
NONLINEAR DIFFERENTIAL EQUATIONS 

EDMUND PINNEY 

1. Introduction. A few nonlinear differential equations have known 
exact solutions, but many which are important in applications do 
not. Sometimes these equations may be linearized by an expansion 
process in which nonlinear terms are discarded. When nonlinear 
terms make vital contributions to the solution this cannot be done, 
but sometimes it is enough to retain a few "small" ones. Then a 
perturbation theory may be used to obtain the solution. A differen­
tial equation may sometimes be approximated by an equation with 
"small" nonlinearities in more than one way, giving rise to different 
solutions valid over different ranges of its parameters. 

There are two types of small nonlinearity problems. In the first 
type the nonlinearities occur in the most highly differentiated terms. 
These are very important in several physical theories. Carrier refers 
to them as "boundary layer problems" [ l ; 2] in recognition of the 
application in which they had their first important development. 
They include many important nonlinear partial differential equations 
problems, as well as some ordinary nonlinear differential equations 
in which such phenomena as relaxation oscillations occur. Boundary 
layer problems are usually closely tied in with applications. Their 
theories have not yet received very general or exhaustive develop­
ment, and much art and ingenuity has been called for in the work 
that has been done ( [ l ] - [3 ] ) . 

The second type of nonlinearity problem is that in which non-
linearities do not occur in the most highly differentiated terms. In this 
case the theory has been developed farther, and something more 
nearly resembling a general method of attack is possible. Actually 
several such methods have been developed. Each has its own special 
merits and limitations. I will discuss one such method. This particular 
method has the advantage of wide scope and practicality of applica­
tion, but is limited to a class of differential equations which is associ­
ated with nonconservative physical systems. 

This method offers nothing new in the case of ordinary nonlinear 
differential equations of the second order, but has a practical advan­
tage in the case of systems of equations (or, what comes to the same 
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thing, vector differential equations of higher than the second order), 
certain functional equations, such as difference-differential equations, 
and some partial differential equations. Strictly formal solutions may 
be obtained by a number of devices analogous to the methods of van 
der Pol, Poincaré, Kryloff and Bogoliuboff, etc., with fewer manipula­
tions than required by the present method, which is rigorous. This 
is all right when the necessary existence theorems are well known and 
fairly easily usable as in the case of second order ordinary differen­
tial equations. However in the more complicated cases mentioned, 
such existence theorems are frequently unknown, and, if known, are 
usually confined to the case of periodic solutions (ruling out the possi­
bility of two oscillations having incommensurate periods) and are 
usually very difficult to apply. Thus they typically require calcula­
tions equivalent to obtaining the characteristic exponents arising in 
the application of Floquet theory to systems of linear equations with 
periodic coefficients. This is a formidable problem even when the 
original equation is a second order ordinary differential equation, 
but in that case the theory (Hill theory) is already known. 

The present theory gets around this difficulty by basing the proof 
of the existence of a solution upon the " trend" functions that one 
would have to calculate anyway in order to obtain an approximation 
to the solution. Of course this process does not always work. As a 
general rule it does work in the case of equations arising in non-
conservative physical systems. In this method an approximate 
solution to the nonlinear equation is developed, based on the linear 
system in which nonlinear terms are neglected. Such a theory cannot 
in itself settle the question of unboundedness of the solution, for, as 
the dependent variable increases, the nonlinear terms must ultimately 
dominate, thus invalidating the base of approximation. Therefore a 
prediction that the solution tends to infinity merely means that the 
theory fails. Indeed, the theory may fail for a prediction of large 
finite values of the solution when certain conditions fail to be satis­
fied. This will be called large solution failure. 

The method is applied to van der Pol's equation in §2, and carried 
through in detail. At the end of the section its principal features are 
recapitulated. About half of the calculation is devoted to proving the 
existence of the solution. In §3 the method is applied to the much 
more elaborate problem of systems of nonlinear equations. Results 
only are given. In §4 it is applied to a still more elaborate analysis 
of a partial differential equation occurring in a transmission line 
problem. For brevity much of the complete analysis is omitted, but 
enough is given to illustrate the ideas as well as some of the special 
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problems and complexities that may be expected in nonlinear partial 
differential equations. 

This work was sponsored by the Office of Naval Research at Stan­
ford University and the University of California. 

2. van der Pol's equation, van der Pol's equation is 

d2y dy 
(2.1) - £ + <? - 1) -j- + y = 0, 

dt2 at 
for € small and positive. This may be written 

(2.2) y"(t) + y(t) = fit), 

where 

(2.3) f{t) = e[l - y\t)}y'it). 

Equation (2.2) has a particular solution 

ƒ' 
•/ o 

sin {t — r)j{j)dT, 

so by (2.3), 

y(t) = y(0) cos t + /(O) sin t 

(2.4) + e f sin (t- r ) [ l - y2(T)]/(T)dr. 
Jo 

This may be written 

(2.5) y(/) = a+(/)e" + a-(0*-« 

where 

(2.6) a±(0 = 4 yiO) ± — y'iO) ± ^ f W [t _ y i ( r ) ]y(r)<fr. 
z z^ Zt J o 

Differentiating, 

(2.7) «.;(«) = i ^ T i i [ i - y « ] y « . 
Zi 

Then by (2.5), 

(2.8) y'(t) = ia+(t)eil - ia^(t)eru. 

So far this development is exact, but it provides no method to com­
pute the quantities a±(i). Our main problem is to obtain approximate 
expressions for these quantities. As noted in the introduction, we 
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shall use an approximate procedure which is valid only if the solution 
is bounded. 

Let us provisionally assume that for some quantity K, independent 
of/, 

(2.9) \a±(t)\ <K 

for all t^O. Then we will show below that a±(i) may be approxi­
mated by known functions p±{t), the error bound E = E(e, K) being 
expressed in terms of e and K: 

(2.10) | a ± ( 0 - P ± ( 0 | <E(e,K). 

Now let us not assume that (2.9) holds for all t^O, but that 
|#±(0)| <K. I t will appear that the p±(t) functions contain arbitrary 
constants which may be set so that p±(0) = a±(0). Then the p±(t) are 
completely known and an upper bound K' may be calculated: 

| p± (0 | £K' 

for all t^O. Suppose K may be selected so that for e in some neighbor­
hood of e = 0 , 

(2.11) K' < K, £(e, K) <K~ K'. 

Then by (2.10) and the triangle inequality it follows that (2.9) holds 
for all t^O for e in this neighborhood. It appears then that the 
boundedness of the a±(t) is intimately associated with that of p±(t). 
So long as we are able to select a K greater than K' (which may de­
pend on e) for which (2.11) holds, the validity of (2.9) follows for all 
/ ^ 0 . When this cannot be done, the theory suffers large solution 
failure. 

I t should be emphasized that K is not necessarily a least upper 
bound to the quantities | a± (0 | • Indeed, the present theory will not 
enable us to calculate this bound. K may depend on e. Without loss 
in generality we can, and will, for convenience, assume that K does 
not tend to 0 as e—»0, i.e., l / i£ = 0 ( l ) . Without specifying K further 
we make the assumption (2.9), and proceed to calculate the function 
E(e, K). With this and K', obtained from p±(/), we then seek a K 
greater than K' satisfying (2.11). Usually there are infinitely many 
possible values of K. The best is that which renders E(e, K) smallest. 

Now, assuming (2.9), by (2.5), (2.8), 

|y(/)| <2K} | /(01 <2K. 

Therefore by (2.7), assuming (as we shall hereafter) that Kèz 1, 

(2.12) | a±(t) | <4eK\ 



!95Sl NONLINEAR DIFFERENTIAL EQUATIONS 377 

By (2.5), (2.7), (2.8), 

(2.13) a±(t) = — e[(l — a+aJ)(a± — a^e ) — a±e + a^e ]. 

Now define 

- / A t*\ — € /< \ T 2 t * ' . € 3 ± 2 * * 

/ 0 « .. «±(0 = a±(t) + — (1 - a+a_)aTe ± — a±e 
(2.14) 4* 4i 

± — a^e 
8f 

Therefore by (2.9), 

(2.15) \a±(t) - a±(t)\ <—eK\ 
8 

Differentiating (2.14) and inserting (2.12) and (2.13), 

, 1 
â±(t) e(l — a+a-)a± 

17 

2 

Then by (2.15), 

(2.16) â'±(t) = — €(1 - â+â_)5± + i?±, 

where 

(2.17) | U ± | < j * 1 * » . 

We are interested in the degree to which the functions a±(t) may 
be approximated by the solutions p±(t) of the equations 

(2.18) p±(t) = - 6 ( 1 -p+p-)P±, 

which are the same as those in (2.16) except for the R± terms. Their 
solution is 

(2.19) P ± (0 = KÖ*"*, r(Ö = (1 + C<r<0~1/2, 

where C and </> are real constants. 
The "trend functions" p±(t) tend to e±l* as /—»<*>. What about the 

quantities â±(/)? To answer this, construct an r, 0, /-cylindrical co­
ordinate system, and plot the surfaces r = r(t), which are surfaces of 
revolution about the /-axis. This will give a one-parameter family of 
surfaces filling the space. These surfaces will be called "trend sur­
faces." As /—>oo, each trend surface approaches the cylinder r = l 
asymptotically. The space curves r=r(t), 0=<£ will be called "trend 
lines." Now write 



378 EDMUND PINNEY [September 

(2.20) â±(t) = A(t)e*ie<-» 

where A(t) and 6(t) are real. Then by (2.16), 

(2.21) A'(t) = — e(l - A*)A + R, 0'(t) = I/A, 

where 

(2.22) R± il = R±e*i$. 

The space curve r=A(t), 9—6(t) will at every point cut a local trend 
line from which its direction angles will differ by R/A and I/A. 

Specifically, write d±(0)=Aoe±i4t>0, and let p±(t) denote the trend 
function whose trend line passes through (̂ 4o, <£o, 0), i.e., p±(0) = <x±(0), 
and r(0)=A0, <£=0o. How far away from p±(t) can d±(i) get for 
/ > 0 ? In other words, how far can A(t) get from r(/), and 6(t) from 
0o? First, suppose A(t)>r(t). Then A(t)— r(t) grows only if A'(t) 
- r ' ( / ) > 0 . By (2.19), (2.21), this implies 

— e[(l - A2)A - (1 - r2)r] + R > 0. 

Therefore 

(A - r)(A2 + Ar + r2 - 1) < 2£/e. 

Therefore when ^4o>l /3 , 

A - r < 2R/[e(3Al- 1)], 

so by (2.17), (2.22), 

A{t) - r{t) < (99/4)eK*/(3Al - 1). 

When ^4o<l /3 the analysis is slightly more complicated because the 
trend lines themselves are a t first diverging, but we again get 
A(t)—r(i)=0{eKh). The same order estimate is obtained when 
Ait) <r(t). By (2.17), (2.21), (2.22), 6(t) =</>+/0(e2i£5), 

a±(t) = r(t) exp (±i[<l> + tO(e2K5)]) + 0(eK5). 

From (2.15) we have a±(t) =p±(0 exp (±itO(e2K&))+0(eK*). In view 
of (2.19), |p±(/)| has an upper bound K' =max (1, -4o). Since 
A0 = O(l) we can take IT = 0(1). Then (2.11) is satisfied if K-K' 
>0(eKb). This is clearly possible with K = 0(1), so that a±(t) =p±(i) 
•exp (± i /0 (e 2 ) )+0(e) . By (2.5), (2.8), (2.19), 



Î9SS] NONLINEAR DIFFERENTIAL EQUATIONS 379 

y{t) = 2r(t) cos [{1 + 0(e2) }t + *] + 0(e), 
(2.23) 

ƒ(/) = - 2r(0 sin [{1 + 0(e2)}* + 0] + 0(6). 

The principal features of this method may now be pointed out. 
First the equation is written in the form (2.2) in which the principal 
linear part is on the left while the term on the right contains the 
nonlinear terms. This equation is "solved" in the same manner as 
the linear nonhomogeneous equation is solved, getting an integral 
equation (2.4). We write this in a form (2.5) resembling the solution 
to the linear homogeneous equation (ƒ = () in (2.2)) except that the 
quantities a±{t) are not now constant. However they have the 
property that when differentiated, giving (2.7), the integral sign is 
removed. Substituting in the expressions for y and y' in terms of a±, 
the first order differential equations for a±(t) are given in (2.13). 
These equations are more complicated than the original equation 
(2.1), but they provide the basis for making an approximation. The 
intuitive reason to suspect this virtue in (2.13) is as follows. Since 
the equation has only a small nonlinearity when e is small, its solu­
tion will be almost like a linear solution. Therefore the quantities 
a±(t), although not actually constant, should vary only slowly with /. 
Therefore on the right-hand side of (2.13) the terms involving e*2**, 
e±2i\ and eTiit oscillate in almost the same way as these quantities 
do themselves and so tend to cancel themselves out over a long t-
interval in comparison with the other, nonoscillatory, terms. The 
introduction of the quantities a±(t) and p±(t) leads to simplified equa­
tions in which the oscillatory terms are absent. The p±{i) quantities 
are approximations to the a±(t) quantities because of their expo­
nential approach to their asymptotic limits. An approximate solution 
to the differential equation may then be written in terms of them. 
The accuracy of this approximation involves the analysis of the K 
and K' quantities and £(e, K) as indicated in (2.9)—(2.11). 

These same ideas may be applied to other and more complicated 
nonlinear situations. In fact, it is in the more complicated problems 
that this method has an advantage of practicality which it does not 
have in this problem. 

3. Systems of nonlinear differential equations. The foregoing 
procedure may be applied to systems of equations. For brevity, 
results only will be given here. We shall consider a system 

dyi ™ 
(3.1) — = Z) Ai«y« + «ƒ<(?. Oi i = 1, 2, • • • , w, 

dt «=1 
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the quantities in which are denned as follows: 
(i) the Aia are constants and e is a small parameter; 
(ii) y=y(t) is the matrix (yi(t), y2(t), • • • , ym(t)); 
(iii) fi(y, i) is a polynomial of degree n in the elements of y\ the 

terms of degree n have coefficients that are all 0(1) in e as e—>0; 
(iv) ftiyi t) depends on / explicitly only as a polynomial in circular 

functions of /; 
(v) for &i, &2, • • • , bm arbitrarily preassigned quantities, 

(3.2) y<(0) = bi% i = 1, 2, • • • ,tn. 

I t is an elementary matter to express these equations and condi­
tions more completely in matrix notation, omitting the subscripts and 
summation sign from (3.1), say. However many of our manipulations 
lie outside the limited class that can be done with this abbreviated 
notation, so the present more descriptive but slightly longer hybrid 
notation seems more efficient. 

To discuss the system (3.1), let S denote the set of characteristic 
roots Zj (of multiplicity /x,) of the characteristic equation 

(3.3) D(z) s \Aii-aii\ = 0 , 

and let Dji(z) be the cofactor of Aij — zdn in the determinant of (3.3). 
Let Xi, X2, • • • , Xm be an arbitrarily chosen set of constants not all 
of which are zero, and let V\, v2, • • • , vm be another such set. Define 
the quantities 

m m 

DM = E X.D,.(8), 25.CO = E VrD„(z), 

m m 

( 3 . 4 ) D(Z) = £ VrDr{z) - £ \J)t(z) = I E \,PrDr.(z), 
r-»l s*=l r=«l 8=«1 

m m 
Dia{z) = X Yj^sVrDi8;ra(z)y 

where Dis.ra(z) is the cofactor of Aar—zôar in the determinant Dis(z). 
Define 

(3.5) Gi(z) = -Di(z)/D(z), 
m 

(3.6) F(z,y,t) = J2Da(z)fa(y,t). 

The quantities yi(i) may be expressed in terms of certain quantities 
djtq(i) in a manner analogous to (2.5): 
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^ "£LX uAG^Czt) 

where the aJtq(t) quantities may be expressed in terms of integrals 
of F(z, y, t) in a manner analogous to (2.6), and satisfy differential 
equations analogous to (2.7). 

Again, as in §2, we are interested in bounded solutions and intro­
duce a quantity K of the same type as that of §2, except that we 
have 

(3.8) | ei'ajiit) \ < K for s, in S, q = 0, 1, • • • , pj - 1, 

instead of (2.9). As in (2.11) we require that 

(3.9) K>K', E(e,K)<K-K' 

as e—»0 to avoid large solution failure. 
The quantities ji(t) in (3.7) are substituted into (3.6) and simpli­

fied. We write 

(3.10) F(z, y(t), 0 = E e-̂ iC*, *(0. 0 + E ; «f,'«i(*, *(*)), 
S7 S' 

in which the following rules govern the indicated expansion: 
(i) the terms included in the S summation must be such that 

(3.11) ^ £ y ( * , M ) =e -^0 (€Z 2 »- i ) ; 
ot 

(ii) the Sf summation is over all terms in the expansion of the 
left-hand side of (3.10) not included in the S summation. However, 
we shall impose the further restriction that 

(3.12) l/\zj-z{\ = 0 ( 1 ) 

as e—»0 for all z2- in 5 and all zf
k in S'. 

Condition (i) simply defines the terms which are to be included in 
the S summation. However condition (3.12) in (ii) implies a new 
restriction on F and on the characteristic roots. A difficulty might 
seem to appear in the use of (3.11), because the quantity K is not yet 
known. In practice this is generally not significant because (3.11) 
usually implies a restriction upon certain parameters in the equations 
(3.1) which need not be made precise till later. 

In place of equation (2.18), we now get "trend equations," 

(3.1 3) É*£L = p,]4_lW + eg<%Jt p(0, t)/ql 
at 
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for Zj in 5, <z = 0, 1, • • • , IXJ — \, and for p3,-i(t) = 0. Here gja)(z, a, t) 
denotes (d9/dz9)g3-(z, a, t). 

When the equations in (3.13) are solved, the "trend functions" 
Pjq(t) can be analysed in a way similar to that used to analyse the 
trend functions in §2. |p/«(0| may be plotted against t on a jq-trend 
modulus plane, and arg [p/Q(0] niay be plotted against / on a "jq-
trend argument cylinder," which is a cylindrical surface having t as 
axial distance and arg [p/Q(0] as azimuthal angle. 

We shall designate as "principal trend functions" the set of trend 
functions p3q{i) which takes on some prescribed initial conditions. 
Since the solution of (3.13) involves constants of integration, this is 
only one set in a family. The behavior of others "near" this set is 
very important, as it was in §2. 

THEOREM 1. On each jq-trend modulus plane let A|p/Q(/)| denote the 
difference in ordinate between the principal jq-trend modulus and neigh­
boring trend moduli ; on each jq-trend argument cylinder let A arg \p3q(t) ] 
denote the difference in azimuthal angle between the principal jq-trend 
argument and neighboring trend arguments. Suppose 

(3.14) A | Pjq(t) | = Mt)rW, A arg [Pjq(t) ] = gjq(t)e-«, 

where x3 = Re (z3), K > 0, and 

(3.15) fUO/Mt) £ 0, g)t®/gt,V) ^ 0. 

Then for / = 0, i = l, 2, • • • , m, 

(3.16) s o-o q\D<ih\Zj) 

+ 0(eKn) +0(e2K2n~1/K). 

Unless K > 0 and the conditions in (3.15) are satisfied, the theory 
fails. When the conditions in (3.15) are not satisfied, sometimes a 
simple special discussion will insure the success of the theory, as in 
§2 in the case -4 0< 1/3. 

Suppose a quantity K', independent of t, exists such that for z3 in 
5, g = 0, 1, • • • , M/-l> 

(3.17) | « * W 0 | £K'> 

and that K', which may depend on €, satisfies 

K' = Ö(«- 1 / ( *~ 1 ) ) . l/K' = 0(1), 
(3.18) 
V } K' = ö( f C l /(2n-l)/€2/(2n-D) 
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as e—»0. Then (3.9) is satisfied for a value of K such that 

(3.19) K = 0(K') 

and the error estimate in (3.16), as well as the restriction implied in 
(3.11), may be made definite. 

4. A partial differential equation application. A nonlinear trans­
mission line. Our method may also be applied to partial differential 
equations problems which are not of the boundary layer type. The 
general features of the method are the same although there are some 
added complications of detail. 

We shall consider resonance oscillations in a transmission line in 
which the series resistance, series inductance, and shunt capacitance 
are constant as usual, but in which the shunt conductance varies 
with transverse voltage. The mechanism by which this is accom­
plished is not our direct concern here, but there are such mechanisms, 
gaseous discharge tubes, for instance. The series resistance and shunt 
conductance will be assumed to be small. 

We shall suppose the transmission line to have a finite length, and 
to be short circuited at the end. The case when the line is terminated 
by a nonzero impedance requires a slightly different treatment as 
will be noted below. The other end of the line will be driven by a 
harmonically oscillating generator of frequency a near one of the 
natural frequencies of the linearized system. Under these conditions 
the current flowing in the line and the voltage across the line may 
be expected to be rather large, i.e., a "resonant" condition prevails. 
If V is the transverse voltage across the line, x is the distance along 
the line, and / is time, 

V = VQ COS (at) when x = 0, 
(4.1) 

V = 0 when x = I. 

In the range 0 < x < Z , but not too near x — 0orx = l, V may be ex­
pected to be large compared to Fo. 

Let L be the series inductance; R, the series resistance; C, the 
shunt capacitance; and G, the shunt conductance, all per unit length, 
and uniformly distributed. Let I be the current in the line. L, R, and 
C are constant, but G is a function of V. Then, by [4, p. 550], 

dV dl dl dV 
(4.2) + L + RI = 0, + C + GV = 0. 

dx dt dx dt 

It will be convenient to introduce dimensionless variables 
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(4.3) X = TX/1, T = rct/l 

where 

(4.4) c = l/(LCy\ 

Substituting these into (4.2) and eliminating J, 

(4.5) Vxx - VTT = F(eV, eVT) = u(Xt T), 

where e is a conveniently chosen small quantity such that 

(4.6) F(eV, eVT) = (T2/P) SL (GV) + Rc\(irc/l)VT + RGv\ . 

F will be assumed to be a polynomial of degree N in its arguments. 
Our problem is to solve equation (4.5) subject to the boundary 

conditions (4.1). Although the main ideas are the same as in §2, the 
manipulative machinery is substantially heavier, and for brevity 
much of it must be suppressed in this paper. 

For m an integer define ö by 

(4.7) a = m(l + « )« / / . 

Then |S|<£1 implies resonance. The boundary conditions (4.1) may 
be written 

V = VQ COS W(1 + d)T when X = 0, 

7 = 0 when X = T. 

Then a solution to (4.5), satisfying (4.8) is 

V = V (X, T) = (1 - X/T) VO cos m{\ + S)T 
1 / • T p X + T - T 

£ J o J x-r+T 

where 

(4.10) U(X, T) = u(X, T) - w2(l + ô)2(l - X/T)V0 COS m(l +6)T. 

(4.9) is analogous to (2.4). 

At this point it may be worth interpolating that had our trans­
mission line been terminated by a nonzero impedance Z rather than 
short-circuited, instead of (4.9) we would have taken 

V = V(X, T) = Voe~xlRt^ cos w(l + ô)(T - XcL/Z) 

(4.11) 1 <*T n^+T-r 1 rT Cx+ 

4 J 0 J X-T+r 
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The subsequent treatment of equation (4.11) would be closely 
analogous to that of equation (4.9). 

To resume, (4.9) will satisfy the boundary conditions (4.8) pro­
vided the range of definition of the function U(X, T) is extended 
beyond 0<X<T in such a way that it is odd in X and periodic of 
period 2T in X. I t can be shown to be of bounded variation in X and 
therefore expandable in a Fourier sine series: 

(4.12) U(X, T) = * È Un(T)e™x, 
n==—oo 

where 

Uo(T)=0, 

(4.13) Un{T) = - (1/TT) f ' w t t , T)9 eVT(i;, T)) sin (nQdt 

+ (m2/»ir)(l + ô)2Vo cos m(l + «) r 

lorn^O. 
Define 

(4.14) O»(J) = f' Uu(T)r*»*dr, 

so tha t 

(4.15) ai(s) = Un(s)*-*»; 

and define 

1 /•• ( cx~~T 

W(X9a(s))=—J J J l/tt, r)^e 

(4.16) ~ ƒ'#(*, r)(l ~ */*)#} rfr 

= £ (l/2rc)a„(*y**. 

Then it may be shown tha t 

V(X, T) = (1 - X/x)Fo cos » (1 + S)T 
(4.17) 

+ W(T - X, a(T)) - W(T + X, a(T)). 

Returning to the problem in §2, equations (4.16) and (4.17) are 



386 EDMUND PINNEY [September 

analogous to (2.5). (4.14) is analogous to (2.6), and (4.15) is analogous 
to (2.7). 

Again, as in §§2 and 3, we are interested in bounded solutions, and 
introduce a similar quantity K, except that in place of (2.9) we have, 
for n^O, 

(4.18) \an(t)\ <K/\n\. 

As in (2.11), if large solution failure is to be avoided, 

(4.19) K > K', £(€ , K) <K' - K. 

In place of (2.18), we now get "trend equations," 

(4.20) P n ' ( r ) = gn,n(p(T),öT) 

for n 5^0, where 

(4.21) gn.k(o(s), a) = (1/2TT) ƒ V«(a(s) , cr, r^'dr, 

where 

Uniais), <r, T) = (m2/nw)(l + 8)W0 cos m(T + a) 

- (1A) fTF(e[W(T - £, a(s)) - W(T + £, a(s))], 
(4.ZZJ J o 

e [ l f i ( r - £, a(s)) - TFx(r + £, a(s))]) sin (*{)#. 

The conditions that the "trend functions" pn(T) must satisfy in 
order to approximate the functions an(T) are precisely those given 
in (3.14) and (3.15) with x ; = 0 and with the double jq subscripts re­
placed by n. If one solves (4.20) and verifies these conditions, then 
the solution is obtained by substituting 

W(X, a(T)) = W(X, p(T)) + 0(5A) + 0(1) 

+ 0(<PKN) + («A) [0(1) + O ^ - ' I » - 1 ) ] . 

Now suppose a quantity K', independent of t, exists such that for 

(4.24) \Pn(T)\ £K'/\n\, 

and that K', which may depend on e, satisfies 

K' = o(€-Niw-»), 1/K' = 0(1), 
(4.25) ' W 

e/K = o(K'), K' = o î/PW-Dle-AT/CAr-D), 
as e—»0. Then (4.19) is satisfied if 



*9$S\ NONLINEAR DIFFERENTIAL EQUATIONS 387 

(4.26) K = 0(K') 

and the error estimate in (4.23) may be made definite. 
Since (4.20) represents an infinite system of differential equations, 

its solution may not be simple. One method of attack is to study a 
generating function 

(4.27) R(X, T) = eW(X - 6T, p(T)) = e £ (l/27r)pM(ry*<*-S2,>. 
n=—oo 

This may be shown to satisfy the equation 

RXT(X, T) + 8RXX(X, T) 

(4.28) J-* 

- F(*(£, T) - R(X, T), R&, T) - lfe(Xf D ) } « 

+ €(W/2TT)(1 + ô)2Fo sin (mX) = 0. 

Since F is a polynomial the integrand can be expanded. The 
integral is seen to be a polynomial in R(X, T) and Rx(X, T) whose 
coefficients are averages of polynomials of these two quantities taken 
over the range — TT<X<TT. 

By (4.27), R(X, T) must be periodic of period 27r in X. It is inter­
esting to note that only odd terms in the expansion of F contribute 
to the integral in (4.28). 

It may appear that we are replacing the partial differential equa­
tion (4.5) by a worse equation in (4.28). However (4.28) has some 
real advantages. In a problem of this type we are mainly interested in 
the "steady state" behavior of the system for t large. The physical 
nature of the problem strongly suggests that the quantities 
pn(T)e~in8T approach constants asymptotically as T—»<x>, so that, by 
(4.27), the steady state behavior of the system is determined by 
R(X, °o)=R(X), say. By (4.28), R(X) satisfies an ordinary differ­
ential equation of the second order whose coefficients contain mean 
values of polynomials in R(X) and R'(X). If the small nonlinear 
part of the shunt conductance is comparable in magnitude to the 
small linear part, then the equation for R(X) is strongly nonlinear 
and its numerical computation is necessary. In this case the trans­
mission line may be rather strongly excited, not only in the mode 
nearest the exciting frequency, but in all others as well. On the other 
hand, when the nonlinear part of the shunt conductance is small 
compared to the linear part, the equation for R(X) is weakly non­
linear, and may be solved analytically by the usual perturbation 
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methods. In this case, only the mode nearest the exciting frequency 
is excited strongly. 

The validity of the solution corresponding to R(X) can be estab­
lished if conditions (3.14) and (3.15) are satisfied. To verify these 
we must know the asymptotic behavior of pn(T) as T—»<*>. This can 
be found from a perturbation analysis of the R(X) solution. Tha t is, 
we substitute 

(4.29) R(XtT) =R(X) + ri(X,T) 

into (4.28) and discard terms of higher powers than the first in rj. 
This may turn out to be quite a difficult analysis comparable to, or 
worse than the analysis of the Hill equation. 

Since our object is to illustrate a general method and to give no 
more than a glimpse of the special problems that are peculiar to spe­
cial applications of this method, it does not seem appropriate to go 
further into the analysis of the function R(X> T)> since this is a mat­
ter of importance only to those who may be interested in this specific 
physical problem. This latter group may be satisfied with less than 
a complete analysis, for instance, with a determination of R(X) 
only, the validity of the resulting solution being established by 
physical or experimental means. 
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