
SOME REMARKS ABOUT LIE GROUPS TRANSITIVE 
ON SPHERES AND TORI 

ARMAND BOREL 

The present note pertains principally to two papers of D. Mont­
gomery and H. Samelson [l, 2J,1 in which the authors study com­
pact Lie groups transitive on tori [ l ] and spheres [2], I will here 
prove in another way, generalize, and sharpen a part of their results. 
§1 contains the remarks to [ l ] , §2 to [2]; they are independent of 
one another and the methods used in both are quite different. 

I recall first the definition and some simple properties of homo­
geneous spaces. A manifold W is a homogeneous space under the Lie 
group2 G if to each element a of G there corresponds a differentiate 
transformation Ta'x-^Ta(x) of W into itself such that : 

(1) Ta{x) depends continuously on the pair a £ G , x£:W. 
(2) To the product (ab) corresponds the mapping x—>TCab)(x) 

= Ta[Th(x)]. 
(3) Given any two points x, y in W, there exists aÇz.G such that 

Ta(x) —y (that is, G is transitive on W). 
G is said to be effective on W if only the identity element e of G 

induces the identity transformation of W. 
Let us choose an arbitrary point x of W. The set of elements h in 

G for which Th(x) = # is a closed subgroup H of G, called the asso­
ciated group. As is well known [3, no. 29], W may be identified with 
the space of left cosets G/H, the mappings Ta being then: xH-*(ax)H. 
Actually, H depends on the choice of # £ PFand should be denoted HX9 

but I shall in general drop the index x as there will be no danger of 
confusion and also because all the groups Hx (xÇiW) are conjugate to 
each other in G. 

When considering a homogeneous space as the space of left cosets, it 
is quite easy to prove that every subgroup of H which is invariant in G 
induces the identity mapping of W, and, conversely, a subgroup of H, 
each element of which induces the identity of W, is invariant in G. 

1. The w-dimensional torus as a homogeneous space. In [ l ] , 
D. Montgomery and H. Samelson proved that a Lie group which acts 
transitively and effectively on the n-dimensional torus is itself the 
^-dimensional toral group Tn. Actually, as they remark at the end of 

Received by the editors June 8, 1948. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 The manifolds and Lie groups considered here are always compact. 
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their note, their proof gives at the same time the stronger theorem: 
Let W be an n-dimensional homogeneous space under a compact 

connected Lie group G, the first Betti number of W being n. 
Then W is homeomorphic to the n-dimensional torus, and if G is 

effective on W, it is isomorphic to Tn.z 

I shall prove here the more general theorem: 

THEOREM I. Let W be an n-dimensional homogeneous space under the 
compact connected Lie group G. Let us suppose that for one index 
j (l^j^n — 1) thejth Betti number of W equals the binomial coefficient 
Cn,j. Then: 

(a) W is homeomorphic to the n-dimensional torus ; 
(b) if G is effective on W, G is isomorphic to the n-dimensional toral 

group Tn.z 

The demonstration is quite different from that given in [ l ] in the 
case 7 = 1, and employs the theory of integral invariants on a homo­
geneous space [4], the main theorems of which I review now. 

Let us denote by p3- t he j th Betti number of W and by tij the num­
ber of linearly independent differential exterior forms of degree j on 
W which are invariant under all transformations of G. Then we always 
have: 

Pi Û nj g Cnj. 

The first inequality follows from the theorems of G. de Rham [5] 
and from the fact that every closed form is equivalent to an invariant 
one [4, Theorem I ] . To obtain the second inequality one needs only 
to remark that an invariant form is completely determined by its 
value at one point of W. 

Let now x0 be a definitely chosen point of W, H=HXQ the asso­
ciated group; we can take in a neighborhood U(e) of e in G canonical 
coordinates xi, #2, • • • , xn, xn+u • • • , xn+8 such that H(~\U(e) is 
the 5-plane of the last 5 coordinates ; xi, • • • , xn+s may also be taken 
as coordinates in the tangent space to G at e. The transformations: 
x—>(a~lxa)y where a £ G , xÇ:U, are linear, and form the adjoint linear 
group of G, which I shall denote by Ad G. G being compact, Ad G 
may be assumed to be orthogonal. The representation of H contained 
in Ad G splits then into two parts, one of which is a linear group 7 
leaving invariant the set of variables xi, • • • , xn. But xi, • • • , xn 

can be taken as coordinates in a neighborhood V(xo) of Xo in W (or 

3 G being then abelian, H reduces to the identity element if G is effective; W may 
be identified with the manifold of G, 
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as coordinates in the vector space L(xo) tangent to Wat xo), so that y 
indicates how H acts on V(x0) (or on L(x0)). 

To 7 there corresponds a linear group 7y of degree Cnj: the 
group of transformations of /-dimensional elements of L(xo) induced 
by the operations of 7. The following theorem allows us to compute, 
at least theoretically, n3- with the help of y$ (see [4, nos. 25, 28]), 

The number of linearly independent invariant differential forms ofde­
gree j equals the number of times the trivial representation* of H occurs in 
7;-

If W is the manifold of a group G', one takes as transformation 
group of PTthe left and the right translations of G'\ then G — G'Y^G', 
and the differential forms invariant under G are the doubly (left and 
right) invariant forms. The associated group He is isomorphic to 
Ad Gf and the number n3 of doubly invariant independent forms is 
also given by the previous theorem, where 7 is replaced by Ad G' and 
yj by the corresponding group (Ad G')y of transformations of j-di-
mensional elements (see [4, no. 53]). 

Theorem I will be an immediate consequence of the results men­
tioned above and of the following rather trivial lemma: 

LEMMA. Let A be a regular nXn matrix, Aj the matrix of degree 
Cnj giving the transformation of j-dimensional planes induced by A. 

If for one index j (l^j^n — 1) Aj — E (identity matrix), then 
A=±E. 

PROOF. The coefficients of A j are the determinants of degree j of A, 
and especially the diagonal terms of A j are the principal j-minors of 
A. 

If A y^cEy then there is at least one vector x~~* which is not eigen­
vector of the linear transformation: x~~*—>Ax~* given by A, that is, 
x~* and Ax~* are linearly independent. Let wj be a j-dimensional plane 
containing x~* but not Ax~~* (such a plane exists, since j^n — 1). Wj 
is certainly not invariant under Aj and AJT&E, which contradicts the 
assumption. Therefore we must have A = cE ; but then each diagonal 
term of Aj equals cj\ if Aj = E> one has^c= ± 1 and A = ±E. 

PROOF OF THEOREM I. Let W be a w-dimensional homogeneous 
space, one Betti number pj of which equal Cn,j> Then we know that 
nj~CnSand that 7, reduces to the identity matrix. The previous 
lemma shows that 7 consists either of £ or of -\-E and •—£. In the 
former case, every element of the associated group H induces the 
identity mapping of a neighborhood V(x) of x in W, and therefore 

4 That is, the representation of degree 1 which assigns the number one to each 
element of H, 
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on the whole of W.B H is then invariant in G and W is homeomorphic 
to the manifold of a group G' = G/H. We also see that, if G is effective 
on W, H={e} and G' = G. 

In the second case (— J E £ T ) , H possesses a subgroup Hi of index 
two represented by +E in 7. Hi is invariant in G, W = G/Hi is the 
manifold of a group G' and £y(TF) ^ Cn,,\ But on the other hand IF is a 
two-fold covering space of W and therefore, as is known, p3(W) 
^p3(W). Thus p3{W) = Cntj. 

We know now that, if pj(W) = Cw,y, then W is either homeomorphic 
to or twice covered by the manifold of a group G', and that G = G' if 
G is effective on W. The latter case cannot occur when G' is abelian 
(see footnote 3). 

We have seen that pj{Gr) = Cnj. Theorem I will therefore be com­
pletely proved if we establish the proposition : 

Let W be the manifold of a compact connected n-parameter Lie group 
G. For one index j (l^j^n — 1) let pj(W) = Cn,y. 

Then G is isomorphic to the n-dimensional toral group Tn. 
PROOF. This could be deduced from theorems of E. Cartan and H. 

Hopf on the Poincaré polynomials of compact Lie groups, but we can 
also follow the same method as above: if pj=Cnj then nj=Cnj, 
(Ad G)j — E and Ad G = E (Ad G is connected and contains only one ele­
ment if it is discrete). That means that {a~lxa) =x for aÇî.Gy # £ U(e), 
and therefore also for every x £ G , since an element of a connected top­
ological group may be written as the product of a finite number of 
elements taken in an arbitrary neighborhood U(e) of the identity. 
G is then abelian; being compact and connected, it is isomorphic to 
Tn according to a well known theorem [3, no. 43]). 

2. Even-dimensional spheres as homogeneous spaces. In [2], 
Montgomery and Samelson study spheres of arbitrary dimensions; 
their results and demonstrations show that the cases of even and odd 
dimensionality have to be treated separately. Here I shall consider 
only the simpler one: even-dimensional spheres. 

I t is first shown in [2] that a compact connected Lie group acting 
transitively and effectively on an even-dimensional sphere Sn is 
simple. Sn being simply connected and having, for n even, an Euler-
characteristic x(Sn) equal to two, that theorem is contained in the 
following statement : 

THEOREM I I . Let G be a compact connected Lie group acting transi-
6 This last point may be for instance deduced from the fact that the transforma­

tions Ta are isometric mappings of W onto itself in a complete Riemannian metric 
[3, no. 36]. 
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lively and effectively on a simply connected space W which has an Euler-
characteristic equal to a prime number. 

Then G is simple. 

The proof is based on a theorem of H. Hopf and H. Samelson [ó] 
which I shall formulate a little later, but first I must recall some points 
of the theory of compact Lie groups. 

All maximal abelian subgroups of a compact connected Lie group 
are toral groups and conjugate to each other (see for example [6, 
no. 4]). Their common dimension r defines the rank r(G) of G. Let 
Tr be a maximal toral group; the normalizer N(Tr) of Tr (that is, 
the totality of elements x Ç G for which x~lTrx(ZTr) has also the 
dimension r and consists of a finite number of cosets of Tr [6, Hilfs-
satz 2 ] ; each coset defines one automorphism of Tr and the group 
N(Tr)/Tr is isomorphic to the group of automorphisms of Tr ob­
tained by means of the inner automorphisms of G leaving Tr invari­
ant ; this group plays a fundamental role in the theory of semi-simple 
Lie groups. I shall call it *((?); it is independent of the choice of Tr 

since all maximal toral groups of G are conjugate to each other. If H 
is a proper subgroup of G having the same rank as G, the group $(H) 
is of course a subgroup of <£(£). U H is a proper connected subgroup 
of same rank as G, then $( iJ) is a proper subgroup of $(G). This is 
not explicitly stated, but follows easily from the theory of singular 
elements in a compact group (see, for example [7], especially §2, 
nos. 5, 7). 

The theorem of Hopf and Samelson I need is: 
Let W be a homogeneous space under a compact connected Lie group. 
Then x(W)^0; it is positive if and only if the rank of the associated 

group H equals the rank of G; in that case, xW) ^s equal to the index of 
*(fl) in $(G).6 

PROOF OF THEOREM II . Let W be a homogeneous space possessing 
the properties listed in Theorem II, and let H be the associated 
group; then r(H) =r(G); moreover, W being simply connected, H is 
connected [3, no. 31 ],7 and we see, by the way, that xiW) > L Let us 
call a connected subgroup of G maximal if it is not contained in another 
connected proper subgroup of G. Then, if x(W) *s a prime number, H is 
maximal, for if there were a connected group Hf such t h a t i J C ^ ' C G , 
H^H'^G, we should have 3>(iJ)C$(ir)C<£>(G) with $(H)?±<$>(H') 

6 Tha t is, the quotient of the order of &(G) by the order of &(H). 
7 In our special case, the converse is also t rue: If H is connected and if r{H) —r(G), 

then G/H is simply connected. This follows from the fact that H contains a toral group 
Tr maximal in G and that every closed curve in G is homotopic to a closed curve in Tr. 
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9e^(G) (see the previous paragraph), and the index of &(H) in &(G) 
could not be a prime number. 

Let us suppose now that G is not simple. Then G — &/N, where N is 
a finite group and G a direct product G1XG2X • • -XG& of compact 
simple groups [3, no. 52]; W may be considered in an evident way as 
a homogeneous space under G, the associated group H being the 
reciprocal image of H in G. If G is effective then G is "almost effec­
tive," that is, only a finite number of elements in G induce the 
identity mapping of W. It is clear that H is maximal in G and that 
r(H)=r(G); from the last equality it may be deduced readily that 
H is itself a direct product H i X # 2 X • • • XHk (H%CGit 

i — 1, • • • , k). One Hi at least must be different from the G,- in which 
it lies; let us suppose that JBi^Gi, then, H being maximal in G, we 
have Hi — Gi (f = 2, 3, • • • , k). 

G2 X G3 X • • • X Gk is now a connected subgroup of H which is 
invariant in G ; it must contain only the identity element if G is almost 
effective; therefore, G is isomorphic to Gi/N and is simple, q.e.d. 

In [2] D. Montgomery and H. Samelson also determined the simple 
groups which act transitively on Sn. Their method is of topological 
nature and requires the knowledge of the homology rings of simple 
groups; it could not be applied to the exceptional groups. 

Another method is suggested by the previous considerations; it 
consists in finding directly the associated group H. We have seen 
that if G/H is homeomorphic to Sn (n even) then H is connected, 
maximal (in the sense of the proof of Theorem II), has the same 
rank as G and a group $(H) of index two in $(G). 

In a paper I wrote with J. de Siebenthal (Lausanne), which will 
appear in the Comment. Math. Helv.,8 we study the subgroups of 
maximal rank of compact Lie groups and we give, for each simple 
group of the Killing-Car tan classification, a list of all types of con­
nected maximal subgroups having the same rank as the group itself. 
On the other hand, the orders of the groups <£ may be easily com­
puted: for the simple groups, they are to be found for example in 
[8], for the others, they are given by the relation <E(Gi XG2) = 3>(Gi) 
X<£>(G2). By studying that list of maximal subgroups, I found that 
the index of &(H) in €>(G) equals 2 only in the following cases: 

(a) Z> r i nB r , r = l, 2, • • • ;9 

8 A summary is given in a note published in C. R. Acad. Sci. Paris vol. 226 (1948) 
pp. 1662-1664. 

9 I follow the usual notations : Br and Dr are the unimodular orthogonal groups of 
respectively 2r-{-l and 2r variables, Ar the unimodular unitary group, Cr the unitary 
symplectic group of 2r variables, 62, ^4 the exceptional groups of 14 and 52 parameters. 
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(b) A 2 in G2. 
According to the theorem of Hopf and Samelson, the characteristic 

of the spaces Br/Dr and G2/A2 is two. But it is well known that these 
spaces are really homeomorphic to spheres (G2 is the automorphism-
group of the Cayley numbers and acts transitively on the purely 
imaginary Cayley numbers of norm one, which are in a one-to-one cor­
respondence with the points of S6). Thus we have proved the follow­
ing two theorems, the first of which is slightly stronger than the re­
sult obtained in [2, Theorem II, p. 462]. 

THEOREM I I I . The only compact connected simple Lie group acting 
transitively on the even-dimensional sphere S2r is locally isomorphic to 
Br (r = l, 2, • • • ), and also, for r = 3, to G2. 

THEOREM IV. The even-dimensional spheres are, up to a homeo-
morphism, the only simply-connected spaces of characteristic two on 
which compact connected Lie groups act transitively. 

Theorem III gives thus an infinity of simply-connected homo­
geneous spaces of characteristic 2. This fact occurs only for the prime 
number 2. More precisely, we can assert the following theorem: 

THEOREM V. For each prime number p>2, there are only a finite 
number of simply-connected spaces of characteristic p on which com­
pact connected Lie groups act transitively}0 These spaces are homeo­
morphic to : 

(1) A p-x/A p-2 X T1 (dimension 2 (p - 1 ) ), 
(2) Cp/Cp-iX C\ (dimension 4(£ — 1)), 

and, for p = 3: 
Ft/Bi (dimension 16) and G2/A1XA1 (dimension 8). 

This can be checked with the help of the list of maximal subgroups 
already cited. 
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ZURICH, SWITZERLAND 

A NOTE ON LEAST COMMON LEFT MULTIPLES 

B. M. STEWART 

1. Introduction. Consider n-by-n matrices A, 5 , • • • with elements 
in a principal ideal ring and recall the following definitions. If A =BC, 
then A is a left multiple of C and C is a right divisor of A. If A —RD 
and B = PD, then D is a common right divisor of A and B ; if, further­
more, D is a left multiple of every common right divisor of A and B, 
then D is a greatest common right divisor of A and B. If M = PA = QB, 
then M is a common left multiple of A and B ; if, furthermore, M is a 
right divisor of every common left multiple of A and B, then M is 
a least common left multiple of A and B. If FE = I, where I is the 
identity matrix, then £ is a unimodular matrix. If E is unimodular, 
then E A is a left associate of ^4. 

The basic tool in the following constructions is the theorem1 that 
any given matrix A is the left associate of a uniquely determined 
matrix A\, known as the Her mi te canonical triangular form, having 
zeros above the main diagonal, having elements below the main 
diagonal in a prescribed residue class modulo the diagonal element 
above, having each diagonal element in a prescribed system of non-
associates, and if a diagonal element is zero, having the correspond­
ing row all zero. 

C. C. MacDuffee has presented the following method,2 due in 
essence to E. Cahen and A. Chatelet, for finding a greatest common 
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2 C. C. MacDuffee, loc. cit. p. 573. 


