
APPROXIMATE SOLUTIONS OF FREDHOLM-TYPE 
INTEGRAL EQUATIONS 

A. T. LONSETH1 

1. Introduction. The integral equation whose approximate solution 
will be discussed here is the linear nonhomogeneous equation of 
Fredholm type and second kind 

(1.1) x(s) - f K(s, t)x(t)dt = y(s), 0 g s g 1, 
J o 

where the functions K(s, t)—the "kernel"—and y(s) are known. The 
question posed is this: Given an approximate method for solving 
(1.1), how can one estimate the error? 

Since late in the nineteenth century the importance of (1.1) in 
mathematical physics has been recognized, along with that of 

(1.2) x(s) - X f K(s, t)x(t)dt = 0, 0 g s g 1, 
J o 

in which one is to determine values of X (proper values) such that a 
continuous solution x(s) ^ 0 exists. Typical problems leading to equa­
tions like (1.1) are the Dirichlet and Neumann problems of potential 
theory; to (1.2), time-dependent problems in elastic vibration and 
heat flow, by "separating out" the time. 

I t is now fifty years since Fredholm published his distinguished 
paper in Acta Mathematica [lO],2 in which he gave the first detailed 
account of the existence and multiplicity of solutions of (1.1) and 
(1.2). Few mathematical publications have stimulated so much 
further work. Several papers appeared in which physical problems 
were set up in terms of integral equations (elasticity, gas theory, 
etc.) ; some were on numerical solutions; most of the many theoretical 
papers followed the now familiar trend toward greater generality 
and abstraction. Hubert recognized analogies with Euclidean ge­
ometry, except that now space was infinite-dimensional [13] ; through 
Fréchet and F. Riesz this led to Banach spaces and more rarefied 
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concepts. Such contemporary objects as "abstract spaces," "spectral 
theory," and "normed rings" are among the grandchildren of the 
Fredholm theory. 

Despite their apparent remoteness from numerical work, some of 
these abstract ideas lie very close to our question of error-limitation. 
This is true of such simple metric notions as the norm (or length) of 
a function and the bound of an integral transformation K defined by 

Kx = { K(s, t)x(t)dt. 
J o 

It is convenient to write (1.1) in the abbreviated form 

(I — K)x = x — Kx = y 

and to speak of x and y as "vectors" in some "linear space," such as 
the totality of functions which are continuous on 0 S s â 1, or of those 
whose squares are integrable thereon. More details may be found in 
[2], [15], or [19]. 

It will be assumed throughout that (1.1) has a unique solution x(s) 
for given y(s). Thus we may speak of the inverse (I — K)~l of opera­
tion I~K. All functions and numbers will be assumed real, but every­
thing here extends to the complex case with only trivial alterations. 

2. Three classes of methods. The three categories for which error 
bounds will be derived do not cover all ways of attacking (1.1), nor 
are they mutually exclusive. However, most of the frequently used 
procedures will be included. 

Class I. The kernel K(s, t) is replaced by an approximation of such 
form that the resulting equation can be solved exactly. Usually the new 
kernel is one of "finite rank" such as 

n n n 

(a) E 4n(s)Mt) or (0) £ 2 atMsWti), 

where the </>'s and \J/'s are known functions, preferably tractable; with 
such a kernel (1.1) reduces to an ordinary system of linear equations 
[ l l ; 26; 3] , For example, with K(s, t) replaced by (a) the integral 
equation becomes 

n /• 1 

(2.1) xn(s) - T,<t>i(s) j ti(t)xn{t)dt = y{s). 

We multiply in turn by ^i(s), • • • , ^n{s) and integrate over (0, 1), 
getting n linear equations for the numbers 
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pln) = I fi(t)xn(t)dt, i = 1, • • • , n. 
J o 

If this system is nonsingular, its solution substituted into (2.1) gives 
exactly 

*n(s) = y(s) + X) p" &M-

The problem then is to get some kind of limitation for the difference 
x(s)—xn(s). Various such bounds have been published by Tricomi 
[27], Akbergenov [ l ] , Kantorovich [15; 16] and Lonseth [19]. These 
error-limitations do not require that the approximating kernel be of 
finite rank, but merely that it be sufficiently close to K(s, t) in some 
sense. 

Class II. The equation is unchanged; instead, the "best" near-solu­
tion of form 

n 

Xn(s) = 4>o(s) + S di<l>i(s) 

is determined, where the </>'s are known functions. (Boundary condi­
tions imposed by K(s, t) and y (s) may be absorbed in #o(s), while 
the other <£'s satisfy the corresponding "homogeneous" conditions.) 
Everything now depends on the meaning of "best," and with different 
criteria we have different methods. One criterion for choice of the a's 
is to minimize the integral 

Q(fli, • • • i O = I \%n(s) — I K(s, t)xn{t)dt - y(s)> ds. 

This "method of least squares" leads to a system of linear equations 
for #i, • • • , an and is quite effective. Another method is based on the 
principle of moments (Galerkin's method) : the a's are chosen so that 

xn(s) — I K(s, t)xn(t)dt — y(s) 
J o 

is orthogonal to <l>i(s), • • • , $n(s) on (0, 1). That is, the a's satisfy n 
linear equations 

I <l>i(s) <xn(s) — I K(s, t)xn(t)dt — y(s)> ds = 0, i = 1, • • • , n. 

If K(s, t) =K(t, s), the method of moments coincides with a minimum 
principle of Rayleigh and Ritz. Various generalizations have been 
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considered. We refer those who are interested to the books by 
Kravchuk [17] and by Kantorovich and V. I. Krylov [ló] , and to 
journal articles by N. M. Krylov [18], Picone [25], and Oberg [22]. 

Class I I I . Iterative methods. Some iterative methods are schemes 
for solving (1.1) as it stands, with given y(s) ; others yield the inverse 
of the operator I — K which in (1.1) transforms the unknown x into 
the known y. C. Neumann's expansion is the prototype of methods 
of both sorts. Formally it says that, whatever y, the solution is 
given by 

x = y + Ky + K*y + • • • , 

where Kny is the result of operating n times on y with K\ this is the 
same as saying that the inverse 

(/ - K)-1 = 1 + K + K2+ • • • . 

Thus x is approximated by xn which is recursively defined by 

*o = y, 

xn+i = y + Kxn if n = 0, 1, • • • . 

Likewise, (7 — K)~l is approximated by Sn where 

So « I , 

5W+1 = / + KSn if * - 0, 1, • - • . 

Faster schemes for getting (I — K)"1 will also be described in §6. 
Perhaps the most important method not explicitly discussed here 

is that in which the integral 

/
K(s, t)x(t)dt 

o 

is replaced by an approximation (trapezoidal, Simpson's, Gauss', 
etc.) and x(t) is approximately determined only at finitely many 
points. This idea was Fredholm's heuristic guide in [ l0] . It has been 
used by Nyström in [2l] and elsewhere, and the error has been in­
vestigated by Ostrowski [24] and Kantorovich [15; 16]. Gradient 
methods (such as "steepest descent") may also prove useful, particu­
larly for symmetric kernels. 

Actual application of these methods may require numerical inte­
grations, or solution of a system of linear equations, or both. In the 
illustrations at the end of this paper the necessary quadratures could 
be carried out exactly, and the linear systems were of such low orders 
that a desk-computer was quite adequate. Such favorable examples 
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cannot always be expected, however, and a modern, high-speed auto­
matic calculator may be desirable, or even necessary. Solving a high-
order system of linear equations can be quite a problem. It is dis­
cussed comprehensively in G. E. Forsythe's paper [29]. 

3. Metric notions. The length or norm ||x|| of a function x(s), 
0 ^ 5 ^ 1 , may be defined in various ways. A natural adaptation of 
the ordinary Euclidean length of an ^-dimensional vector is 

(3.1) 11*11 = ( ƒ x\s)ds\ . 

With this quadratic norm, a linear combination of two functions with 
finite norm also has finite norm; furthermore, 

(0 ||*|l â 0; 
(ii) \\ax\\ == I a I ' II#11 if a is a constant; 

(iii) ||* + y|| û ||*|| + | | y||-

These properties characterize norms generally: they hold if one de­
fines, for x(s) continuous on O^gsgl , 

(3.2) | |«| | = max | x(s)\, 

or, for x(s) such that | x(s) \ p is integrable, 

(3.3) ||*|| = ( ƒ * \x(s)\*dsy \ pel. 

Error-estimates will be found in terms of norms. I t is important to 
know what a linear transformation does to the norm of a function. 
Suppose that the functions x(s) under consideration constitute a 
(real) normed linear space (i.e., if Xi and x2 are in the space, so is a&x 

+a2x2, where a\ and a2 are any real numbers; for every x, ||x|| exists). 
Suppose further that T is a linear transformation of the type known 
as linear operators (i.e., additive, homogeneous, such that ||x|| finite 
implies ||Tx|| finite, continuous in the sense that ||#n —#||—»0 implies 
| | r * w ~ T * | | —+0). Then there exist [2, p. 54] non-negative numbers 
M{T) a n d w ( r ) , 

||r*|| ||r*|| 
(3.4) M(T) = 1 u.b. ^ - / , m(T) = g.l.b. \ - / , 

l* M O ||*| | iiziî o 11*11 
which we call respectively the upper and the lower bounds of T. 
Evidently, whatever x, 
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(3.5) m(T)\\x\\ £ \\Tx\\ g M(T)\\x\\. 

If the sum Ti+T2 and the product TiT2 of two linear operators 7\ 
and T2 are operators defined so that, for every x, (Ti+T2)x = TiX 
+ T2x and (TiT2)x = Ti(T2x), they are also bounded and 

(3.6) M{TX + T2) S M{TÙ + M(T2), M(TXT2) ^ M{TX)M(T2). 

If T has the bounded inverse T*1, then [19] 

(3.7) M{T-l)m{T) = 1. 

If T=I-K and M(K)<\, 

(3.8) 1/{1 + M(K)} g M {(I - Z)- 1} ^ l / { l - M(Z)} , 

inequalities which we shall use later. 
The exact calculation of M(K) is usually out of the question. If 

K(s, t) is symmetric and the norm is the quadratic (3.1), M(K) is the 
reciprocal of the smallest X solving the characteristic problem (1.2). 
With the same norm and a nonsymmetric kernel, M(K) is JU~1/2> 

where fi is the smallest number such that there is a w(s) ^ 0 satisfying 

J o \J o 
«iW - M I ^ I £(', O f̂r, ^)^f w(ö* = o. 

These may not be easy to find. An upper bound to M(K) comes 
from the Schwarz inequality: 

(3.9) M(K) ^ ( f f K2(s, t)dsdt\ . 

With \\x\\ = max | x(s) \, 

(3.10) M(K) ^ max f | K(s9 t) \ dL 
O^s^l J o 

With\\x\\=r0\x(s)\ds, 

(3.11) M(K) g f max I K(s, t) \ ds. 

With the Minkowski norm (3.3) for p>l, Holder's inequality yields 

U i r /» l "ip/q \ UP 

I \K(s, t)\*dt\ ds> , 
where p~1+q~1 = l. 

4. Error-bound for kernel-replacement. Suppose that K(s, t) is 
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replaced by K(s, t)+n(s, /), and write x(s)+*(s) for the solution of 
the new equation. Then, briefly, we have 

* + € - (K + K)(X + Q = y 

while 

x — Kx = y\ 

so 

(4.1) * - K£ = KX + K£. 

If now (I-K^^I+R, 

* = (I + RHKX + KQ. 

If M{ (I+R)K} <l,we can limit ||*|| ; for 

11*11 ^ M { ( / + #)K}(||*|| + 11*11), 
and consequently 

(4.2) | |{| | ^ M { ( / + *)*} | | * | | / U - J f { ( 7 + *)«}]. 

Since 

Af {( / + R)K} g Af(Z + R)M(K), 

the foregoing will be valid for sufficiently small M(K). And if M(K) 
< 1 - I f (K), we find that 

(4.3) ||*|| ^ I f ( j c )M| /{ l - M(K) - M W } . 

We can also write down a point-wise bound for | *(s) | , no matter 
which of the norms in §3 is used. For instance, with the Euclidean 
norm (3.1) we see by applying the Schwarz inequality to (4.1) that 

(4.4) 

+ ( ƒ W , ')*)1/2(IMI +11*11). 

Into (4.4) we must substitute the bound (4.2) for ||*|| and use 

||*|| SM(I + R)\\y\\, 

in which M(I+R) ^ 1/ {1 - M{K)} if M{K) < 1. 
A quite different bound, based on Fredholm's solution-formula 

and the Hadamard determinant inequality, was published in 1924 
by Tricomi [27]. Akbergenov [ l ] in 1935 got essentially the results 
of this section for the norms (3.1) and (3.2), the latter of which is 
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given by Kantorovich and Krylov [16, p. 157]. Related but compli­
cated expressions are to be found in [15] as well. The present discus­
sion is based on [19]. 

5. Error-bound for methods of the second class. Here we are look­
ing for the "best" near-solution to (1.1) that lies in a certain finite-
dimensional functional manifold. Let 

n 

%n(s) = 4>o(s) + X) anl>i(s) 
i - 1 

be an arbitrary function in this manifold; let the selected values of 
0i, • • * , &n—determined by least squares, moments, or any other 
method—be 5i, • • • , an. The corresponding "solution" xn does not 
necessarily satisfy (1.1) but rather 

(5 .1) Xn — Kxn — y = fn9 

in which the residual fn(s) can be calculated a posteriori. Subtracting 
from (5.1) the true equation satisfied by the still unknown x(s), we 
get 

(5.2) xn — x — K(xn — x) = fn) 

so that with (I-K^^I+R as before, 

xn — x = (I + R)rn 

and for an appropriate norm 

(5.3) m(I + R)\\fn\\ ^ \\xn-x\\ g M(I + R)\\fn\\. 

If M(K)<1, (5.3) becomes, because of (3.8), 

(5.4) | |fw | | /{l + M{K)) rg H*. - %\\ S | |?n||/{l ~ M{E)\. 

Thus in this case we not only get the desired upper bound for the 
error-norm, but also a positive lower bound, if | | r n | |>0 . (The lower 
bound holds even if M(K)^1.) That there should be such a lower 
bound may at first seem surprising, but actually it is to be expected: 
we are trying to pick out of a subspace a vector which cannot be ex­
pected to be there, and whose "distance" from each vector of the 
subspace (usually) exceeds some positive quantity. The same con­
siderations apply more generally to solution of Tx = y, where T is 
linear (possibly a differential or integro-differential operator) : if T is 
itself bounded, m{T~l) = 1/M(T) and 

Xn X\ IS bounded away from 
zero; if T has a bounded inverse, we get an upper bound for 

*vn """"" "̂  11 • 

The local error can be limited much as in §4 (see 4.4). Or it may be 
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better to observe from (5.2) that 

(5.5) x(s) - xn(s) + fn(s) = - { K(s, t)[xn(f) - x(t)]dL 

Now if, e.g., the quadratic norm is being used, we have by the 
Schwarz inequality 

(5.6) | x(s) — xn(s) + rn(s) | ^ &(s)||#n — #||> 0 :g s ^ 1, 

where 

kis) = ( ƒ [K(s, t)]*dt\ 

and (5.3) can be used to limit ||ff» —x\\. Thus we have x(s) lying be­
tween the two functions 

(5.7) xn(s) — rn(s) ± £(s)||xn — #||, 0 ^ ^ 1, 

If the quadratic norm is used, the method of least squares is seen to 
have unique advantages. One is that the criterion for goodness is 
precisely that ||fn(| be the minimum; accordingly inequalities (5.3) 
would be most favorable. This does not prove, of course, that least 
squares is actually more accurate than any other similar method. 
Probably no such categorical statement is possible. Nevertheless, a 
method for which one can claim a certain accuracy has an advantage 
over methods for which one must claim less. 

Another advantage which "least squares" has over other methods 
in this class consists in the relative ease of computing ||fn||—still the 
quadratic norm. In principle, fn(s) can always be computed from (5.1) 
after xn has been determined; it must then be squared and integrated, 
which may involve some rather nasty computation. But for least 
squares there is an alternative method based on "Bessel's identity": 

(5.8) ||fn||
2 = ||y - tf>o||2 - £ ài(y - 0o, Tfr), 

in which the inner products 

(y - <j>0, T(j>i) = I (y - 0o)(<fo - K<l>i)ds} i = 1, • • • , n, 
J o 

are the constant right members of the equations determining 
5i, • • • , an. Thus the only new computation is that of \\y— ̂ o||2. 

I t should be pointed out that the simple considerations of this sec­
tion are actually quite general; the xn in (5.1) can be any kind of 
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approximation to the true x, and (5.3) holds provided that the sym­
bols have meaning. 

6. Error-bounds for iterative methods. If one writes (1.1) as 

x = y -\- Kx 

= y + K(y + Kx) = y + Ky + K2x 

= y + Ky + K2y + K*x, etc., 

it is not hard to guess that if M(K)<1, so that ||i£ntf||—»0, the se­
quence of vectors {xn} , defined by 

xn= y + Ky+ - • • + K^y, 

will converge to the solution x of (1.1), in the sense that ||x — xn||—»0. 
In fact, 

(6.1) ||* - * | | g M«(K)\\y\\/{l - M(K)}. 

Also, if Sn = I+K+ - • • +K*-\ 

(6.2) M{(I - K)-1 - Sn] ^ Mn(K)/{l - M(K)}. 

Instead of such a purely iterative approach, one might get an 
initial approximate solution by least squares or some other pro­
cedure and then wish to improve it by iteration. Suppose x(s) is such 
an approximation, and write 

(6.3) x — Kx = y + r. 

The point-wise bounds in (5.7) suggest that x(s) —f(s) may be a fair 
approximation to the true x(s); we define x±(s) =x(s) — r(s), so that 

xi — x = —• r, 

then define a sequence {xn} of further approximations by 

Xk+i — xk = Kk(—f), k = 1, • • • , 

the idea being to reduce ||r||, already small, by operating with K, 
M(K) < 1 . Adding all such differences through k = n — \y we see that 

n-l 

(6.4) xn - x = E * * ( - ? ) . K° = I . 

On the other hand, by subtracting (1.1) from (6.3) we observe that 
x—x satisfies equation 

x — x — K(x — x) = r, 

whence 
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00 

(6.5) x- x = £ J?*r. 
fc=0 

Addition of (6.4) and (6.5) leads to the inequality 

(6.6) \\xn - x\\ Û Mn(K)\\f\\/{l - M(K)}. 

For approximating the inverse (7 — iT) - 1 , a more rapidly con­
vergent iterative scheme than Neumann's can be based on an 
identity which Euler [8, p. 335] used in a problem on partitions, 
namely 

1/(1 - * ) = (! + x)(l + x*)(l + x") . . . (1 + x») 

which holds if \x\ < 1 . The wth partial product 

n - l 2 » - l 

n (i+x*) = z **, 
fc=0 fc=0 

so that for I — K, with 

(6.7) 7Tn = (7 + # ) (7 + #2) • • • (7 + 7C2»"1), 

we have 

(7 - K)-1 - 27n = i£2n + K2^1 + • • • , Jf (IQ < 1, 

and [20] 

(6.8) M {{I - K) - 1 ~ En} S M2n(K)/{l - M(K)}. 

The product expression (6.7) for Hn can be replaced by a recursion 
formula. Clearly Hn+1 = Hn(I + K2n+1) = i7n{27 - (7 - K2*+1)}, or 

(6.9) 27n+1 = i7„{27 - (7 - K)Hn}, 

the final expression coming immediately from (6.7) on pre-multiply-
ing each member by I — K. This technique was suggested by Ostrow-
ski [23] for equations of Volterra type, and has been used for matrices 
by several authors. 

A hierarchy of still more rapidly convergent iterative schemes can 
be constructed along the lines of Euler's identity.3 Next in line would 
be the identity 

1/(1 - x) = (i + x + s*)(i + xz+ *6)(1 + x9 + x18) • • • 

(6.10) • 

= n (i + **+ 2-8*)> 
3 Added later. I am grateful to R. D. James and Leo Moser for helpful suggestions. 
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valid if \x\ < 1 . Generally, we have 

oo / m— 1 \ 

(6.11) l / a - * ) = n ( z * ' - * ) • 

With m = 3 and operators instead of numbers, we write 

w - l 

(6.12) JBTn = I I {I + ^3* + ^2*3fc)-

Then one can show that 

(6.13) (/ - K)~X - ET = K3W + KZn+1 + • • • ; 

so 

(6.14) J f{ ( J - Ü:)" 1 - ET) S MZ\K)/{\ - M(K)}. 

A recursion formula like (6.9) is also obtainable, but it is not so 
simple. From 

and 

HZ-H?V + K* + K'-") 

(I - K)H? = I - KZ° 

(the latter identity follows immediately from (6.13)), we get 

HZ = H?{I + [ / - ( / - K)HT] + [ / - ( / - K)H?f) 

= H?{M - 3(7 - K)H? + [(I - K)H?]*}, 

which is considerably more complicated than (6.9) or the simple 
relation 

En+i = I + TTjBfn (J^n ==: ^n) 

which characterizes Neumann's expansion. The higher-order methods 
suggested by (6.11) with m>3 would be increasingly cumbersome. 

Bodewig [4; 5] has also discussed such rapidly convergent proc­
esses. I t is interesting to observe that in [5] he refers to Euler's ex­
tension [9, p. 422] of Newton's method. 

A different modification of the Neumann scheme was proposed by 
Wiarda and extended by H. Bückner and C. Wagner; details may be 
found in Bückner's monograph [ó]—which contains much on the 
general subject of solving integral equations, particularly (1.2)—and 
Wagner's paper [28]. 



t)x(t)dt = s2, 

'5(1 - t) 

XI - s) 

0 S s ^ 1, 

if O ^ j g ^ l , 

if 0 g * g s g 1. 
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7. Numerical illustrations.4 Some of the methods described above 
have been tried out on the equation 

x(s) + f 1 
J 0 

where 

(7.1) K(s,t) -

This integral equation corresponds to the simple boundary value 
problem 

x"(s) - x(s) = 2, x(0) = 0, *(1) = 1. 

However, the exact solution will not be used in checking the ap­
proximate solutions for accuracy. 

Kernel (7.1) has characteristic values n2w2 (n = l, 2, • • • ) ; so with 
the quadratic norm M(K) = 1/TT2; but even without this information 
it follows from the Schwarz inequality that M(K) g 1/(90)^2< 1/9. 
Hence 

(7.2) 9/10 < m{I + K) < M(I + K) < 9/8. 

To nH2 corresponds sin nirs as characteristic function; hence the 
spectral representation of K(s> t) is its Fourier sine series 

* sin WKS sin rnrt 
(7.3) K(s,t) = 2j: — 

Four solution-procedures will be summarized: (a) K(s, t) is re­
placed by one, two, or three terms of (7.3); (b) least squares; (c) 
Galerkin's method of moments; (d) least squares followed by itera­
tion. I t should be remembered that all the upper bounds are pessi­
mistic. 

EXAMPLE (a). With K(s, t) replaced by just the first term from its 
series representation (7.3), the solution 

Xl(s) = s - 0.034832 sin vs 

is found. From inequality (4.3), with M(K) computed from Bessel's 
identity, it is found that with the quadratic norm 

||* - *i|| â 0.017. 

The point-wise bound, from (4.4), satisfies in 0 ^ 5 g l 
4 The computations in this section were carried out by Mr. Thomas L. Glahn. 
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. , /s2(l - s)2 2 V ' 2 

| x(s) - %i{s) | ^ 0.0098(s - s2) + 0.S201 — -sin2™ J 

^ 0.027. 

Similar computations for n = 2 and n = 3 were carried out. The norm-
errors are bounded as follows: 

||* ~ *fc|| ^ 0.00822, ||» - xz\\ ^ 0.00501. 

Kantorovich [16, pp. 160-161] applies Akbergenov's error bound 
with norm max \x(s)\ to the equation 

-in / s \ 
x(s) — I (sin st)x(t)dt = 1 + s~~x ( cos 11 , 

and with kernel sin st replaced by st — sHz/6 shows that the point-
wise error does not exceed 10~6. This excellent result is possible mainly 
because the kernel is analytic, with alternating power series in s/, 
and because the interval is rather short. I t is not obvious how his 
inequality could be applied to the kernel (7.1). Kernels which are 
Green's functions for differential operators are not analytic, but fre­
quently their squares are integrable, so the quadratic norm has a 
chance of being useful. 

EXAMPLE (b). "Least squares" was applied with ^0(5) = 0 , 4>k{s) 
= sk~l if k^l. With « = 2, it was found that 

x2(s) = - 0.186785 + 0.9835005; 

with (5.4) 

0.0764 < \\x~ x2\\ < 0.0955. 

With n = 3, it was found that 

x9(s) = 0.006903 - 0.144901s + 1.128397s2, 

and now 

0.00280 ^ ||* - s8 | | ^ 0.00349. 

I t is clear that the norm of the error is 0.003 to three place accuracy. 
EXAMPLE (C). The moment method with n = 3 gave 

x*(s) = 0.006853 - 0.144819s + 1.128423s2, 

with 

0.00286 â ||* - *s|| ^ 0.00358. 

EXAMPLE (d). A single iteration of the second sort described in §6 



1954] FREDHOLM-TYPE INTEGRAL EQUATIONS 429 

was applied to the x2(s) found in (b) above. This led to the approxima­
tion 

x2(s) = - 0.070524^ + 0.906607s2 + 0.163917s3, 

with upper bound (6.6) 

| | x - x2\\ < 0.0106. 

Added in proof (August 23, 1954). Since this paper was written, 
three related error limitations have been found on the Oregon State 
College project. The first, by T. L. Glahn, is for a recursive scheme 
which determines successive coefficients in Fredholm's two series for 
the resolvent kernel. The second, by L. B. Rail, applies to the itera­
tive processes of G. Wiarda, H. Bückner, C. Wagner, and P. A. 
Samuelson. The third, by G. T. Thompson, gives a close bound for 
Bateman's method as applied to boundary problems for self-adjoint 
ordinary linear differential equations of second order. 
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