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1. Introduction. Let ^ and S be two arbitrary rings and let 
<f>(r) denote a one-to-one, multiplicative mapping of % onto S . The 
major portion of this paper is devoted to the proofs of two theorems 
which state that, under certain conditions on <F{, the mapping 4>(r) is 
automatically additive. In Theorem I (§2), % is an arbitrary Boolean 
ring and in Theorem II (§3), ^ is any ring which contains a family J 
of minimal right ideals satisfying the following two conditions: 
(i) i?r = (0), for every i ? G J , implies r = 0 and (ii) each RÇzJ is of 
dimension greater than one over the division ring of all endomor-
phisms of R which commute with each endomorphism induced in R 
through right multiplication by elements of % In §4 it is proved 
(Theorem III) that a one-to-one, meet preserving mapping of a dis­
tributive lattice onto a distributive lattice is necessarily join preserv­
ing. 

The class of rings considered in Theorem II contains as a special 
case the ring of all bounded linear operators on a Banach space of 
dimension greater than one. Theorem II, with the additional hypothe­
sis that the mapping be continuous, was proved in this special case 
by Eidelheit1 [2].2 The finite-dimensional case of the Eidelheit theo­
rem was obtained by Nagumo [5]. 

This paper has been greatly influenced by conversations which we 
have had with B . J . Pettis. In particular, our interest in the questions 
considered here was stimulated by Pettis' conjecture that the Eidel­
heit theorem mentioned above could be obtained without the con­
tinuity hypothesis. 

2. Boolean rings. By a Boolean ring [6] we mean a ring each of 
whose elements satisfies the conditions r = r . I t is not difficult to 
show that a Boolean ring is necessarily commutative and that each 
of its elements also satisfies the condition f + r = 0. 

THEOREM I. Any one-to-one, multiplicative mapping of a Boolean 
ring <8 onto an arbitrary ring S is necessarily additive. 

Let <j>(r) denote the one-to-one, multiplicative mapping of 43 onto 

Presented to the Society, October 25, 1947; received by the editors September 20, 
1947. 

1 Eidelheit, in fact, assumed S » as well as 2^, to consist of all bounded linear 
operators on a Banach space. He also assumed the Banach spaces to be real. 

2 Numbers in brackets refer to the bibliography at the end of the paper. 
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S . It is evident that the multiplicative condition on <f>(r) implies that 
S must also be a Boolean ring. Moreover </>(r)=0 if, and only if, 
r = 0. In fact, since the range of <j>(r) covers S , there exists wG^B such 
that <t>{u) = 0. Therefore 

0(0) = 0(0^) = 0(0)-0(w) = 0. 

That u = 0 follows from the fact that <fi(r) is one-to-one. 
Now let r, s be arbitrary elements of <B and choose /£<B so that 

Observe that, since the mapping is multiplicative, 

(1) *(r* + st) = 0(r + rs) + <t>(s + rs), 

(2) <j>{rt) » 0(f) + 0(™), 

(3) 0(50 = *(«) + <l>(s). 

Consider first the case in which rs=*0. Then (1), (2) and (3) become 

(1)' <t>(rt+st) - * ( r ) + *(*), 

(2)' 0(r*) = 0(r), 

(3)' *(*0 = *(*). 

Since the mapping is one-to-one, equations (1)', (2)' and (3)' imply 
respectively rt+st — t, rt — r and st = s. I t follows that / = r + s and 
therefore 

(4) 0(r + s) « 0(r) + 0(5). 

Now consider the case in which rs — s. Then (1), (2) and (3) be­
come 

(1)" 4>(fi + st) = 0(r + 5), 

(2)" 4>(rt) = 0(r) + 0(5), 

(3)" 0(5*) = 0. 

Again, since the mapping is one-to-one, equations (1)", (2)" and 
(3)" imply respectively rt+st — r+s, rt — t and 5/ = 0. Therefore, 
/ = r + 5 and it follows that equation (4) holds in this case as well. 

In the general case, observe that 

r + s = (r + rs) + (5 + rs). 

Since (r-\-rs)(s+rs) = 0 , the first case considered above gives 

(5) 0(r + 5) = 0(r + r*) + 0(5 + r$). 
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Moreover, since r(rs)=rs and s(rs) = rs> the second case considered 
above gives 

<t>(r + rs) = 4>(r) + <Krs), <j>(s + rs) = <j>(s) + 4>(rs). 

Substituting these values in (5), we again obtain (4) which completes 
the proof. 

COROLLARY. In a Boolean ring, the operation of addition is uniquely 
determined by the operation of multiplication. 

3. Rings with minimal ideals. Let ^ be an arbitrary ring which 
contains a minimal right ideal R. For each r£3^ , let Tr denote the en-
domorphism of the additive group of R defined by x j. f ~~" xr, x 

ER. 
Since R is minimal, the Tr constitute an irreducible representation of 
3^ in the ring of endomorphisms of R. By Schur's lemma, the family 
$ of all endomorphisms of R which commute with each Tr is a division 
ring. Therefore, R can be considered as a linear vector space over <£. 
The linear space associated in this way with R will be denoted by 3?. 
By a result of Jacobson [3, Theorem 6], the Tr constitute a dense 
ring of linear operators on R. In other words, for arbitrary positive 
integer k and arbitrary elements #i, • • • , #*, yu • • • , yu in R, where 
the xi, • • • , Xjg are linearly independent in ]R, there exists r £2^ such 
that xtf — yi for i = l, • • - , k. 

LEMMA. Let ^be a ring which contains a minimal right ideal R whose 
associated linear vector space R is of dimension greater than one. Then 
any one-to-one, multiplicative mapping of ^ onto an arbitrary ring S 
is additive on R. 

Let <t>(r) denote the one-to-one, multiplicative mapping of ^ onto 
S and observe (as in the proof of Theorem I) that <f>(r) = 0 if, and only 
if, r = 0. 

Consider arbitrary elements x, yÇzR and choose z£<R. such that 

<t>(z) = 0(*) + *(y). 

Assume first that x, y are linearly independent in "R. Then, by the 
density property, there exist r, s £ R such that 

xr = xt yr = 0, xs = 0, ys = y. 

Observe that 

4>{zr) =*(*)-*(r ) + *(y)-*(r) 

= <l>(xr) + <t>(yr) 

- 4>{x). 
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Therefore, since the mapping is one-to-one, zr = x. Similarly we ob­
tain £s = >. I t follows that 

x + y = z(r + s). 

Note also that 

x(r + s) = x, y(r + s) = y. 

Therefore 

<K* + 3 0 = *(«(' + s)) 
= <t>(x)-<t>(r + s) + <t>(y)'4>(r + s) 

= <j>(x(r + s)) + <f>(y(r + s)) 

= *(*) + <t>h). 
This proves that <j>(?) is additive on linearly independent elements 
of R. 

Next assume that x and y are linearly dependent in R. Since i£ is 
of dimension greater than one, there exists w G ^ linearly independent 
of x and y. Since <j>(r) is additive on linearly independent elements 
of R, we have 

<j>{x + y) + <t>(u) = <j>(x+ y + u) 

= 4>0) + <i>(y + ^) 
= <K*) + «(?) + *(«)• 

Therefore 

<K* + y) - <K*) + <K:v) 
and the proof is complete. 

COROLLARY. Under the hypothesis of the lemma, <i>(R) is a minimal 
right ideal in S . 

THEOREM II . Let ^ contain a family J of minimal right ideals which 
satisfy the following conditions: (i) Rr = (0), for each i ? £ J , implies 
r = 0; (ii) The linear space "R associated with each RÇzJ is of dimension 
greater than one. Then any one-to-one, multiplicative mapping of % onto 
an arbitrary ring S is necessarily additive. 

Denote by cj>(r) the one-to-one, multiplicative mapping of ^ onto 
S . Let r, s be arbitrary elements of ^ and choose / ( E ^ such that 

<Kt) = 4>(r) + 0(5). 

The proof consists in showing that t = r+s. Let R be any element 
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of J and observe that, if x £ i ? , then 

<l>(xf) = <j>(xr) + <t>(xs). 

Moreover, by the above lemma, 

<t>(xr + xs) = <j)(xr) + <t>(xs). 

Therefore 

xr + xs = xt. 

It follows that 

*(r + * - *) « (0). 

Since R was an arbitrary element of J, we conclude that t — r+s. 

COROLLARY. In any ring which satisfies the conditions of Theorem II , 
the operation of addition is uniquely determined by the operation of 
multiplication. 

COROLLARY. Under the hypothesis of Theorem II , any one-to-one, 
anti-multiplicativez mapping of ^ onto an arbitrary ring is necessarily 
additive. 

The following example shows that the dimension restriction in 
Theorem II cannot be dropped. It also shows, incidentally, that the 
Boolean ring in Theorem I cannot be replaced by a generalized Bool­
ean ring4 in the sense of McCoy and Montgomery [4]. Let ^ and S 
both equal the finite field Fp of integers modulo the prime p. In this 
case, ^ is a generalized Boolean ring (of index p) which contains only 
one minimal ideal, namely, ^ itself. Condition (i) of Theorem II is 
clearly satisfied, although the dimension condition (ii) does not hold. 
Now consider the mapping </>(x) of ^ into S defined by 0(#) =#3. It is 
obvious that 0(x) is multiplicative. Moreover, in the special case 
p = 5, 0(x) defines a one-to-one mapping of ^ onto S . In fact, 0(0) = 0, 
0(1) = 1, 0(2) = 3 , 0(3) = 2 and 0(4) = 4 . However, since 0(1 + 2) 
5^0(1) +0(2 ) , the mapping is not additive. The above example, with 
2^ and S equal to the field of real numbers instead of JP5, was given by 
Eidelheit [2, p. 103 nb] . 

I t is perhaps desirable to remark briefly on the relationship between 
Theorems I and II. Note, in the first place, that in Theorem I the 
Boolean ring <B need not contain any minimal ideals. Moreover, even 

8 That is, <f>(rs) =*<f>(s)<j>(r). 
4 A generalized Boolean ring (of index p) is a commutative ring for which there 

exists a prime p such that, for every element r of the ring, rp**r and />r=»0. 
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if B̂ does contain a minimal ideal i?, it is evident that R contains only 
one nonzero element. I t follows that 2? cannot have dimension 
greater than one. Therefore, the hypotheses of Theorem II cannot be 
satisfied for a Boolean ring. On the other hand, it is trivial to verify 
that the lemma for Theorem II holds for Boolean rings without the 
dimension requirement. Hence, the proof of Theorem II could still be 
carried through for Boolean rings if condition (i) were satisfied. We 
also note at this point that Theorem I could be obtained from Theo­
rem III of the next section. 

4. Distributive lattices. We obtain now a theorem for distributive 
lattices5 analogous to the ring theorems obtained above. 

THEOREM III. Any one-to-one, meet-preserving mapping of a dis­
tributive lattice onto a distributive lattice is also join-preserving. 

Let «£ and Vît be arbitrary distributive lattices and let <f>(x) denote 
a one-to-one, meet-preserving mapping of «£ onto Vît. Consider two 
arbitrary elements x, ^G-C an<^ choose s£o£such that 

<t>(z) = <l>(x)\J<t>(y). 

The proof consists in showing that z~x\Jy. Observe first that 

<t>(z n(x*U y)) = <f>(z) H 4>{x\J y) 

= [ ^ ) n * ( * U y ) ] U [ * ( , ) n * ( * U y ) ] 

= <t>{xC\ (x\J y)) \J <Kyr\(xV y)) 

= <Kx) KJ <l>(y) 

= <*>(*). 

Since the mapping is one-to-one, it follows that 

z = z(~\(x\J y) = (zC\x)\J (zC\y). 

Also 

<t>{zn x) = [<t>(x) n <s>{x)] \J [<t>(y) n <£(*)] = < K # ) VJ <t>(y n x). 
But 

<i>{x) r \ <t>{y r \ x) = <t>(x r \ y r \ x) = <t>(y r \ x). 
Therefore 

<t>(z H x) = <t>(x) KJ <j>(y C\ x) = <t>(x). 

Similarly 

The terminology used here conforms with [ l ] . 
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4>(zC\ y) = 4>(y). 

Again, since the mapping is one-to-one, we have zC\x =x and zC\y =y. 
I t follows that z — x\Jy and the proof is complete. 

Since the dual of a distributive lattice is also distributive, we can 
state the following corollaries: 

COROLLARY. Any one-to-one, join-preserving mapping of a distribu­
tive lattice onto a distributive lattice is also meet-preserving. 

COROLLARY. Any one-to-one mapping of a distributive lattice onto a 
distributive lattice which takes meets into joins also takes joins into 
meets. 
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