THE REMAINDER IN APPROXIMATIONS
BY MOVING AVERAGES

ARTHUR SARD!

1. Introduction. Many of the processes of interpolation or smooth-
ing are of the following sort. A function L(s), defined for all real s,
characterizes the process. Given a function x(s), the function

]

0 y(0) = 3 =()LG — 5)

1=—00
is constructed, when possible; y(¢) is thought of as an approximation
of x(¢). The remainder in the approximation is

() R[x] = =(®) — y().

In the conventional processes of smoothing or interpolation, L(s) is a
function which vanishes for all Isl sufficiently large. I. J. Schoenberg?
has recently introduced a class of formulas (1), (2) in which L(s) is an
analytic function and the series (1) does not consist of a finite number
of terms.

Schoenberg gives an elegant criterion for recognizing cases in which
the approximating process is exact for polynomials of degree n—1;
that is, cases in which R [x] =0, for all ¢, whenever x(s) is a polynomial
of degree n—1.2 In the present paper we obtain an integral repre-
sentation of such operations R[x] in terms of the mth derivative
x™(s). The representation is precisely of the sort that holds when
R[x] is a linear functional on certain spaces of functions x(s) defined
on a finite s-interval.

2. The integral representation. We shall consider an operation
which is more general than (1), (2). Let g(s, £) be a function which, for
each number t in a given set ©, is of bounded variation in s on each
Sfinite s-interval. Given any function x(s), put
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2 Contributions to the problem of approximation of equidistant data by analytic func-
tions, Quarterly of Applied Mathematics vol. 4 (1946) pp. 45-99 and 112-141.

3 Loc. cit. Theorem 2B, p. 64. Schoenberg’s criterion is valid whether L(s) is a
symmetric function or not.

Throughout the present paper “polynomial of degree k” is to be understood as
“polynomial of proper degree k or less.”
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@) 50) = [ sdgts, )

and
R[z] = x(t) — »(), T=c)

Unless the contrary is stated, integrals on infinite ranges are to be
understood either as Lebesgue-Stieltjes integrals or as improper Lebesgue-
Stieltjes integrals, that is, limits of integrals over finite intervals as the
intervals become infinite. Either convention may be adopted, pro-
viding that it is consistently held. We shall say that R[x] exists if
¥(¢) and x(¢) exist and are finite for each t& .

The integral (3) reduces to the sum (1) if g(s, ¢) is, for each &G,
constant on each interval j<s<j+1 and if g(j+0, ¢)—g(G—0, 2)
=L({t—j),j=-++,-2,—1,0,1, - - - . The name “moving average”
is most appropriate to (3) when d,g(s —m, t) =d.g(s, t-+m) for all num-
bers m or for all integers m; we do not require that g satisfy this con-
dition.

Assume that R[x] exists and vanishes, for all t&T, whenever x(s) is
a polynomial of degree n—1 (n=1). Put

p(s, s") = (s — s)/(n — 1);

@ _ _ {0 ifs<s,
Ve = 9e(s) = p(s, 8 if s>,

For each fixed s’, R [y, ] exists, since ¥, is a truncated polynomial of
degree n—1. Hence the function k(s’, t) =R[{s ] is defined for all
s’ and all t€TG. An alternative formula for k(s’, £) is the following:

f‘ p(s, s")dg(s) if & <t
(5) k(s 1) = - t € G;
SRR

here* and elsewhere dg(s) is to be understood as an abbreviation for
d.g(s, t). To establish (5), observe that, if s'2¢, ¥« (f) =0, and

RIve] = vet) = [ “yu)ig) = = [ a6, g,

by (4). The other part of (5) is derived similarly, with the use of the

¢ Whether the value s’ is included or excluded in the range of integration of these
integrals is immaterial, since p(s’, s') =0.
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additional fact that

©) Rlp(s )] = 0= 26, 9) = [ o6, £)dgls), e,

This relation is true because p(s, s’) is a polynomial of degree n—1,
for each s’.

Suppose that x(s) is a function whose derivative of order n—1 exists
and s absolutely continuous on every finite s-interval. Put

I= fﬁ:dg@ f " (s, ) a ()ds', .

R*[x] = fwx(”)(s’)k(s', Hds’,

—00

THEOREM. A necessary and sufficient condition that R[x] and R*[x]
exist and be equal is that I exist and that the order of integration in I be
tnvertible, for all 1E .

Proor. For brevity put
z = p(s, s")xM(s").

Sufficiency: Since the order of integration in I is invertible.

) 8 0 8’
I =f dg(s)f zds' = —f ds’f 2dg(s)
—c0 0 —c0 —c0
+ f ds’ f zdg(s).
0 8’

As x™V(s) is absolutely continuous,

(M

® a6 = 5(0) + 57O) + - + (1))(? )+ f ads'

Since R vanishes for polynomials of degree n—1 and the integral I
exists, R[x] exists and

R[x] =R[f0,zds’:|
- f ' 2t 5 )a™(s")ds' — fjdg(s) fo " sds'.

9)

Furthermore,



1948] REMAINDER IN APPROXIMATIONS BY MOVING AVERAGES 791

(10) fo "o ) (sN)ds = fo Cay f_:zdg(s) + fo ay f l”zdg(s).

This may be proved as follows. By (6),

2, 9) = [ 566, 92ag0) = [ 96 g + [ ats, gts:

For fixed tE T, each of the last two integrals is a measurable, essen-
tially bounded function of s’ for s’ between 0 and ¢; hence (10) fol-
lows.

By (9), (10) and (7),

(11) R[x] = f_' ds’ f:’zdg(s) - f‘ °°ds' f ,wzdg(s) = R*[x].

The last equality follows from (5). Thus R*[x] and R[x] exist and are
equal.

Necessity: Since R[x] and R*[x] exist and are equal, (11) and (9)
hold, and I exists. Furthermore, (11), (9) and (10) imply (7).

This completes the proof of the theorem.

3. Sufficient conditions. Put

f_‘ | pGs, ") || des)|  if s =0,

M@, = t €.

[Tl ollawl & s>o,
If the integral
J= f ”| x™(s") | M(s', £)ds’

is finite for all tEG, then R[x] and R*[x] exist and are equal, and
R*[x] exists as a Lebesgue-Stieltjes integral.

Proor. The double integral corresponding to I will exist and (7)
will hold, by Fubini’s theorem, since the right side of (7) is majorized
by J. Hence, by the previous theorem, R[x] and R*[x] exist and are
equal.

That R*[x] exists as a Lebesgue-Stieltjes integral may be seen as
follows. Suppose that ¢=0. (¢<0 is treated similarly.) The integrals

(12) f_:ds’ f_:zdg(s), - j: °ods’ j; l“zdg(s)
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are majorized by J. Furthermore, by (6),

(13) fotds’f:lzdg(s) =foex(")(s’)p(t, s)ds' —fotds’ﬁlwzdg(s).

Now the last integral in (13) is majorized by J, and the middle inte-
gral is on a finite interval. Hence the integrals (12), (13) exist as
Lebesgue-Stieltjes integrals. The sum of (13) and the two integrals
(12) is precisely R*[x], by (11).

Note that, by (8), the integral (3) will exist as a Lebesgue-Stieltjes
integral, in the present case, if it is true that (3) with x(s) a polynomial
of degree n—1 exists as a Lebesgue-Stieltjes integral.

Amnyone of the following conditions is sufficient to imply the finiteness
of J.

(i) For each t&G, M(s’, t) is absolutely integrable and x™ (s’) is
essentially bounded, on — « <s' < .

(ii) For each t&€G, M(s’, t) is essentially bounded and x™(s’) is
absolutely integrable, on — o <s' < «,

(iii) For each t&T, g(s, ¢) is constant for sufficiently large s and
constant for sufficiently small s.

In the particular case in which R[x] is of the form (1), (2),

2 6 pILe=7l if s’ <0,

—n<ljSs’

M(s',t) =

o0 2 G alLe-pl i 7 >0
8'SjiSw
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