A NOTE ON THE OPERATORS OF BLASCHKE AND PRIVALOFF

D. H. POTTS

Let f(P) be a function of a point P = P(x, y) in Euclidean 2-space. Let L(f; P; r), A(f; P; r) be the mean values of f(P) on the perimeter and on the interior, respectively, of a circle of center P and radius r, that is,

$$L(f; P; r) = \frac{1}{2\pi r} \int_{C(P; r)} f(Q) ds_Q,$$

$$A(f; P; r) = \frac{1}{\pi r^2} \int \int_{D(P; r)} f(Q) dQ$$

where C(P; r), D(P; r) are the perimeter and interior, respectively, of the circle with center P and radius r. The operators

$$\nabla_{p} f(P) = \lim_{r \to 0} \frac{4}{r^{2}} [L(f; P; r) - f(P)],$$

$$\nabla_{a} f(P) = \lim_{r \to 0} \frac{8}{r^{2}} [A(f; P; r) - f(P)]$$

have been defined by Blaschke and Privaloff, respectively. The following are a few of the results which have been obtained by these and other investigators.

THEOREM A [1, 2]. If f(P) has continuous second partial derivatives, then $\nabla_p f(P)$, $\nabla_a f(P)$ exist, and

$$\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)_P \equiv \nabla^2 f(P) = \nabla_2 f(P) = \nabla_a f(P).$$

THEOREM B [1]. If (i) f(P) is continuous on a circle $\overline{D}(Q; r)$, (ii) $\nabla_p f(P)$ exists on the interior, D(Q; r), then

$$\frac{4}{r^2} \left[L(f;Q;r) - f(Q) \right]$$

lies between the upper and lower bounds of $\nabla_{p}f(P)$ on D(Q; r).

THEOREM C [3, 4]. If u(P) is a logarithmic potential function

Received by the editors July 28, 1947, and, in revised form, September 11, 1947.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

$$u(P) = \int_{W} \log \frac{1}{PQ} d\mu(Q)$$

where μ is a mass distribution, and if the density exists at R, that is,

$$\lim_{r\to 0} \frac{1}{\pi r^2} \int_{D(R;r)} d\mu(Q) = D_s \mu(R)$$

exists, then $\nabla_p u(R)$, $\nabla_a u(R)$ exist and $\nabla_p u(R) = \nabla_a u(R) = -2\pi D_s \mu(R)$. (W indicates integration over the whole space.)

The purpose of this note is to give extensions of Theorems B and C. Theorem B is readily extended to the operator ∇_a by the following:

THEOREM 1. If (i) f(P) is continuous on a circle $\overline{D}(Q; r)$, (ii) $\nabla_a f(P)$ exists on the interior, D(Q; r), then

$$\frac{8}{r^2} \left[A(f;Q;r) - f(Q) \right]$$

lies between the upper and lower bounds of $\nabla_a f(P)$ on D(Q; r).

Proof. Consider the function

$$\lambda(P) = f(P) - h(P) + L(f;Q;\rho) - f(Q) - \frac{1}{\rho^2} \left[L(f;Q;\rho) - f(Q) \right] \overline{PQ^2}$$

where $\rho \leq r$, and h(P) is the function harmonic on $D(Q; \rho)$ and such that h(P) = f(P) on $C(Q; \rho)$. Clearly $\lambda(P) = 0$ on $C(Q; \rho)$. Further $\lambda(Q) = L(f; Q; \rho) - h(Q)$. But

$$h(Q) = \frac{1}{2\pi r} \int_{C(Q;\rho)} h(P) ds_P = \frac{1}{2\pi r} \int_{C(Q;\rho)} f(P) ds_P = L(f;Q;\rho).$$

Therefore $\lambda(Q) = 0$. Thus the continuous function $\lambda(P)$ has both a maximum and a minimum value on $D(Q; \rho)$. Now if R is a maximum point of $\lambda(P)$ then $\nabla_{\alpha}\lambda(R) \leq 0$, for

$$\nabla_a \lambda(R) = \lim_{\rho \to 0} \frac{1}{\pi \rho^4} \iiint_{D(P;\rho)} \left[\lambda(P) - \lambda(R) \right] dP \leq 0.$$

But

$$\nabla_a \lambda(P) = \nabla_a f(P) - \nabla_a h(P) - \frac{1}{\rho^2} \left[L(f; Q; \rho) - f(Q) \right] \nabla_a \overline{PQ}^2.$$

By Theorem A, $\nabla_a h(P) = 0$, $\nabla_a \overline{PQ^2} = 4$. Therefore

$$\nabla_a \lambda(P) = \nabla_a f(P) - \frac{4}{\rho^2} \left[L(f; Q; \rho) - f(Q) \right].$$

But $\nabla_a \lambda(R) \leq 0$, hence

$$\nabla_{a} f(R) \leq \frac{4}{a^{2}} \left[L(f; Q; \rho) - f(Q) \right].$$

Similarly if S is a minimum point of $\lambda(P)$ on $D(Q; \rho)$ we have

$$\nabla_a f(S) \ge \frac{4}{\rho^2} \left[L(f; Q; \rho) - f(Q) \right].$$

Thus, if M, m are the upper and lower bounds, respectively, of $\nabla_a f(P)$ on D(Q; r), then for all $\rho \leq r$

$$m \leq \frac{4}{\rho^2} \left[L(f; Q; \rho) - f(Q) \right] \leq M,$$

and so

$$\frac{2}{r^2} \int_0^r m \rho^3 d\rho \le \frac{8}{r^2} \int_0^r L(f;Q;\rho) \rho d\rho - \frac{8}{r^2} \int_0^r f(Q) \rho d\rho \le \frac{2}{r^2} \int_0^r M \rho^3 d\rho.$$

But

$$A(f;Q;r) = \frac{1}{\pi r^2} \int \int_{D(Q;r)} f(P) dP = \frac{2}{r^2} \int_0^r \rho d\rho \cdot \frac{1}{2\pi \rho} \int_{C(Q;\rho)} f(P) ds_P$$
$$= \frac{2}{r^2} \int_0^r L(f;Q;\rho) \rho d\rho.$$

Thus $mr^2/2 \le 4[A(f; Q; r) - f(Q)] \le Mr^2/2$ and

$$m \leq \frac{8}{r^2} \left[A(f;Q;r) - f(Q) \right] \leq M.$$

For the operator ∇_a a somewhat stronger form of Theorem C is obtainable.

THEOREM 2. If u(P) is a logarithmic potential function

$$u(P) = \int_{W} \log \frac{1}{PO} d\mu(Q)$$

where μ is a mass distribution, and if at R

$$\lim_{r \to 0} \text{ ap } \frac{1}{\pi r^2} \int_{D(R;r)} d\mu(P) = D_a \mu(R)$$

exists, then $\nabla_a u(R)$ exists, and $\nabla_a u(R) = -2\pi D_a \mu(R)$.

Proof. Consider

$$\begin{split} L(u;R;\rho) &= \frac{1}{2\pi\rho} \int_{C(R;\rho)} u(P) ds_P = \frac{1}{2\pi\rho} \int_{C(R;\rho)} ds_P \cdot \int_W \log \frac{1}{PQ} d\mu(Q) \\ &= \int_W d\mu(Q) \cdot \frac{1}{2\pi\rho} \int_{C(R;\rho)} \log \frac{1}{PQ} ds_P. \end{split}$$

Now

$$\frac{1}{2\pi\rho} \int_{C(R;\rho)} \log \frac{1}{PQ} \, ds_P = \log \frac{1}{QR} \qquad (QR > \rho)$$

$$= \log \frac{1}{\rho} \qquad (QR \le \rho).$$

Hence

$$L(u; R; \rho) = \int_{D(R;\rho)} d\mu(Q) \cdot \log \frac{1}{\rho} + \int_{W-D} d\mu(Q) \cdot \log \frac{1}{QR}$$

$$= \int_{W} d\mu(Q) \cdot \log \frac{1}{QR} + \int_{D(R;\rho)} \left[\log \frac{1}{\rho} - \log \frac{1}{QR} \right] d\mu(Q)$$

$$= u(R) + \int_{D(R;\rho)} \left[\log \frac{1}{\rho} - \log \frac{1}{QR} \right] d\mu(Q).$$

Thus

$$A(u; R; r) = \frac{2}{r^2} \int_0^r L(u; R; \rho) \rho d\rho$$

$$= u(R) + \frac{2}{r^2} \int_0^r \rho d\rho \cdot \int_{D(R; \rho)} \left[\log \frac{1}{\rho} - \log \frac{1}{QR} \right] d\mu(Q),$$

and so

$$\frac{8}{r^2} \left[A(u; R; r) - u(R) \right]$$

$$= \frac{16}{r^4} \int_0^r \rho d\rho \cdot \int_{D(R; \rho)} \left[\log \frac{1}{\rho} - \log \frac{1}{QR} \right] d\mu(Q).$$

The integrand depends only on |QR|, so we can write

$$\frac{8}{r^2} \left[A(u; R; r) - u(R) \right] = \frac{16}{r^4} \int_0^r \rho d\rho \cdot \int_0^\rho \left[\log \frac{1}{\rho} - \log \frac{1}{t} \right] d\bar{\mu}(t)$$

where

$$\bar{\mu}(t) = \int_{D(R;t)} d\mu(Q).$$

Integrating by parts we have

$$\frac{8}{r^2} \left[A(u; R; r) - u(R) \right]$$

$$= \frac{16}{r^4} \int_0^r \rho d\rho \cdot \left\{ \left[\left(\log \frac{1}{\rho} - \log \frac{1}{t} \right) \bar{\mu}(t) \right]_0^{\rho} - \int_0^{\rho} \bar{\mu}(t) \frac{dt}{t} \right\}.$$

But

$$\bar{\mu}(t) = \int_{D(R;t)} d\mu(Q) = \pi t^2 D_a \mu(R) + o(t^2)$$

for almost all small t. Hence

$$\frac{8}{r^{2}} \left[A(u; R; r) - u(R) \right] \\
= \frac{16}{r^{4}} \int_{0}^{r} \rho d\rho \cdot \left\{ -\int_{0}^{\rho} \pi t^{2} D_{a} \mu(R) \frac{dt}{t} - \int_{0}^{\rho} o(t^{2}) \frac{dt}{t} \right\} \\
= \frac{16}{r^{4}} \int_{0}^{r} \rho d\rho \cdot \left[-\frac{\pi}{2} \rho^{2} D_{a} \mu(R) + o(\rho^{2}) \right] \\
= -2\pi D_{a} \mu(R) + \frac{16}{r^{4}} \int_{0}^{r} o(\rho^{3}) d\rho.$$

Thus

$$\lim_{r\to 0}\frac{8}{r^2}\left[A(u; R; r) - u(R)\right] = \nabla_a u(R) = -2\pi D_a \mu(R).$$

Many results which have been proven for one operator can be extended to the other operator by use of the following theorem.

THEOREM 3. If $\nabla_{n}f(P)$ exists, then so does $\nabla_{a}f(P)$, and $\nabla_{a}f(P)$ = $\nabla_{n}f(P)$.

PROOF. L(f; P; r) exists for small r, and further

$$L(f; P; r) = f(P) + \frac{r^2}{4} \nabla_p f(P) + o(r^2).$$

Also

$$A(f; P; r) = \frac{2}{r^2} \int_0^r L(f; P; \rho) \rho d\rho.$$

And hence

$$\begin{split} \frac{8}{r^2} \left[A(f; P; r) - f(P) \right] \\ &= \frac{8}{r^4} \left[2 \int_0^r L(f; P; \rho) \rho d\rho - r^2 f(P) \right] \\ &= \frac{8}{r^4} \left\{ 2 \int_0^r \left[f(P) + \frac{\rho^2}{4} \nabla_p f(P) + o(\rho^2) \right] \rho d\rho - r^2 f(P) \right\} \\ &= \nabla_p f(P) + \frac{16}{r^4} \int_0^r o(\rho^3) d\rho. \end{split}$$

The last term is easily seen to approach zero as $r\rightarrow 0$. Thus

$$\lim_{r\to 0}\frac{8}{r^2}\left[A(f;P;r)-f(P)\right]=\nabla_a f(P)=\nabla_p f(P).$$

These results hold true for spaces of higher dimensions, and the above proofs follow through with obvious modifications of the coefficients and the form of the potential function.

BIBLIOGRAPHY

- 1. W. Blaschke, Ein Mittelwertsatz und eine kennzeichende Eigenschaft des logarithmischen Potentials, Berichte über die Verhandlungen der königlich sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse vol. 68 (1916) pp. 3-7..
- 2. I. Privaloff, Sur les functions harmonique, Rec. Math. (Mat. Sbornik) vol. 32 (1924-1925) pp. 464-469.
- 3. ——, On a theorem of S. Saks, Rec. Math. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 457-460.
- 4. S. Saks, On the operators of Blaschke and Privaloff for subharmonic functions, Rec. Math. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 451-456.

NORTHWESTERN UNIVERSITY