 15.3 can be combined 
to yield the following theorem. It is supposed that a<f(x) </3 on X. 

THEOREM 15.5. Corresponding to open sets Ui of the critical sets <Si of 
ƒ, there is a number e > 0 such that if di(ff g)<e and all the critical points 
of g are nondegenerate, then g has at least "Ml (ƒ) critical points of index 
k in Ui and no critical points outside the neighborhoods Ui. 
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