Hence xy < 6, and $y(x+1) \equiv 0 \pmod{5}$. The solutions for (x, y) are (0, 10), (16, 0) and (4, 1). Only the last choice gives integral values for f_i and we then have by (6.5) and (7.11),

$$(7.14) \ (\tau_{\alpha j}^{\bullet}) = \begin{vmatrix} 1 & 1 & 1 \\ 10 & -5 & 1 \\ 16 & 4 & -2 \end{vmatrix}, \quad (\psi_{\alpha j}^{\bullet}) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1/2 & 1/10 \\ 1 & 1/4 & -1/8 \end{vmatrix},$$

$$f_{2} = \frac{27}{4.5} = 6,$$

$$f_{3} = \frac{27}{1.35} = 20.$$

The irreducible components have degrees 1, 6, 20, and the characters may be found by applying (6.10).

MICHIGAN STATE COLLEGE

EQUAL SUMS OF LIKE POWERS

E. M. WRIGHT

Let $s \ge 2$ and let P(k, s) be the least value of j such that the equations

(1)
$$\sum_{i=1}^{j} a_{i1}^{h} = \sum_{i=1}^{j} a_{i2}^{h} = \cdots = \sum_{i=1}^{j} a_{is}^{h} \qquad (1 \leq h \leq k)$$

have a nontrivial solution in integers, that is, a solution in which no set $\{a_{iu}\}$ is a permutation of another set $\{a_{iv}\}$. It was remarked by Bastien $[1]^1$ that $P(k, 2) \ge k+1$ and this is true a fortiori for general s. The only upper bound for P(k, s) for general k and s which I have found in the literature is due to Prouhet [5] who (in 1851) gave solutions of (1) with $j = s^k$, so that $P(k, s) \le s^k$. He allocates each of the numbers $0, 1, \dots, s^{k+1}-1$ to the set $\{a_{iu}\}$ if the sum of its digits in the scale of s is congruent to $u \pmod{s}$. Recently Lehmer [4] took m_1, \dots, m_{k+1} any k+1 integers, let each of b_1, \dots, b_{k+1} run through

Presented to the Society, October 25, 1947; received by the editors September 23, 1947.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

the values $0, 1, \dots, s-1$ and allocated the number

$$(2) b_1 m_1 + \cdots + b_{k+1} m_{k+1}$$

to the set $\{a_{iu}\}$ if $\sum b_l \equiv u \pmod{s}$. Lehmer's method provides a solution which may be trivial, though any set of m_l which makes the numbers (2) all different will certainly give a nontrivial solution. Prouhet's case, in which $m_l = s^{l-1}$ $(1 \le l \le k+1)$, clearly does this.

The problem of determining P(k, 2) has received much attention. The inequality $P(k, 2) \leq 2^k$, a particular case of Prouhet's result, was rediscovered in 1912 by Tarry [6] and by Escott [8]. This has since been improved [7] to

(3)
$$P(k, 2) \le (k^2 + 4)/2.$$

In this note I find upper bounds for P(k, s) for general k independent of s and comparable with (3). Unlike Prouhet I do not find a particular solution of (1), but my method gives bounds for the a. I cannot prove that P(k, s) is independent of s, though I conjecture (somewhat more tentatively than for P(k, 2) in [7]) that P(k, s) = k+1.

Various authors [2, 3] have shown that P(k, 2) = k+1 for $1 \le k \le 9$ and Gloden [3] proved that P(k, s) = k+1 for k=2, 3, and 5 and for all s.

THEOREM 1. $P(k, s) \le (k^2+k+2)/2$.

Let $j = (k^2 + k + 2)/2$, $n = (s - 1)j!j^k$, $1 \le a_r \le n$ $(1 \le r \le j)$, and

$$l_h = a_1^h + \cdots + a_i^h$$

Then $j \leq l_h \leq jn^h$ and so there are at most

$$\prod_{h=1}^{k} (jn^h - j + 1) < j^k n^{k(k+1)/2}$$

different sets l_1, \dots, l_k . But there are n^j different sets a_1, \dots, a_j and so more than $j^{-k}n^{j-k(k+1)/2}=(s-1)j!$ sets a_1, \dots, a_j associated with some one set l_1, \dots, l_k . Since the number of permutations of j objects among themselves is j!, there are at least s sets a_1, \dots, a_j which have the same l_1, \dots, l_k and none of which is a permutation of any other. These provide a nontrivial solution of (1) with $1 \le a_{iu} \le (s-1)j!j^k$.

THEOREM 2. If k is odd, $P(k, s) \leq (k^2+3)/2$.

For k=1 the theorem is trivial. Let k be odd, $k \ge 3$, m = (k-1)/2,

t = m(m+1)+1, $n = (s-1)t!t^m$, $1 \le a_r \le n$ $(1 \le r \le t)$, and

$$L_h = a_1^{2h} + \cdots + a_t^{2h}.$$

Since $t \le L_h \le tn^{2h}$, the number of different sets L_1, L_2, \dots, L_m is at most

$$\prod_{h=1}^{m} (tn^{2h} - t + 1) < t^{m} \prod_{h=1}^{m} n^{2h} = t^{m}n^{t-1}.$$

But there are n^t different sets a_1, \dots, a_t and so more than $t^{-m}n(t!)^{-1} = s-1$ sets a_1, \dots, a_t which have the same L_1, \dots, L_m and none of which is a permutation of any other. We take s of these sets, denote the numbers in them by $a_1^{(u)}, \dots, a_t^{(u)}$ $(1 \le u \le s)$ and put

$$j = 2t = (k^{2} + 3)/2,$$

$$a_{iu} = n + 1 + a_{i}^{(u)} \qquad (1 \le i \le t),$$

$$a_{iu} = n + 1 - a_{i-t}^{(u)} \qquad (t + 1 \le i \le j)$$

in (1). Since

$$\sum_{i=1}^{j} a_{iu}^{h} = j(n+1)^{h} + 2\binom{h}{2}(n+1)^{h-2}L_{1} + 2\binom{h}{4}(n+1)^{h-4}L_{2} + \cdots$$

and this is the same for all u when $1 \le h \le k$, we have a nontrivial solution of (1).

BIBLIOGRAPHY

- 1. L. Bastien, Sphinx-Oedipe vol. 8 (1913) pp. 171-172.
- 2. L. E. Dickson, *History of the theory of numbers*, vol. 2, Washington, 1920, chap. XXIV.
 - 3. A. Gloden, Mehrgradige Gleichungen, Groningen, Noordhoff, 1944.
 - 4. D. H. Lehmer, Scripta Mathematica vol. 13 (1947) pp. 37-41.
 - 5. M. E. Prouhet, C. R. Acad. Sci. Paris vol. 33 (1851) p. 225.
- G. Tarry, L'intermédiaire des mathématiciens vol. 19 (1912) pp. 200, 219-221;
 vol. 20 (1913) pp. 68-70.
 - 7. E. M. Wright, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 261-267.
 - 8. E. B. Escott, Quarterly Journal of Mathematics vol. 41 (1910) p. 145.

THE UNIVERSITY OF ABERDEEN