THE REMAINDER IN APPROXIMATIONS BY MOVING AVERAGES

ARTHUR SARD1

1. Introduction. Many of the processes of interpolation or smoothing are of the following sort. A function L(s), defined for all real s, characterizes the process. Given a function x(s), the function

(1)
$$y(t) = \sum_{j=-\infty}^{\infty} x(j)L(t-j)$$

is constructed, when possible; y(t) is thought of as an approximation of x(t). The remainder in the approximation is

$$R[x] = x(t) - y(t).$$

In the conventional processes of smoothing or interpolation, L(s) is a function which vanishes for all |s| sufficiently large. I. J. Schoenberg² has recently introduced a class of formulas (1), (2) in which L(s) is an analytic function and the series (1) does not consist of a finite number of terms.

Schoenberg gives an elegant criterion for recognizing cases in which the approximating process is exact for polynomials of degree n-1; that is, cases in which R[x] = 0, for all t, whenever x(s) is a polynomial of degree n-1.³ In the present paper we obtain an integral representation of such operations R[x] in terms of the nth derivative $x^{(n)}(s)$. The representation is precisely of the sort that holds when R[x] is a linear functional on certain spaces of functions x(s) defined on a *finite s*-interval.

2. The integral representation. We shall consider an operation which is more general than (1), (2). Let g(s, t) be a function which, for each number t in a given set \mathfrak{G} , is of bounded variation in s on each finite s-interval. Given any function x(s), put

Presented to the Society, October 25, 1947; received by the editors September 22 1947.

¹ The author gratefully acknowledges financial support received from the Office of Naval Research, Navy Department.

² Contributions to the problem of approximation of equidistant data by analytic functions, Quarterly of Applied Mathematics vol. 4 (1946) pp. 45-99 and 112-141.

³ Loc. cit. Theorem 2B, p. 64. Schoenberg's criterion is valid whether L(s) is a symmetric function or not.

Throughout the present paper "polynomial of degree k" is to be understood as "polynomial of proper degree k or less."

(3)
$$y(t) = \int_{-\infty}^{\infty} x(s) d_s g(s, t),$$

and

$$R[x] = x(t) - y(t), t \in \mathfrak{G}.$$

Unless the contrary is stated, integrals on infinite ranges are to be understood either as Lebesgue-Stieltjes integrals or as improper Lebesgue-Stieltjes integrals, that is, limits of integrals over finite intervals as the intervals become infinite. Either convention may be adopted, providing that it is consistently held. We shall say that R[x] exists if y(t) and x(t) exist and are finite for each $t \in \mathfrak{T}$.

The integral (3) reduces to the sum (1) if g(s, t) is, for each $t \in \mathfrak{T}$, constant on each interval j < s < j+1 and if $g(j+0, t)-g(j-0, t) = L(t-j), j = \cdots, -2, -1, 0, 1, \cdots$. The name "moving average" is most appropriate to (3) when $d_sg(s-m, t) = d_sg(s, t+m)$ for all numbers m or for all integers m; we do not require that g satisfy this condition.

Assume that R[x] exists and vanishes, for all $t \in \mathbb{G}$, whenever x(s) is a polynomial of degree n-1 $(n \ge 1)$. Put

(4)
$$p(s, s') = (s - s')^{n-1}/(n - 1)!;$$

$$\psi_{s'} = \psi_{s'}(s) = \begin{cases} 0 & \text{if } s \leq s', \\ p(s, s') & \text{if } s > s'. \end{cases}$$

For each fixed s', $R[\psi_{s'}]$ exists, since $\psi_{s'}$ is a truncated polynomial of degree n-1. Hence the function $k(s', t) = R[\psi_{s'}]$ is defined for all s' and all $t \in \mathfrak{T}$. An alternative formula for k(s', t) is the following:

(5)
$$k(s', t) = \begin{cases} \int_{-\infty}^{s'} p(s, s') dg(s) & \text{if } s' < t, \\ -\int_{s'}^{\infty} p(s, s') dg(s) & \text{if } s' \ge t, \end{cases}$$

here⁴ and elsewhere dg(s) is to be understood as an abbreviation for $d_sg(s, t)$. To establish (5), observe that, if $s' \ge t$, $\psi_{s'}(t) = 0$, and

$$R[\psi_{s'}] = \psi_{s'}(t) - \int_{-\infty}^{\infty} \psi_{s'}(s) dg(s) = -\int_{s'}^{\infty} p(s, s') dg(s),$$

by (4). The other part of (5) is derived similarly, with the use of the

⁴ Whether the value s' is included or excluded in the range of integration of these integrals is immaterial, since p(s', s') = 0.

additional fact that

(6)
$$R[p(s, s')] = 0 = p(t, s') - \int_{-\infty}^{\infty} p(s, s') dg(s), \qquad t \in \mathfrak{G}.$$

This relation is true because p(s, s') is a polynomial of degree n-1, for each s'.

Suppose that x(s) is a function whose derivative of order n-1 exists and is absolutely continuous on every finite s-interval. Put

$$I = \int_{-\infty}^{\infty} dg(s) \int_{0}^{s} p(s, s') x^{(n)}(s') ds',$$

$$R^{*}[x] = \int_{-\infty}^{\infty} x^{(n)}(s') k(s', t) ds',$$

$$t \in \mathfrak{G}.$$

THEOREM. A necessary and sufficient condition that R[x] and $R^*[x]$ exist and be equal is that I exist and that the order of integration in I be invertible, for all $t \in \mathfrak{G}$.

Proof. For brevity put

$$z = p(s, s') x^{(n)}(s').$$

Sufficiency: Since the order of integration in I is invertible.

(7)
$$I = \int_{-\infty}^{\infty} dg(s) \int_{0}^{s} z ds' = -\int_{-\infty}^{0} ds' \int_{-\infty}^{s'} z dg(s) + \int_{0}^{\infty} ds' \int_{s'}^{\infty} z dg(s).$$

As $x^{(n-1)}(s)$ is absolutely continuous,

(8)
$$x(s) = x(0) + sx'(0) + \cdots + \frac{s^{n-1}x^{(n-1)}(0)}{(n-1)!} + \int_0^s zds'.$$

Since R vanishes for polynomials of degree n-1 and the integral I exists, R[x] exists and

(9)
$$R[x] = R\left[\int_0^s z ds'\right]$$

$$= \int_0^t p(t, s) x^{(n)}(s') ds' - \int_{-\infty}^\infty dg(s) \int_0^s z ds'.$$

Furthermore,

(10)
$$\int_0^t p(t, s') x^{(n)}(s') ds' = \int_0^t ds' \int_{-\infty}^{s'} z dg(s) + \int_0^t ds' \int_{s'}^{\infty} z dg(s).$$

This may be proved as follows. By (6),

$$p(t, s') = \int_{-\infty}^{\infty} p(s, s') dg(s) = \int_{-\infty}^{s'} p(s, s') dg(s) + \int_{s'}^{\infty} p(s, s') dg(s).$$

For fixed $t \in \mathfrak{T}$, each of the last two integrals is a measurable, essentially bounded function of s' for s' between 0 and t; hence (10) follows.

By (9), (10) and (7),

(11)
$$R[x] = \int_{-\infty}^{t} ds' \int_{-\infty}^{s'} z dg(s) - \int_{t}^{\infty} ds' \int_{s'}^{\infty} z dg(s) = R^*[x].$$

The last equality follows from (5). Thus $R^*[x]$ and R[x] exist and are equal.

Necessity: Since R[x] and $R^*[x]$ exist and are equal, (11) and (9) hold, and I exists. Furthermore, (11), (9) and (10) imply (7).

This completes the proof of the theorem.

3. Sufficient conditions. Put

$$M(s', t) = \begin{cases} \int_{-\infty}^{s'} |p(s, s')| |dg(s)| & \text{if } s' \leq 0, \\ \int_{s'}^{\infty} |p(s, s')| |dg(s)| & \text{if } s' > 0, \end{cases}$$

If the integral

$$J = \int_{-\infty}^{\infty} |x^{(n)}(s')| M(s', t)ds'$$

is finite for all $t \in \mathcal{C}$, then R[x] and $R^*[x]$ exist and are equal, and $R^*[x]$ exists as a Lebesgue-Stieltjes integral.

PROOF. The double integral corresponding to I will exist and (7) will hold, by Fubini's theorem, since the right side of (7) is majorized by J. Hence, by the previous theorem, R[x] and $R^*[x]$ exist and are equal.

That $R^*[x]$ exists as a Lebesgue-Stieltjes integral may be seen as follows. Suppose that $t \ge 0$. (t < 0) is treated similarly.) The integrals

(12)
$$\int_{-\infty}^{0} ds' \int_{-\infty}^{s'} z dg(s), \qquad -\int_{t}^{\infty} ds' \int_{s'}^{\infty} z dg(s)$$

are majorized by J. Furthermore, by (6),

(13)
$$\int_0^t ds' \int_{-\infty}^{s'} z dg(s) = \int_0^t x^{(n)}(s') p(t, s') ds' - \int_0^t ds' \int_{s'}^{\infty} z dg(s).$$

Now the last integral in (13) is majorized by J, and the middle integral is on a finite interval. Hence the integrals (12), (13) exist as Lebesgue-Stieltjes integrals. The sum of (13) and the two integrals (12) is precisely $R^*[x]$, by (11).

Note that, by (8), the integral (3) will exist as a Lebesgue-Stieltjes integral, in the present case, if it is true that (3) with x(s) a polynomial of degree n-1 exists as a Lebesgue-Stieltjes integral.

Anyone of the following conditions is sufficient to imply the finiteness of J.

- (i) For each $t \in \mathfrak{G}$, M(s', t) is absolutely integrable and $x^{(n)}(s')$ is essentially bounded, on $-\infty < s' < \infty$.
- (ii) For each $t \in \mathcal{C}$, M(s', t) is essentially bounded and $x^{(n)}(s')$ is absolutely integrable, on $-\infty < s' < \infty$.
- (iii) For each $t \in \mathfrak{T}$, g(s, t) is constant for sufficiently large s and constant for sufficiently small s.

In the particular case in which R[x] is of the form (1), (2),

$$M(s', t) = \begin{cases} \sum_{-\infty < j \le s'} p(s', j) \mid L(t - j) \mid & \text{if } s' \le 0, \\ \sum_{s' \le j \le \infty} p(j, s') \mid L(t - j) \mid & \text{if } s' > 0. \end{cases}$$

QUEENS COLLEGE