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1. Introduction. I t is well known that , for every real or complex 
topological vector space, the following statements hold good: 

(1) A non vanishing linear functional on the space is continuous if 
and only if its kernel is closed in the space; 

(2) Every finite-dimensional space possesses only one admissible 
topology. 

In this note we shall determine the widest classes of topological 
division rings that can be used as scalar domains of topological vector 
spaces so as to preserve these important propositions. The results 
thus obtained generalize part of the recent work of J. Braconnier [2] 
and I. Kaplansky [5J.1 In a subsequent paper we shall apply these 
results to other related questions. 

A topological ring is a ring endowed with an admissible topology, 
that is, a Hausdorff topology on the ring with respect to which the ring 
operations x+y, —x, xy are continuous. A topological vector space is 
a vector space over a topological division ring endowed with an 
admissible topology, that is, a Hausdorff topology on the vector space 
with respect to which the vector space operations x+y, \x are con­
tinuous. Throughout this note we shall understand the notion of 
completeness and completion for these topological systems in the sense 
formulated by A. Weil [8] (see also Bourbaki [ l ] ) . Xi and X2 being 
two topologies on the same point set, we write SEî SC2 to denote that 
every set open according to Xi must be open according to £2 ; and 
Xi<X* if, in addition to this, Xi9^X2. 

2. Strictly minimal rings. Let K be a topological division ring and 
XK be its admissible topology. A topology X on K is said to be 
admissible with respect to XK if K endowed with X is a topological 
vector space over K endowed with XK'» this means that the mapping 
(x, y)—>x+y is continuous from Î X Ï to 2 , and the mapping (x, y) 
—ïxy is continuous from XKXX to X. Putting y = l in the last condi­
tion, we see that the identity mapping x—*x is continuous from XK 
to X, tha t is, XSXK. An obvious partial converse to this fact is the 
following: if X is an admissible topology on K and XSXK, then X is 
admissible with respect to XK> 
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A topological division ring K is said to be minimal if its topology XK 
is a minimal element in the ordered set of all admissible topologies on 
K; that is, if there exists no admissible topology X on K such that 
X<XK.2 The topological division ring is said to be strictly minimal 
if there exists no topology Xon K admissible with respect to XK such 
that X<XK] it amounts to the same to say that the only topology on 
K admissible with respect to XK is XK itself. 

THEOREM 1. Every strictly minimal topological division ring is 
minimal. 

PROOF. Let XK be the admissible topology given on the division 
ring K, and let X be another admissible topology on K. If X^XK 
it follows that X is admissible with respect to XK] but XK is strictly 
minimal: therefore X = XKf that is, XK is minimal. 

Let K be a topological division ring. A set AQK is said to be 
l-bounded if for any neighborhood IF of 0 there exists a neighborhood 
F of 0 such that VAQW. If K is discrete, every set A is obviously 
bounded. Let us assume that K is not discrete. If the set A is bounded, 
for any neighborhood IF of 0 there exists some \QK, XT^O, such that 
\AQW: it suffices to pick some X5^0 in that neighborhood F of 0 
for which VAQW. Conversely, assume that corresponding to 
every neighborhood W of 0 there exists \QK with X=^0 such that 
X̂ 4 C W. Given the neighborhood W of 0, take some neighborhood 
Wi of 0 such that WiWiCW and determine \QK with X^O 
such that X^lCtFi. Putting F = TFiX, we have a neighborhood 
of 0 and VAQW: therefore A is /-bounded. The set A is said to be 
restricted if 0(£ J5, where B = (A — 0)""1, where the bar denotes closure 
in K and A — 0 is the set of all xQA, x^O. I t amounts to the same to 
say that there exists a neighborhood F of 0 satisfying the following 
equivalent conditions: 1 ( £ F 4 , 1(£AV. 

Every topological division ring has at least one restricted neighborhood 
of 0. In fact, consider a neighborhood IF of 0 such that 1 (£ W and 
take a neighborhood F of 0 such that VVQW: then l ^ F F and 
therefore F is restricted. 

Every l-bounded set is restricted. Let W be a neighborhood of 0 such 

2 A minimal admissible topology on K, even when K is complete under it, need 
not be the first element of the ordered set of all admissible topologies on K. In fact, 
let R be the field of real numbers and X be the natural topology on R. It is known 
(see Dieudonné [3]) that there exists an admissible topology X* on R such that the 
completion of R under X* is isomorphic to the field of complex numbers endowed 
with its usual topology. By the remark after the proof of Theorem 2, we see that both 
X and X* are minimal on R. But XT*X*: therefore X £*X* is false. 
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that IQW. If the set AC.K is bounded, there exists some neighbor­
hood F of 0 such that VAQW and therefore l(£VA. 

THEOREM 2. Every nondiscrete topological division ring in which all 
restricted sets are l-bounded is strictly minimal. 

PROOF. Let K be the given division ring and XK be its admissible 
topology. Consider a topology ï o n l admissible with respect to 
XK> We have already seen that X S XK- Let F0 be a neighborhood of 0 
according to X such that 1(3; Vo. The continuity of the mapping 
(x, y)—*xy from XKXX to X implies the existence of a neighborhood 
Vi of 0 according to XK and a neighborhood F2 of 0 according to X 
such that V1V2GV0 and a fortiori l $ F i F 2 . This shows that F2 is 
restricted according to XK» By the assumption, V% is /-bounded ac­
cording to XK and therefore corresponding to every neighborhood 
F of 0 according to XK there exists some X£2£, XT^O, such that 
W2C.V. Since XF2 is a neighborhood of 0 according to X, we may 
infer that the same is true for V. This shows that XK ^ X and finally 
X = XK. 

From the result just established, we may conclude that every non-
discrete topological division ring which admits a valuation preserving 
the topology (see Kaplansky [5]) is strictly minimal. More particu­
larly, every nondiscrete locally compact division ring is strictly 
minimal. 

3. One-dimensional spaces. At this moment, let us recall the usual 
notion of direct image of a topology in the vector space case. Let E be 
a topological vector space over a topological division ring K, let F be 
a vector space over K and consider a linear transformation 0:£—>F 
from E onto F, that is <t>(E) = F. Let XE and XK be the topologies given 
on E and K, respectively, and define a topology XF on F in the fol­
lowing way: a set YQF is said to be open according to XF if its 
inverse image «^(^O is open according to XE- I t is easy to see that : 
(1) XF is really a topology on F, (2) <f>(X) is open according to XF 
for any X open according to XE, (3) the vector space operations on 
F are continuous with respect to XF and XK, (4) XF is a Hausdorff 
topology if and only if the kernel 0~1(O) is closed according to XE, 
and finally (5) <f> is continuous from XE to XF- We call XF the direct 
image of XE under 0. 

THEOREM 3. Let K be a given topological division ring. Consider two 
topological vector spaces E and F over K, where F is one-dimensional, 
and a nonvanishing linear transformation <j>:E—*F. If K is strictly 
minimal, then <f> is continuous if and only if its kernel 0""1(O) is closed in 
E. If K is not strictly minimal, this result need not be always true. 
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PROOF. If <t> is continuous, it is obvious that its kernel must be 
closed in E: this half of the proof does not depend on K. Conversely, 
let us assume that K is strictly minimal and let XK be its topology. 
Assume also that «^(O) is closed in E. Noticing that <I>(E)~F, we 
may introduce on F the direct image XF of the topology XE given on 
E, and XF will be admissible on F. Since every one-dimensional 
vector space F over K is algebraically isomorphic to K considered as 
a vector space over K, the assumption that K is strictly minimal is 
equivalent to saying that every one-dimensional vector space over K 
possesses only one admissible topology. Therefore XF coincides with 
the admissible topology previously given on F and the proof is 
achieved by remarking that <j> is continuous from XE to XF. Now, 
let us assume that K is not strictly minimal and let J b e a topology 
on K admissible with respect to XK such that X<XK* Consider the 
set E = K endowed with £ a s a topological vector space over K en­
dowed with XK and the set F = K endowed with XK as a topological 
vector space over K endowed with XK- The nonvanishing linear 
transformation 0:E—>F defined by <j>{x)~x for any x&E has a 
kernel <t>~l{$) = 0 closed in E, but <t> is not continuous. 

THEOREM 4. Let E = E i©E 2 be a topological vector space over a strictly 
minimal topological division ring K, where E\ and E2 are vector subspaces 
of E, the first being one-dimensional. Let X be the admissible topology 
given on E and Xi and X2 be the admissible topologies induced by X on 
Ei and E2, respectively. Then we have ï = ï i © ï 2 if and only if £ 2 is 
closed in E. 

PROOF. I t is clear that the relation S£ = £ i © ï 2 implies that E2 (and 
also Ei) is closed in E. Conversely, let us assume that £2 is closed in 
E. Putting £* = S£i©!£2 we obtain an admissible topology on E. 
Consider any neighborhood W of 0 in E according to X and determine 
some neighborhood F of 0 in E according to X such that V+ VQ W. 
Then W\ = VC\Ei is a neighborhood of 0 in Ei according to X\ and 
W2 = FP \£ 2 is a neighborhood of 0 in E2 according to X2 and we have 
Wi+ W2QW. Since Wi+ W2 is a neighborhood of 0 in E according to 
X*, the same is true for W and we have proved that £ â £ * . This 
half of the proof does not depend on the nature of K. On the other 
hand, every # £ E may be expressed uniquely as #=# i+#2 , where 
# i £ E i and X2ÇÏE2. Define 7TI:E—>Ei and 7r2:E—>E2 by 71*1 (#) =#1 and 
7r2(#)=#2. Since E2=7rf1(0) is closed in E, we may make use of 
Theorem 3 and say that irilE—>E\ is continuous from X to SCi. I t 
amounts to the same to say that 7Ti:E—>E is continuous from X to X. 
Since 7r2(#) =x— TT^X), we may also say that 7r2:E-~>E is continuous 
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from X to X or, equivalently, that 7r2:E—»E2 is continuous from X to 
£2 . Having proved this, let there be given any neighborhood W of 0 
in E according to X* ; by definition there exists a neighborhood W\ of 
0 in Ei according to Xi and also a neighborhood W2 of 0 in E2 according 
to X2 such that W1 + W2C.W. By the continuity of 7Ti, we may find a 
neighborhood Vi of 0 in E according to X such that 7Ti( Fi) C Wi, and 
similarly there exists a neighborhood F2 of 0 in E according to X for 
which <rc2( V2) C TF2. Putting F = ViH F2, we see that VC Wi+ W2CW; 
therefore W is a neighborhood of 0 in E according to X and we have 
proved that 2 * ^ 2 . In conclusion we have X = X*. 

E and F being two sets and <t>:E—*F being a function from E to 7̂ , 
the set G(0) of all points {x, 0(#)} of the product space EXF will 
be called the graph of the function. 

THEOREM 5. Let K be a given topological division ring. Consider two 
topological vector spaces E and F over K, where F is one-dimensional, 
and a linear transformation $:E—>F. If K is strictly minimal, then <j> 
is continuous if and only if its graph G(<t>) is closed in EXF. IfK is not 
strictly minimal, this result need not be always true. 

PROOF. I t is clear that the graph of a continuous function into a 
Hausdorff space is closed. Therefore the continuity of <fi implies that 
G(<£) is closed. Conversely assume that K is strictly minimal and 
G(0) is closed. Define <p{x, y)~<j>(x)—y for # £ E , yÇîF. Then <p:E 
XF-+F is a linear transformation with a closed kernel (p"1^) =G(0). 
By Theorem 3, <p is continuous and since <p(x, 0) =<p(x) we conclude 
that 0 is continuous. The final part of the statement is proved exactly 
as in the case of Theorem 3. 

4. Finite-dimensional spaces. A partial extension of TychonofFs 
theorem about the uniqueness of admissible topologies is the fol­
lowing: 

THEOREM 6. Let Kbea given topological division ring. If K is strictly 
minimal, every n-dimensional vector space E over K possesses only one 
admissible topology with respect to which all n — 1 dimensional vector 
subspaces are closed. If K is not strictly minimal this result need not 
be true. 

PROOF. Let X be the admissible topology given on E. Since every 
vector subspace of E is an intersection of n — 1 dimensional vector 
subspaces, it follows from the assumptions that all vector subspaces 
of E are closed. Let E = E i © • • • ©E n , each Ei being a one-dimen­
sional vector subspace of E. Put E* = E»© • • • ®En. Let X% and X* 
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be the topologies induced by X on Ei and on El respectively. Since E2 

is closed in E, we have £ = £ i © £ 2 by Theorem 4. Since Ez is closed in 
E and EZCE\ we see that £ 3 is closed in E2. Therefore X2 = X2®XZ 

again by Theorem 4, and so on. By induction we get S£ = !£iffi • • • 
®Xn> Since K is strictly minimal, each Xi is the unique admissible 
topology on £»•; this implies the uniqueness of St. The final part of 
the statement is proved exactly as in the case of Theorem 3. 

In the preceding theorem, it would be sufficient to assume the exist­
ence of n closed vector subspaces Su • • • , Sn of dimension n — 1 such 
that SiC\ • • • P\5'w = 0. In fact, let S be another vector subspace of 
dimension w — 1. Consider n + 1 linear functionals (frilE—ïK and 
<f>:E—*K with kernels Si and S (i = l, • • • , n) respectively. Then 
there are c\, • • • , cnÇ,K such that 0(#) =Ci0i(ff)+ • * * +£n0n(#) for 
any # £ E . Since 5* is closed, we see by Theorem 3 that each <£* is 
continuous ; therefore 0 is continuous and S is closed. 

The complete extension of TychonofFs theorem is as follows: 

THEOREM 7. Let K be a given topological division ring. In order that 
every finite-dimensional vector space over K should have only one ad­
missible topology it is necessary and sufficient that K be strictly minimal 
and complete. 

PROOF. We have already remarked that every one-dimensional 
vector space over K possesses only one admissible topology if and 
only if K is strictly minimal. Let us assume that K is not complete and 
consider its completion Ky that is, the essentially unique complete 
topological ring containing K as a dense topological subring (see 
Bourbaki [ l ]) . By the assumption, we may pick some ÇÇE.K—K. 
Let EQ.K be the set of all points xÇ+y, where xf yÇzK. Since KQK, 
we may say that K is a topological vector space over K. But £ is a 
vector subspace of K. Therefore, the topology Xi induced on the 
vector space E by the topology of K is admissible. Moreover KC.E, 
'K = E (the bar denoting closure in E according to Xi) because K is 
dense in K and a fortiori in E. On the other hand, the mapping 
(x, y)-*x%-\-y is a vector space isomorphism between KXK and E. 
Since KXK is a topological vector space over K} we may transfer 
its topology to an admissible topology X2 on E and it is clear that 
]? = i£ (where the bar now denotes closure in E according to X2). 
By this procedure, we have been able to set up two distinct admissible 
topologies Xi and £2 on the two-dimensional vector space E over K. 
Therefore, if every two-dimensional vector space over K must have a 
unique admissible topology, K is to be complete. Conversely, let us 
assume that K is strictly minimal and complete. This implies that 
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every one-dimensional vector space over K possesses only one ad­
missible topology and, in addition, is complete under this topology. 
Assume that every n — 1 dimensional vector space over K possesses 
only one admissible topology and, in addition, is complete under this 
topology. Let us consider a vector space E of dimension n over K and 
an admissible topology X on E. For any n — 1 dimensional vector 
subspace of 23, the induced topology is its unique admissible topology 
and the subspace is complete under it ; a fortiori the subspace is closed 
in £ . By Theorem 6 it follows that X is uniquely determined ; in addi­
tion to this, we may infer from SE = !£i© • • • ©£» (in the notation of 
the proof of Theorem 6) that E is complete under £ . The induction is 
thus completed. 

THEOREM 8. Let K be a given topological division ring. In order that 
every automorphism of any finite-dimensional topological vector space 
over K should be continuous it is necessary and sufficient that K be 
strictly minimal and complete. 

PROOF. Assume first that every automorphism is continuous. Let Xi 
and X2 be two admissible topologies on the vector space Kn — KX • • • 
XK (n times). Consider the vector space KnXKn endowed with the 
admissible topology £ i X Î 2 . Since KnXKn is a square of a set, the 
symmetry {#, ^}—>{^, x} has a meaning (where #, yÇ.Kn). This 
transformation is an automorphism of KnXKn. By the hypothesis it 
is continuous and this amounts to saying that ï i = Ï2. This shows 
that every finite-dimensional vector space over K has a unique 
admissible topology. Applying the preceding theorem we see that K is 
strictly minimal and complete. Conversely, if K satisfies these condi­
tions, we see by the same theorem that we have uniqueness of ad­
missible topology in the finite-dimensional case: since the transform 
of an admissible topology under an algebraic isomorphism between 
two topological vector spaces is clearly admissible, we may infer 
that this algebraic isomorphism is also homeomorphic. More gen­
erally, if </>:E—>F is a linear transformation, with kernel S = 0~"1(O), 
between two finite-dimensional topological vector spaces, we may 
consider it as the product of the natural homomorphism E—+E/S and 
the natural isomorphism E/S—*<f>(E): therefore <f> is continuous. 

THEOREM 9. Let K be a given topological division ring. Consider two 
topological vector spaces E and F over K, where F is finite-dimensional, 
and a linear transformation <j> : E—>F from E onto F. If K is strictly 
minimal and complete, then <t> is continuous if and only if its kernel 
<I>^1(0) is closed in E. If K is not strictly minimal, or is not complete% this 
result need not be always true. 
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PROOF. The sufficiency of the assumptions is proved exactly as in 
the case of Theorem 3, but now with the help of the preceding 
theorem. If the assumptions concerning K are not fulfilled, we are 
able to find a vector space E over K of dimension one or two (see the 
first half of the proof of Theorem 7) endowed with two admissible 
topologies Xi and %2 such that SCx<SC2: then the identity transforma­
tion of E is not continuous from £ i to U2 but has a closed kernel. 

THEOREM 10. Let E=EX®E2 be a topological vector space over a 
strictly minimal complete topological division ring K, where E\ and E2 

are vector subspaces of E, the first being finite-dimensional. Let X be the 
admissible topology given on E and SCi and X2 be the admissible topologies 
induced by SE on E\ and E2, respectively. Then we have X = Xi®X2 if 
and only if E2 is closed in E. 

PROOF. The proof is exactly the same as that given for Theorem 4, 
but now with the help of the preceding theorem. 

The preceding Theorem 10 can be reformulated in the customary 
fashion as a result about the continuity of a projection with closed 
kernel of a topological vector space onto a finite-dimensional vector 
subspace, or a projection with finite-dimensional kernel of a topo­
logical vector space onto a closed vector subspace; similarly for 
Theorem 4 and projections with one-dimensional ranges or kernels. 

THEOREM 11. Let K be a given topological division ring. Consider two 
topological vector spaces E and F over K, where F is finite-dimensional, 
and a linear transformation <f>:E-»F. If K is strictly minimal and 
complete, then <f> is continuous if and only if its graph is closed in 
EXF. If K is not strictly minimal, or is not complete, this result need 
not be always true. 

PROOF. The first part is proved as in the case of Theorem 5 by using 
Theorem 9. The final part is proved as in Theorem 9. 

A topological vector space E is said to be absolutely closed if E is 
closed in every topological vector space containing it as a topological 
vector subspace. I t is known that this is equivalent to saying that E is 
complete. From Theorem 7 if follows that every finite-dimensional 
topological vector space over a strictly minimal complete topological di­
vision ring is complete. In different words, every finite-dimensional 
vector subspace of a topological vector space over a strictly minimal 
complete topological division ring is closed. A stronger result is the 
following: 

THEOREM 12. Let E be a topological vector space over a strictly minimal 
complete topological division ring K. If Ei and E2 are vector subspaces 
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of E, the first being finite-dimensional and the second closed in E, then 
E1+E2 is a closed vector subspace of E. 

PROOF. Without loss of generality, we may assume that Ei and E2 

are disjoint vector subspaces and therefore JEI+JE2 = 22I©.E2. Consider 
the completion Ë of E, that is, the essentially unique complete topo­
logical vector space over K containing E as a dense topological vector 
subspace. Since Ei is disjoint from E2, we have E\ — OC-E —E2. But 
E—E2 is open in E and this enables us to find a set A C Ê open in Ë 
such that AC\E = E-E2. Then £ i - 0 O 4 , E2CÊ-A and therefore 
E2CË—A (here and in the sequel the bar denotes closure in Ë). 
Thus JEI — 0 C Ë— E2 and E\ and E2 are disjoint vector subspaces of 
Ë. Let us prove the relation "F = Ei®E2, where F = EX®E2. JThe 
inclusion D is obvious. By Theorem 10, the topology on E\@E2 is 
the direct sum of the topologies on E\ and on E2. But £1, being finite-
dimensional, is complete and E2) being closed in Ë, is also complete. 
This shows that £ 1 0 £ 2 is complete and thus closed in Ë. From this 
we conclude that the inclusion C is true. Finally observing that 
£ i C £ and making use of the modularity law we have EC\F — E 
r\(Ei®E2) = £ i 0 ( £ n £ 2 ) = £ i 0 £ 2 , that is, £ i © £ 2 is closed in £ . 

Theorem 12 was proved by Mackey (see [6, Lemma 2.1]) in the 
case of normed spaces. I t is known (see Stone [7, p. 21]) that this 
theorem need not be true even in separable Hubert space if we assume 
merely that £1 and £ 2 are closed in £ . 
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