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BY MOVING AVERAGES 

ARTHUR SARD1 

1. Introduction. Many of the processes of interpolation or smooth­
ing are of the following sort. A function L(s), defined for all real s, 
characterizes the process. Given a function x(s), the function 

(i) y(t) - Z *V)L(f - j) 
ƒ — o o 

is constructed, when possible; y(t) is thought of as an approximation 
of x{t). The remainder in the approximation is 

(2) R[x] - x(t) - y(t). 

In the conventional processes of smoothing or interpolation, L(s) is a 
function which vanishes for all \s\ sufficiently large. I. J. Schoenberg2 

has recently introduced a class of formulas (1), (2) in which L(s) is an 
analytic function and the series (1) does not consist of a finite number 
of terms. 

Schoenberg gives an elegant criterion for recognizing cases in which 
the approximating process is exact for polynomials of degree n — 1; 
that is, cases in which R [x] = 0, for all t} whenever x(s) is a polynomial 
of degree # —l.3 In the present paper we obtain an integral repre­
sentation of such operations R[x] in terms of the nth. derivative 
x(n)(s). The representation is precisely of the sort that holds when 
R[x] is a linear functional on certain spaces of functions x(s) defined 
on a finite ^-interval. 

2. The integral representation. We shall consider an operation 
which is more general than (1), (2). Let g(s, t) be a function which, for 
each number t in a given set 13, is of bounded variation in s on each 
finite s-interval. Given any function x(s), put 
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2 Contributions to the problem of approximation of equidistant data by analytic f une-
lions, Quarterly of Applied Mathematics vol. 4 (1946) pp. 45-99 and 112-141. 

8 Loc. cit. Theorem 2B, p. 64. Schoenberg's criterion is valid whether L(s) is a 
symmetric function or not. 

Throughout the present paper "polynomial of degree k" is to be understood as 
"polynomial of proper degree k or less." 
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(3) y(t) = f x(s)d9g(s, /), 

and 

R[x] = x(t) - y(0, *e<6 . 

Unless the contrary is stated, integrals on infinite ranges are to be 
understood either as Lebesgue-Stieltjes integrals or as improper Lebesgue-
Stieltjes integrals, that is, limits of integrals over finite intervals as the 
intervals become infinite. Either convention may be adopted, pro­
viding that it is consistently held. We shall say that R[x] exists if 
y(f) and x(t) exist and are finite for each /E13. 

The integral (3) reduces to the sum (1) if g(s, t) is, for each /ET3, 
constant on each interval j<s<j+l and if g(j+0, t)—g(j — 0, t) 
— L(t—j)ij— • • • , —2, — 1 , 0, 1, • • • . The name "moving average" 
is most appropriate to (3) when d8g(s — m, t) ~d8g{s, t-\-m) for all num­
bers m or for all integers m ; we do not require that g satisfy this con­
dition. 

Assume that R[x] exists and vanishes, for all / £13 , whenever x(s) is 
a polynomial of degree n — \ (n^ 1). Put 

Pis,**) = ( 5 - O ^ V ( » - 1)1; 
if 5 ^ s', 

) if s > s'. 

For each fixed s', R[\f/8>] exists, since $,> is a truncated polynomial of 
degree n — 1. Hence the function k(s', f)=R[\l/8>] is defined for all 
s' and all /ET3. An alternative formula for k(s', t) is the following: 

Ç9 p(s,s')dg(s) Xs><t, 

f p(s, sf)dg(s) if s' è t, 
J 8t 

(4) +, = Ms) = \°, , 

(5) k(s', t) = 

here4 and elsewhere dg(s) is to be understood as an abbreviation for 
dsg(s, t). To establish (5), observe that, if s'^t, \[/,>(t)-0, and 

R[*,>] - Mt) ~ f°Ms)dg(s) = - f "'pis, s')dg(s), 

by (4). The other part of (5) is derived similarly, with the use of the 
4 Whether the value s' is included or excluded in the range of integration of these 

integrals is immaterial, since p(s', s') =0. 
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additional fact that 

(6) R[p(s, *')] = 0 = p(t, s') - ƒ %(* , Orf«W. te®. 

This relation is true because p(s, s') is a polynomial of degree n — 1, 
for each 5'. 

Suppose that x(s) is a function whose derivative of order n — \ exists 
and is absolutely continuous on every finite s-interval. Put 

R* 

I = f dg(s) f p(s, s')x^(s'W, 
J -oo *J 0 

[*] = f °°x^(s')k(s',t)ds', 

*GT3. 

THEOREM. .4 necessary and sufficient condition that R[x] and R*[x] 
exist and be equal is that I exist and that the order of integration in I be 
invertible, for all / £13 . 

PROOF. For brevity put 

z = p(s,s')x^(sf). 

Sufficiency: Since the order of integration in i" is invertible. 

dg(s) j zds' = - I ds' I zdg(s) 
-oo J 0 • / — oo «J — oo 

' / • 00 ƒ» 00 

+ 1 ^ ' 1 2<*g(s). 
«/ 0 *J • ' 

As x(n_1)(5) is absolutely continuous, 

5n-l^(n-l)(Q\ pa 
(8) x(s) = *(0) + sx'(0) + • • • + — — - + zds'. 

(n — 1) ! J o 

Since i? vanishes for polynomials of degree n — 1 and the integral I 
exists, R[x] exists and 

R[x] =R\ f zds'\ 

(9) L;° J 

•/ 0 J -oo J 0 

Furthermore, 
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ÜO) f p(t, s')x^(s')ds' = f ds' f zdg(s) + f ds' f zdg(s). 
J 0 J Q J _oo J o Ja' 

This may be proved as follows. By (6), 

#(*, *0«te(*) - I />(*> *0<fe(*) + I p(s, s')dg(s). 
-00 V —00 J « ' 

For fixed / £ t 3 , each of the last two integrals is a measurable, essen­
tially bounded function of s' for sf between 0 and /; hence (10) fol­
lows. 

By (9), (10) and (7), 

(11) R[x] = f ds' f'zdg(s) - f ds' f zdg(s) = R*[x]. 

The last equality follows from (5). Thus R* [x] and R [x] exist and are 
equal. 

Necessity: Since R[x] and i?*[x] exist and are equal, (11) and (9) 
hold, and /ex is t s . Furthermore, (11), (9) and (10) imply (7). 

This completes the proof of the theorem. 

3. Sufficient conditions. Put 

M{?'% t) « 

If the integral 

J -oo 

C \p(s,s')\\dg(s) | if s'>0, 
(J «' 

/ - f"| *(•)(,/) | M (s', t)ds' 
J —00 

*ei3. 

is finite for all / £13 , tóew i?[#] awd i?*[x] e#w/ and are egwaZ, awrf 
i?*[x] existe as a Lebesgue-Stieltjes integral. 

PROOF. The double integral corresponding to J will exist and (7) 
will hold, by Fubini's theorem, since the right side of (7) is majorized 
by / . Hence, by the previous theorem, R[x] and R*[x] exist and are 
equal. 

That R*[x] exists as a Lebesgue-Stieltjes integral may be seen as 
follows. Suppose that t^O. (t<0 is treated similarly.) The integrals 

(U) f ds' Ç* zdg(s), - C ds' Czdg(s) 
J _oo J —oo J t J 9* 
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are majorized by / . Furthermore, by (6), 

(13) f ds' f zdg(s) = f x^(s')p(t, s')ds' - f ds' f zdg(s). 

Now the last integral in (13) is majorized by J , and the middle inte­
gral is on a finite interval. Hence the integrals (12), (13) exist as 
Lebesgue-Stieltjes integrals. The sum of (13) and the two integrals 
(12) is precisely R*[x], by (11). 

Note that, by (8), the integral (3) will exist as a Lebesgue-Stieltjes 
integral, in the present case, if it is true that (3) with x(s) a polynomial 
of degree n — 1 exists as a Lebesgue-Stieltjes integral. 

Anyone of the following conditions is sufficient to imply the finiteness 
of J. 

(i) For each ^E'G, M(s', i) is absolutely integrable and x(n)(s') is 
essentially bounded, on — co < $ ' < oo. 

(ii) For each /Ç^G, M(s', t) is essentially bounded and x(n)(s') is 
absolutely integrable, on — oo <s'< oo. 

(iii) For each /£13 , g{s, t) is constant for sufficiently large s and 
constant for sufficiently small 5. 

In the particular case in which R[x] is of the form (1), (2), 

[ E P(s',J)\Ut-j)\ if s'SO, 

M{S''t) = \ X<£S
 P{j,s') | L(t - j) | if - ' > 0 . 
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