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Before discussing the subject matter proper it is necessary to 
introduce the following:1 

LEMMA 1. The inequality 

(i) {(xn(yr\(vUz))} KJ(vr\z)QvV(yn(x\Jz))U(xnz) 
is identically satisfied in any lattice. 

PROOF. xr\yC\ (v\Jz) QxC\y C (x\Jz) C\y QvU (yH (x\Jz)), 

v H z C v C v U (y H (* U z)) 

and from these two inequalities follows 

(xr\ yr\ (vvz)) v (vnz) Q vu (yr\ (X\Jz)) 
Ç v\J (y r\ (x\J z)) V (xr\ z). 

For purposes of facility of expression the concept of semilattice is 
here introduced following Klein-Barmen [l]:2 

DEFINITION 1. A semilattice L8 is a partially ordered system in 
which a relation xay is defined which satisfies 

SI: For all x, xax, 
S2: If xay and yax, then x=*y, 
S3 : If xay and ycz, then xazt 

and in which any two elements x and y have a greatest lower bound 
or meet xmy. 

It then follows that xmy or any binary operation xoy which is 
closed, idempotent, commutative and associative defines, by means 
of the convention that xay means xmy~x or xoy — x, a semilattice 
L8 in which xmy or xoy is the greatest lower bound of x and y. 

LEMMA 2. The ternary operation 

(2) [*, /, y] = (xr\(t\Jy)) \J (tny) - (* U (*H y)) H (*U y) 

<w /&£ elements of a modular lattice L is closed and is an idempotent and 
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1 The author is indebted to Garrett Birkhoff for the proof of Lemma 1, and for 
helpful criticism. 

2 Numbers in brackets refer to the bibliography at the end of the paper. 

1176 



A TERNARY OPERATION IN MODULAR LATTICES 1177 

associative operation for a constant t. The expression [x, t> y], for 
/ = const., is said to determine the uoperational plane" L 

(3) The idempotent law 

[xt tt x] = x for all x and t 

holds because of the absorption law in L : 

[x, t, x] = (x r\ (t KJ x)) u (t n x) = x u (/ n x) = *. 
The proof of the associative law is somewhat longer, proceeding as 
follows : 

Expanding the expression of the associative law 

(4) [[x, t, y], U z] = [x, /, [y, /, z]] 

one obtains 

j {^( /Uy))U( /nj ) }n( /Uz) )u( /n z ) 

\j {/n {(yn(tKj*))U(tr\z)}}. 
Some of the expressions on the right-hand side may be simplified 

by employing the absorption law and Dedekind's modular identity. 

/u {(yr\(t\Jz))u(tnz)} « t\j(tr\z)U(yr\(tUz)) 
= tv(yr\ (tVz)) - (/u y) r\ (t\Jz), 

tn{(yn(t\Jz))\J(tnz)\ = / n ( / u 2 ) n ( ^ ( / n z ) ) i 
= tC\ (yU(tr\z)) « (tr\y) U (/Hz), 

Therefore, 

= {xr\(tu y)r\(tvz)}yj {(tr\y)\j(tr\z)}. 
Putting X^xr\(t\Jy)t Y=*t\Jz, f/ = *r\y, V=*tC\z where F C F a n d 
UQtQ F, the above formula becomes 

{(XUF)HF} UF = (inr)U(i/nF) 
and, in view of ( Z U t / ) P i F = ( t / U Z ) n F = [ /U(ZHF), 

i f /u ( in r ) | U F = (znF)U(t/UF) 
which is an identity, thus concluding the proof. 

An immediate consequence, then, is: 

THEOREM 1. The commutative "products" [xt t, y] for a constant /, 
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that is, those which satisfy [x, t, y]** [y, t, x], form a semilattice in 
which the element [x, t, y] is the greatest lower bound of x and y. 

THEOREM 2. Whether commutative or not, the "product" [x, t, y] is 
always determined f or a modular lattice L and in the ternary operational 
system thus obtained any two operational planes u and v satisfy the 
following identical equation, namely, 

(5) [[x, u, [y, v, z]], v, [y, u, z]] = [[x, v, [y, u, z]], u, [y, v, z]]. 

To prove this formula, it is expanded by means of (2) above and is 
subsequently shown to be an identity. Putting 

Y = uKJ(yn(v\Jz))KJ(vn z), 
z = un((yn(vUz))V(vn z)), 
u ~vKj(yr\(u\Jz))U(ur\z), 
v ~vr\((yr\(u\Jz))\j{ur\ z)) 

where 2 C F, VQ U and, in view of Lemma 1, ZQ U and VQ Y, the 
equation (5) becomes 

{({xr\Y)\JZ)C\ U)\JV * (((*n U)\JV)C\Y)\JZ 

or, in view of Dedekind's modular identity, 

{v\j(%r\Y)KJZ)r\ u = (zu(xr\ u)W)r\Y. 
Since ZQU and VQU give Z\JVQU and, similarly, ZQY and 
VQ Y give ZKJ VQ Y, the last equation becomes, in view of Dede-
kind's modular identity, 

Z\JV\J (xC\Y C\V) ~Z\JV\J (xC\V C\Y). 
(5) is thus proven to be an identity. 

EXAMPLE. Designating the elements of the nondistributive modular 
lattice L5 by 0 (least), a, b, c, e (greatest), the commutative "prod­
ucts" of the operational plane [x, a, y] define a semilattice which is not 
a lattice, similar remarks applying to [x, b, y] and [x, c, y]. The non-
commutative products, namely, [b, a, c] =6, [c, a, b] ~c, [a, b, c] =a, 
[c, a, b]~c, [a, c, b]=a, [b, c, a] =6 do not belong to the semilat-
tices. 

Being partially ordered systems, semilattices may be represented 
by diagrams. In LB links are preserved in all semilattices defined by 
(2) with constant /; it is the authors conjecture that this rule holds 
for the semilattices defined in any modular lattice. 

When a lattice is distributive in addition to being modular, the 
expression (2) becomes 



1948] A TERNARY OPERATION IN MODULAR LATTICES 1179 

(6) [x, *, y ] » ( * n O U ( * n y) VJ (y n *). 

This is the ternary operation (x, /, y) which was independently in­
troduced by Grau3 [2] for Boolean algebras and by Birkhoff and 
Kiss [3] for distributive lattices in general. 

It is obvious from the expression (2) of [x, t, y] that [x, t, y] 
= [x, y, / ] ; on the other hand the above example shows that, in some 
cases at least, [x, t, y]?* [y, t, x] and also [x, t, y ] ^ [t, x, y]. 

Complementation in distributive lattices has been defined by 
Birkhoff and Kiss [3] and can now be extended to modular lattices 
by means of the following: 

DEFINITION 2. The elements x, x' of a modular lattice L are called 
"strictly complementary" if and only if 

(7) [x, t, x'] = t for all /. 

THEOREM 3. Strict complementation in a modular lattice is unique. 

PROOF. If x has two complements, x' and x", then x" ~ [x, x", x'] 
""""* L f X f X J "•—• X . 

THEOREM 4. The 0 (least) and e (greatest) elements of a modular 
lattice are always strictly complementary; furthermore, the [x, 0, y] 
and [x, e, y] planes of the ternary lattice give the xC\y and x^Jy opera­
tions, respectively. 

PROOF. [0, t, e]~(OC\(t}Ue))\J(tr\e)=QKJt = t, 

[x,0, y] = (*n (0VJy) )U(0ny) = ( * n y ) U 0 = xC\y, 
[x, e, y] = (x Pi (e U y)) U (e H y) = (x H e) U y = x U y. 
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3 Grau uses the notation x'y for (x, t, y). 


