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1. Introduction. Within the past twenty-five years, a large body 
of statistical inference theory has been developed for samples from 
populations having normal, binomial, Poisson, multinomial and 
other specified forms of distribution functions depending on one or 
more unknown population parameters. These developments fall into 
two main categories: (i) statistical estimation, and (ii) the testing of 
statistical hypotheses. The theory of statistical estimation deals 
with the problem of estimating values of the unknown parameters of 
distribution functions of specified form from random samples as­
sumed to have been drawn from such populations. The testing of 
statistical hypotheses deals with the problem of testing, on the basis of 
a random sample, whether a population parameter has a specified 
value, or more generally whether one or more specified functional 
relationships exist among two or more population parameters. 

All of this theory has now been placed on a foundation of prob­
ability theory through the work of R. A. Fisher, J. Neyman, E. S. 
Pearson, A. Wald, and others. I t has been applied to most of the 
common distribution functions which occur in statistical practice. 
Many statistical tables have been prepared to facilitate application 
of the theory. 

There are many problems of statistical inference in which one is 
unable to assume the functional form of the population distribution. 
Many of these problems are such that the strongest assumption 
which can be reasonably made is continuity of the cumulative dis­
tribution function of the population. An increasing amount of atten­
tion is being devoted to statistical tests which hold for all popula­
tions having continuous cumulative distribution functions. Prob­
lems of this type in which the distribution function is arbitrary within 
a broad class are referred to as non-parametric problems of statistical 
inference. An excellent expository account of the theory of non-para­
metric statistical inference has been given by Scheffé [6O].1 In non-
parametric problems it is being found that order statistics, that is, 
the ordered set of values in a random sample from least to greatest, 
are playing a fundamental rôle. I t is to be particularly noted that the 
term order is not being used here in the sense of arrangement of 
sample values in a sequence as they are actually drawn. 

There are both theoretical and practical reasons for this increased 
attention to nonparametric problems and order statistics. From a 
theoretical point of view it is obviously desirable to develop methods 
of statistical inference which are valid with respect to broad classes 

1 Numbers in brackets refer to the references cited at the end of the paper. 



8 S. S. WILKS [January 

of population distribution functions. It will be seen that a consider­
able amount of new statistical inference theory can be established 
from order statistics assuming nothing stronger than continuity of 
the cumulative distribution function of the population. Further im­
portant large sample results can be obtained by assuming continuity 
of the derivative of the cumulative distribution function. From a 
practical point of view it is desirable to make the statistical procedures 
themselves as simple and as broadly applicable as possible. This is 
indeed the case with statistical inference theory based on order sta­
tistics. Order statistics also permit very simple "inefficient" solutions 
of some of the more important parametric problems of statistical 
estimation and testing of hypotheses. The solutions are inefficient in 
the sense that they do not utilize all of the information contained in 
the sample as it would be utilized by "best possible" (and computa­
tionally more complicated) methods. But this inefficiency can be offset 
in many practical situations where the size of the sample can be in­
creased by a trivial amount of effort and expense. 

It is the purpose of this paper to present some of the more im­
portant results in the sampling theory of order statistics and of func­
tions of order statistics and their applications to statistical inference 
together with some reference to important unsolved problems at ap­
propriate places in the paper. The results will be given without 
proofs, since these may be found in references cited throughout the 
paper. Before proceeding to the technical discussion it may be of 
interest to make a few historical remarks about order statistics. 

One of the earliest problems on the sampling theory of order sta­
tistics was the Galton difference problem studied in 1902 by Karl Pear­
son [51 ]. The mathematical problem here, which was solved by 
Pearson, was to find the mean value of the difference between the 
rth and (r + l)th order statistic in a sample of n values from a popula­
tion having a continuous probability density function. In 1925 
Tippett [72] extended the work of Pearson to find the mean value 
of the sample range (that is, the difference between least and greatest 
order statistics in a sample). In the same paper Tippett tabulated, for 
certain sample sizes ranging from 3 to 1000, the cumulative distribu­
tion function of the largest order statistic in a sample from a normal 
population having zero mean and unit variance. In 1928 Fisher and 
Tippett [14] determined by a method of functional equations and for 
certain restricted regularity conditions on the population distribu­
tion the limiting distribution of the greatest (and also least) value in 
a sample as the sample size increases indefinitely. R. von Mises [35] 
made a precise determination of these regularity conditions. Gumbel 
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has made further studies of these limiting distributions and has made 
various applications to such problems as flood flows [19] and maxi­
mum time intervals between successive emissions of gamma rays 
from a given source [18]. In 1932 A. T. Craig [4] gave general ex­
pressions for the exact distribution functions of the median, quartiles, 
and range of a sample size of n. Daniels [7] has recently made an 
interesting application of the sampling theory of order statistics to 
develop the probability theory of the breaking strength of bundles of 
threads. 

One of the simplest and most important functions of order statis­
tics is the sample cumulative distribution function Fn(x), the frac­
tion of values in a sample of n values not exceeding x. In 1933, 
Kolmogoroff [30 ] established a fundamental limit theorem in prob­
ability theory which enables one to set up from Fn(x) a confidence 
band (for large n) for an unknown continuous cumulative distribution 
function F(x) of the population from which the sample is assumed 
to have been drawn. Smirnoff [66 ] extended Kolmogoroff's results to a 
treatment of the probability theory of the difference between two 
sample cumulative distribution functions Fni(x) and F^x) for large 
samples. Wald and Wolfowitz [76] have developed a method for de­
termining exact confidence limits for F(x) from a sample of n values. 

In 1936 Thompson [70 ] showed how confidence limits for the 
median and other quantities of a population having a continuous 
cumulative distribution function could be established from order 
statistics in a sample from such a population. His result was dis­
covered independently by Savur [59] in 1937. In 1941 the author 
[85] showed how the probability function of the portion of the 
distribution (continuous) of a population lying between two order 
statistics could be used to set up tolerance limits for the popula­
tion from which the sample is assumed to have been drawn. These 
ideas were extended by Wald [75] to the determination of rec­
tangular tolerance regions for populations having distribution func­
tions of several variables. More recently Tukey [73] has extended 
Wald's ideas to the determination of more general tolerance regions. 
Tukey's extensions give promise of a variety of applications in sta­
tistical inference. 

One of the most important properties of the probability distribu­
tion for a sample of n values from a population having a continuous 
cumulative distribution function is that the probabilities associated 
with the n\ different permutations of sample values are equal. Fisher 
[12, 13] initiated the idea of utilizing this property to develop the 
randomization method for constructing statistical tests and illustrated 
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his ideas in several examples. Friedman [16], Hotelling and Pabst 
[26], Pitman [55, 56, 57], Olmstead and Tukey [45] and Welch 
[83, 84] have used the randomization method and its extensions to 
several samples for developing various statistical tests valid for 
populations with continuous cumulative distribution functions. Wald 
and Wolfowitz [77] used the idea to develop a test of the statistical 
hypothesis that two samples have come from populations having 
identical continuous cumulative distribution functions. Wolfowitz 
[88] has proposed an extension of the Neyman-Pearson likelihood 
ratio method (a standard method for determining test criteria in para­
metric problems) for systematically determining test criteria in non-
parametric problems, making use of the randomization principle. 

2. Notation and preliminary definitions. Throughout this paper 
we shall consider only populations with continuous cumulative dis­
tribution functions. At certain points in the paper, which will be indi­
cated, we shall consider cumulative distribution functions (cdf) with 
derivatives which are continuous except possibly for a set of points 
of measure zero ; we shall refer to such derivatives as continuous with 
this understanding. 

A one-dimensional continuous cdf F(x) satisfies the following condi­
tions: 

(a) F(x) is continuous on the entire one-dimensional x space. 
(b) F (+oo) = l . 
(c) F ( - o o ) = 0 . 
(d) F(x) is nondecreasing. 

If X is such that the probability that X^x is F(x), or briefly if 

Pr (X ^ x) = F(x), 

then we say that X is a random variable which has the cdf F(x). If 
F(x) has a continuous derivative ƒ(#), then f(x)dx is called the 
probability element of X, and f(x) the probability density function 
(pdf) of X. 

Since we are considering continuous cdfs it should be noted that 
Pr(Xèx)=Pr(X<x)=F(x). 

Similarly, a ^-dimensional continuous cdf F(x\, #2, • • • , Xk) satis­
fies the following conditions: 

(a) F(xi, X2, ' • • , Xk) is continuous over the entire ^-dimensional 
(Euclidean) space !?&. 

(b) /?(+«>, + 00, . . . , +«>) = 1. 
(c) F(— 00, x*f • • • , Xk)=F(xi, - 0 0 , xz, • • • , Xk) = • • • 

= F(xi,X2, • • • , tfjb-i,— 00) = 0 . 
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(d) AajA^ • • • [AXkF(xu x2i • • • , * * ) ] • • • ] à 0 where A^G(^i, 
*2, • • •, Xk) — G{xh x2, • • •, #i-i, Xi+A», Xi+i, • • •, Xk) — G(xh x2, • • •, #*), 
and A;>0. If Xu X2, • • • , Xk are such that the probability that all 
the inequalities X i ^ # i , X 2 ^ # 2 , • • • , Xfc^#fcholdis-F(#i, #2, • • -fff*), 
or more briefly if 

Pr (Xi g xh X2 S %2, • • • , Xk S Xk) = F(xu x2, • • • , xk), 

then we say that Xi, X*, • • • , X* are random variables having 
cdf F(xu x2i • • • , #fc). If dkF(xi, x2} • • • , Xk)/dxi dx2 • • • ox* 
=f(xi> X2, • • • , #&), say, is continuous, ƒ (#i, #2, • • •, Xk)dxidx2 • • • dte* 
is called the probability element of the fe random variables, and 
f(xi, x2l • • • , #*) is the probability density function (pdf) of the 
random variables. 

In general, we shall denote random variables by capital letters and 
the variables in the cdf and pdf by the corresponding lower case 
letters. 

If X is a random variable having cdf F(x), and if G(x) is a Borel-
measurable function, then G(X) is a random variable having a 
cdf H(y) defined by the Lebesgue-Stieltjes integral 

H{y) = Pr (G(x) g y) = f dF{x) 
J s 

where S is the set of points for which G(x) i&y. The mean value of 
G{X) is defined by 

(1) E(G(X)) = f G(x)dF(x). 
J -«J 

Similarly, in the case of k variables having cdf F(xi, x2f * * • , x ib) t h e 
cdf H(yu y2, • • • , yr) of r functionally independent Borel-measurable 
functions of the X's, say <t>i{X\y X2, • • • , Xr), i = l, 2, • • • , r 
(r^k), is defined by the Lebesgue-Stieltjes integral 

(2) H(yh y2t • • • , yr) = I dF(xh x2l • • • , a?*) 

where 5 is the set of points in Rk for which 

<t>i(xh x2y • • • , a*) g y< (i = 1, 2, • • • , r). 

The mean value of fciXi, X2, • • • , X**) is defined by 

(3) E(4>t) = I <fo(*i> *2, • • • t xk)dF. 
J Rk 
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If F(x) is a cdf and if Xi, Xi, • • • , Xn are random variables 
having cdf 

(4) F(xO-F(xà--K*n), 

then Xi, XÏ, • • • , X n i s said to be a random sample On of size nfrom 
a population having cdf F{x). The w-dimensional Euclidean space i?« 
of the x's in the case of random sampling is called sample space. All 
sets of points and all functions considered in this paper are assumed 
to be Borel-measurable. 

I t should be noted that Rn is constructed as a product space from 
n one-dimensional spaces and has a cdf which is the product of the 
corresponding n one-dimensional (and identical) cdf's. 

Similarly, one defines a random sample of size n from a population 
having a jfe-dimensional cdf. In this case the sample space would be 
fen-dimensional. 

Suppose Xi, Xz, • • • , Xn is a sample of size n from a population 
having continuous cdf F(x). I t can be shown that the probability of 
two or more of the X's being equal is zero. Hence we shall always 
consider the X's in a sample as all having different values. Let the 
X's be arranged in increasing order of magnitude from least to great­
est and denoted by X^ <X&) < • • • <X<»). These ordered values of 
the X's are called order statistics, X(r) being the rth order statistic, 
r = l , 2, • • • , n. 

If I is any interval or set determined from the X's of a sample, the 
integral C=fidF(x) will be called the population coverage of ƒ, or 
simply the coverage of I . For example, F(X^)) — F(Xa)), for i <j, is the 
coverage of the interval (X ( t ), X{j)). (If this paper were written com­
pletely abstractly, that is, devoid of statistical interpretation, a better 
term for C would be measure of I.) The coverage of I is the fraction of 
the population or amount of probability in the population distribu­
tion function contained in I . Since I is a function of the sample X's, 
the coverage of I is a random variable. In the case of a population 
having a continuous ^-dimensional cdf F(Xu X$, • • • , Xk) a similar 
definition holds for a coverage Ck over a ^-dimensional region or set 
Sk in the variate space determined by the sample. 

We shall find it convenient to introduce the following definition 
at this stage: 

DEFINITION. Suppose a sample of size n is drawn from a k-variate 
population having a continuous cdf F(xi, #2, • • • , Xk), and let Sk be a 
region {or set) in the xu x^ • • • , Xk space having a boundary de­
termined by the sample. If Ck, the coverage of 5^, has a distribution which 
does not depend on F(xi, #2, • • • , Xk) we shall say that Ck is distribution-
free. 
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If the cdf has a specified functional form but depends on certain 
parameters 0i, 02, • • • , 0« and if Sk can be determined by the sample 
so that the coverage Ck has a distribution which does not depend on 
the 0's, we shall say that Ck is parameter-free. Such coverages have 
been determined by the author [85], and by Paulson [46], for the 
case of populations having a normal distribution. However, we shall 
not be interested in parameter-free coverages in this paper since inter­
esting parameter-free coverages do not, in general, depend on order 
statistics for their determination. I t is obvious, of course, that if a 
coverage is distribution-free it is also parameter-free. 

3. Sampling distributions of coverages for the case of one dimen­
sion. One of the most important, useful, and well known properties 
of a continuous cdf F(x) may be stated as follows: 

If X is a random variable having a continuous cdf F(x) then F(X) is 
a random variable such that 

Pr (F(X) ^ p) = p, 0 g p g 1. 

Thus, if X\, Xz, • • • , Xn is a sample of size n from a population hav­
ing a continuous cdf, the probability element of Pi-F(Xi), 
i = l, 2, • • • , n, is 

(5) dpidp2 • • • dpny 

the sample space of the Pi being the ^-dimensional cube 0 ^ pi; <| 1 
(i = l , 2, • • • , n). Hence, it is seen that the random variables Pi are 
independently and uniformly distributed on the interval (0, 1). 

Now consider the order statistics X(»), i = 1, 2, • • • , n, in a sample 
of size n from a population having a continuous cdf F(x). Represent 
these order statistics as points on the #-axis, where x is the variate in 
the cdf F(x). These points cut the x-axis into n + 1 intervals 
I<= [X&, X«-D], i = l , 2, • • • , n+1, where X(0) = - » , and X(n+D 
= + oo. Let d be the coverage of /(*>. These coverages are all random 
variables whose sum is unity. The probability element of any n of 
these coverages, for convenience the first n, is 

(6) nldcidcz • • • dcni 

where c»èO and ] [ X i c * ^ l - I n other words, the pdf of the d is 
uniform over the w-dimensional simplex in the space of the d with 
corners a t the n + 1 points (0, 0, • • • , 0), (1, 0, 0, • • • , 0), • • • , 
(0, 0, • • • , 0, 1). If a set of n+1 coverages &, C^ • • • , Cn+% for 
which ^,iiiCi = l have probability element (6), we shall say that 
this is a set of elementary coverages. The most important property of 
this distribution as far as statistical inference is concerned is that it 
does not depend on F(x), which is usually unknown in statistical infer-
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ence problems. In other words, the coverages for the intervals I{ are 
distribution-free. 

The probability element given by (6), although very simple, is 
basic in the sampling theory of coverages and order statistics. 

If we let Vbe the coverage composed of the sum of any r (r^n) of 
the n+1 elementary coverages C», we can verify from (6) that £7 has 
the probability element 

r(» + l) 
(7) u^(l - u)*~rdu, O^u^l. 

r(r)r(n - r + l) 
If U is the sum of r elementary coverages and V is the sum of 5 

elementary coverages (r+s^n) so that U and V contain no ele­
mentary coverages in common, then the probability element of £7 and 
F is 

r(n + 1) 
V ' T(r)T(s)T(n - r - s + 1) V ' 
where w^O, v^O, and u+v£*l. 

Similarly, one could set up the probability element of more than 
two disjoint sums of elementary coverages according to any partition 
scheme. 

At this point it may be of interest to examine a few applications of 
the coverage distributions given by (7) and (8) and their immediate 
extensions. 

4. Examples of direct applications of coverage distributions for the 
case of one dimension. 

(a) Confidence limits of medians, quartiles and other quantités. Sup­
pose £p is the p-quantile, that is, the value of x for which F(%p) ~p. If 
X(i), X(2), • • • , X(n) are the order statistics in a sample of size n from 
a population with continuous cdf F(x), we can construct confidence 
limits for £p from any two order statistics, X«) and X(j), i <j. For we 
have 

Pr (X{i) <ÏP< Xa)) = Pr [F(X(i)) <p< F(XU))] 

(9) - Pr {F(X(i)) <p< F(X(i)) + [F(Xa)) - *(*«>)]} 
= Pr (U <p <U+ V), 

where U and V are distributed according to (8) with r=i and 5 =7—i. 
Evaluating this probability, one finds 

(io) Pr (x(i) <aP< xa)) = /p(f, » - f + 1) - rP(j, » - y + 1) 
where Ix(p, q) is the incomplete beta function defined by 
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T(p + q) r* 
(ii) / .( , , j) _ ^ _ J M ^ i ( i -o«- 1 * . 

T(p)v(q)J0 
Thus, the probability can be calculated from the incomplete beta 
function tables [54] that the confidence interval (X^, X^)) covers the 
unknown ^-quantile £p. In setting up confidence intervals for prac­
tical purposes one would choose a confidence coefficient a (say a = .95) 
and then for each value of n select the pair of values of i and j closest 
together (or one of these pairs in accordance with practical considera­
tions if there are more than one pair), such that the expression on the 
right of (10) is not less than a. 

If p = 0.5, £0.5 is the median of the cdf F(x). In this case one would 
choose i = k and j = n — fe + 1, k<(n + l)/2 (that is, the &th largest 
and the &th smallest order statistics) and then select a value of k for 
each n in accordance with the method described above. Expression 
(10) becomes, in this case, 
(12) Pr (X ( t ) < So* < *V*+i>) = 1 - 2Jo.,(*, n - k + 1). 

Similarly, one could deal with the lower quartile £0.25 and upper quartile 
£0.75 or any other quantile. Expression (12) was established in 1936 
by Thompson [70 ], and discovered independently by Savur [59]. 
Nair [42] has tabulated the largest value of k for which Pr(X(h) 
<£o.5<X(n-*+i))è0.95 and also = 0 . 9 9 for n = 6, 7, 8, • • - , 81. 

(b) Population tolerance limits. The following problem, pointed out 
by Shewhart [63], arose in the statistical aspects of a mass produc­
tion problem. Suppose a mass production operation is yielding a 
sequence of product pieces such that measurements on a given dimen­
sion are behaving so they can be idealized as values of a random 
variable from a population having some (unknown) continuous 
cdf F(x). Can one find a sample size n and two tolerance limits 
Li(Xu Xz, • • • , Xn), LÎ(X\, X%, • • • , Xn) from the sample values 
Xi, Xzy • • • , Xn so that no matter what continuous cdf F(x) is, the 
probability is a tha t the fraction of the population covered by the 
interval (Li, £2) is a t least j3, that is, 

(13) Pr [(F(Lf) - F(Zi)) > fi] - a? 

That is, what functions L\ and L2 will produce an interval (Li, L2) 
such that the population coverage for (Li, L2) is distribution-free? 
Values of a and j3 of practical interest are high (that is, 0.90 to 0.99). 
I t was shown by the author [86] that this problem could be solved by 
choosing L\ and L% as order statistics. For example, if Li~X{k) and 
L2 = X(n-fc+i) Gn practice k would be taken as 1, 2, 3 or some small 
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value compared with n) then it follows immediately from (7) that 
F(X(n~k+i)) — F(X(h)) = U has the probability element 

T(n + 1) 
(14) un~2k(l - uy^du. 

T(2k)T(n - 2k + 1) 

In this case the problem reduces to the determination of the smallest 
value of n for which 

(15) 1 - Ifi(n - 2k + 1, 2k) è a. 

Note that this solution is approximate. In general there exists no 
value of n for which the probability in (13) is exactly equal to a for 
fixed a and /3 and specified order statistics, but there is always a 
smallest n for which (IS) holds. 

A question which naturally arises here is whether there are func­
tions L\ and L2 of the sample X%, X2, • • • , Xn other than order sta­
tistics for which the problem of tolerance limits can be solved if 
nothing is assumed about the population cdf F(x) beyond continuity. 
This is still an open question. However, if F(x) has a derivative, 
Robbins [58] has proved that the only (distribution-free) tolerance 
limits which are symmetric in the sample values Xu X%, • • • , Xn 

are order statistics. 

5. Distribution of single order statistics. The problem of determin­
ing the sampling theory of an order statistic consists of applying an 
appropriate transformation to the coverage distribution (7). In this 
section we shall consider some special cases of interest. 

(a) Exact distribution of X(r)* Suppose Xu X>, • • • , Xn is a sample 
from a population having a continuous cdf F(x) which has a deriva­
tive (pdf) ƒ(#). The probability element <t>(x(r))dx(r) for the rth order 
statistic X(r) is given by applying the transformation u = F(x(r)) to 
(7), thus yielding 

<l>(x(r))dX(r) 

(16) T(n + 1) 

r(r)r(» - r + l) 
[F(*<r>)Ml ~ ^(^(r))]W-f/(^(r))^(r). 

I t should be noted that as soon as we go from (7) to (16) via the 
transformation u = F(x(r)) we pass from consideration of nonpara-
metric problems to parametric ones. That is, we cannot calculate 
probabilities of X(r) falling in specified intervals from (16) without 
knowing F(x), whereas we can calculate similar probabilities pertain­
ing to F(X(r)) from (7). 

A. T. Craig [4] gave special cases of (16) in 1932, namely, for the 
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median and the two quartiles of the sample. For samples of size 
2m+l, X(m+i) is the sample median, and for samples of size 4&+3, 
X(k+i) and X(zk+3) are the lower and upper quartiles of the sample. 

(b) Limiting distribution of largest {or smallest) value in a sample. 
Limiting forms of the distribution (16) for r — n (or 1) as n—>«> and 
properties of these limiting forms for various classes of cdf's F(x) have 
been considered by a number of authors, particularly Dodd [lO], 
Smirnoff [65], Fisher and Tippett [14], Fréchet [15], Gumbel [17], 
and von Mises [35]. One of the earliest studies of these extreme 
values was made in 1923 by Dodd [lO], who investigated stochastic 
limits of greatest values in samples of size n as w—> oo. Dodd's results, 
although of interest in the theory of probability, are not particularly 
useful in statistical inference, and therefore no at tempt will be made 
to summarize them in detail here. I t will, perhaps, be sufficient to 
state a typical one of Dodd's theorems: 

Iff(x) is the pdf of X, such that 0<k!<xl+af(x) <k2< <*> for x>0, 
andf(x) = 0 for x<0, where a>0, then as the sample size n—»<», 

(17) Lim Pr (n1!*-* < X(n) < **/«+•) = 1 
n-+oo 

for any e > 0 . 
Dodd established five other theorems similar to this one, depend­

ing on various assumptions regarding the behavior of ƒ(#), particu­
larly for large values of x. 

One of the most important items in Dodd's paper is his remark to 
the effect that if £§S 'ls t n e median of the pdf 0(#(n)) of the largest 
sample value X(n) in a sample from a population having cdf F(x) and 
pdf f(x), then ££n] may be determined by solving the equation 
[F(£(ol)]n==0-5. The immediate extension of this is that if ^M)) is the 
^-quantile of the cdf of X(n) then the probability of all values in the 
sample being less than ££° is equal to pf that is, 

(18) [F(C)T = t, 
from which ££w) is given by solving the equation 

(19) Fig') = p'\ 

In 1925 Tippett [72], using the immediate extension (18) of Dodd's 
results, tabulated the cdf fl„ 0(*(»))<&<»> of the largest value in 
samples of size n from a normal population for which 

<20) F(*> - fl55j>"* 
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Thus, the basic formula used by Tippett in his tabulation was 

(2!) £*(*„,),*«„ - [JL;ƒ_>"*]" . 
Tippett 's tabulation was made for n = 3, 5, 10, 20, 50, 100, 200, 
300, • • • , 1000 and for x ranging from —2.S to 6.5 by intervals of 
0.1. 

In 1928 Fisher and Tippett [14] obtained limiting distributions, 
as w—> oo, of the greatest (and least) values in a sample from a popula­
tion having a cdf F{x) and satisfying certain regularity conditions 
for large values of x. They used an ingenious method of functional 
equations, based on the fact that the largest value in a sample of size 
mn has the same distribution as the largest value in a sample of size 
n from a population of largest values of samples of size rn. They ar­
rived a t three types of limiting distributions. Almost simultaneously, 
Fréchet [15 ] arrived at one of the types. R. von Mises [35 ] has set forth 
more explicitly the regularity conditions on which the Fisher-Tippett 
results depend. Fisher and Tippett obtained three important classes 
of limiting distributions of X(n)f the largest value in a sample of size 
n from a population having cdf F(x)f which may be stated as follows: 

CASE I. Suppose F(x) is a cdf which is less than 1 for every finite 
value of x, and which is continuous and has two derivatives for all x 
greater than some finite value x0l and that 

d / l -F(x)\ 
Urn—I — 1 = 0. 
*—o dx\ F'(x) ) 

Then 

(22) Lim Pr [(X(n) - ln)nF'(ln) S u] = er<~" 
n-+oo 

for any u on the interval ( — <», + *> ), where ln satisfies the condition 

F(ln) = (n - l ) /n. 

CASE I I . Suppose F(x) is a cdf which is less than 1 for every finite 
value of x, and has a derivative F'(x) for x greater than some finite value 
Xo such that 

xF'(x) 
Lim = k 
*-«> 1 — F(x) 

where k>0. Then 



19481 ORDER STATISTICS 19 

(23) Lim Pr ( — ^ ) = er«~* 

for any u on the interval (0, 00), where ln is defined in Case I. 
CASE I I I . Suppose F(x) is a cdf such that F{a) = 1, and that the first 

k — 1 derivatives of F(x) exist and are 0 at x = a. Suppose F<k)(a) 
= ( — l)k+1c, where c>0, and that F^k+1)(x) is bounded on the interval 
(a—e, a) for some e > 0 . Then 

(24) Lim Pr ((X(n) - a) (~\ S u\ = *-<->* 

for any u on the interval (—00, 0). 
In 1927 Fréchet [15] obtained the limiting distribution in Case II 

in a slightly different form. The issue of the journal in which his re­
sult was published was not printed until 1928, thus indicating that 
Fréchet's results and those by Fisher and Tippett actually appeared 
almost simultaneously. 

To take an important example of Case I, suppose F(x) is the normal 
cdf given by (20). After some calculation, neglecting terms of order 
l~2 and (log w)™1, the expression (X<n) —ln)nFf(ln) reduces to 

(25) [,„,,,,.).»_,„,(_*_)]. 
Thus, for large n, the probability element of this expression is ap­
proximately 

—u (26) e~u-e du. 

If one were interested in the largest value X(n) in a sample from a 
normal population with mean m and variance o*2, he would merely 
replace X(n) in (25) by (X(n)—m)/cr. 

A rather direct approach to the problem of obtaining the limiting 
distribution of the largest or smallest values in a sample can be made 
from (16). Consider the case of the largest value. We have r=n in 
(16). The probability element of F, where Y = n[l — F(X(n))] and 
where X(n) has probability element (16) is 

(27) (1 - y/n)n~ldy (0 g y g n) 

and hence the limiting distribution as Y as n—> 00 has probability 
element 
(28) e-ydy. 

The problem of finding the approximate distribution of X(n) for large 
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n is a matter of making the transformation Y=n[l — F(X(n))] on 
(28). 

(c) Limiting distribution of X(T). Results similar to these given in 
the preceding paragraphs can be written down for the limiting dis­
tribution for the rth largest (or rth smallest) order statistic for fixed 
r. For example, in the case of the rth largest statistic X(n-r+i), the 
limiting distribution of F = n [l — F(X(n-r+i)) ] has probability element 

yr-le-y 

which plays the fundamental role in deriving the limiting distribution 
of X(n-r+i) for any particular cdf F(x) and pdf f(x) satisfying suitable 
regularity conditions. 

If, however, one allows r to increase with n so that r/n—pt and if 
f(x) is continuous and not equal to 0 at the ^-quantile £p, then the 
order statistic X(r) is asymptotically normally distributed with mean 
£p and variance p(\ — p)/n[f(^p)]

2
t that is, 

(30) LtaPrr<£2!ZJ£M«>^s , 1 . _ 1 _ f V * 

Of the authors who have considered the limiting distributions of 
order statistics, Smirnoff [65] made a rather systematic and com­
prehensive study of them in 1935, although there is no evidence that 
he was aware of the results on largest values which had been reached 
earlier by Fisher and Tippett [14] and Fréchet [IS]. 

6. Joint distributions of several one-dimensional order statistics 
and applications. There are problems in parametric statistical infer­
ence which involve the sampling theory of two or more order sta­
tistics. Determination of the sampling distributions of the sample 
range (X(n)—X(i)) and midrange (X(D+X(n))/2 are examples of such 
problems. The exact sampling theory of two or more order statistics 
in samples from a population having a cdf F(x) with a continuous 
derivative ƒ(#) is straightforward and presents no particular diffi­
culties. (See [87].) For example, consider two order statistics X(r) 
and X(r') (r<rr). The probability element <j>(x(r), X(r

f))dx(r)dx(r
f) is 

obtained by applying the transformation 

(31) u = F(x(r))> v = F(x(rf)) - F(s(r)) 

to (8) and setting s = r' — r. Setting r ' = r + l, we have the joint dis­
tribution of X(r+i) and X(r), from which Karl Pearson [51 ] obtained 
the solution to the Galton difference problem, namely 
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- f J?(*)*-'[l -F(x)]*dx. 

(32) -^C^W) - Xir)) 
r(n + l) 

T(n- r + l ) r ( r + 1). 

(a) Distribution of sample range. For r = 1, and r ' = w, we have the 
probability element for the two extremes in a sample from which it 
follows tha t the probability element g{r)dr of the exact distribution 
of the sample range R=X(n) —Xa)ls 

g(r)dr 
(33) C r 0 0 } 

= » ( » - l ) | J [F(r+xa))-F(xa))]^%r+xa))f(xa))dxajdr. 

A similar expression holds for the probability element of the mid-
range M =(X(n)+X(l)) /2. 

The problem of the distribution theory of the sample range was 
originally discussed by von Bortkiewicz [ l ] in 1921. In 1925 Tippett 
[72 ] showed that the mean value of R is given by 

(34) ƒ 00 

{1 - [ F ( * ) ] » - [1 -F(x)]n}dx. 
- 0 0 

He tabulated E(R) and also the variance of R for samples from 
size 2 to 1,000 from a normal population in which F(x) is given by 
(20). In 1933 McKay and E. S. Pearson [33] determined explicit 
expressions for the distributions of ranges in samples of size 2 and 3 
from a normal population. More recently, Hartley [23 ] has tabulated 
the cdf of the range R for samples of size 2, 3, 4, • • • , 20 from a 
normal population with zero mean and unit variance. 

Setting up new random variables Y and Z defined by 

(35) Y = nF(X{1)), Z - n[\ - F(Xin))] 

one finds Y and Z independently distributed in the limit as #—» <*>, 
which means that X(D and X(n) are asymptotically independently dis­
tributed in large samples^ and hence the problem of determining the 
limiting distribution of the range R as n—•> <» is one of dealing with 
the difference between two asymptotically independently distributed 
random variables. This limiting distribution has been discussed by 
Gumbel [20 ], who has also dealt with what he calls mth ranges 
(Z(m)-Z(n-m+i)) and mth midranges (X(W)+X(n~m+i))/2. In par­
ticular, he shows that for fixed m> the order statistics Z(W) and 
-X(n—w+1) are independently distributed in the limit, as n—>oo. 
More recently Gumbel [22] has studied the reduced range i?* 
= gn[R — 2ln] where ln is given by F(ln) = (n — l)/n and gn is the ratio 
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F'(ln)/[l — F(ln)]. He has made some tabulations for the case of 
samples of size n from a normal population. Carlton [3] has given 
the asymptotic distribution of the range of a sample from a popula­
tion having probability element dx/0 on the interval (0, 0). 

(b) Limiting distribution of two or more order statistics in large 
samples. Smirnoff [65 ] has shown that if n, n\, and n$ increase indefi­
nitely so that ni/n=pu and n2/n=p2 (0<pi, pt<l), then the order 
statistics X(ni) and X(n2) in a sample of size n from a population 
having a pdf f(x) (which is greater than 0 and continuous at the quan-
tiles £P1 and £P2) are asymptotically jointly normally distributed with 
means %Pi (i = l, 2), variances pi(l — pi)/n[f(^Pi)]

2 (i = l, 2), and co-
variance Pi(l—p2)/nf(t;p1)f(!;p2). I t should be remarked that these 
variances and covariance were derived as early as 1920 by Karl 
Pearson [53]. However, he did not establish the fact that the limit­
ing distribution of X(ni) and -X" )̂» as n—»<*>, is normal. Mosteller [39] 
has extended Smirnoff's result to a set of k order statistics, obtaining, 
of course, a normal &-variate limiting distribution. 

(c) Estimation of population parameters by order statistics. Mosteller 
[39] has investigated the efficiency of various linear combinations of 
several order statistics in large samples for estimating the mean and 
variance of a normal distribution function. To pick one simple case, 
he shows that by choosing £i = .2702 and pi = .7298, the average of 
the two order statistics X(npi) and X(nP2) have an efficiency 0.81 in 
estimating the population mean for large n. We are using efficiency 
here in the sense of R. A. Fisher, briefly and roughly stated as follows: 
if the "most efficient" method of estimating the population mean had 
been used (the arithmetic mean of all sample values in this case) a 
sample of size O.Sln would produce an estimate with the same vari­
ance, to terms of order 1/w, as that for the estimate based on the two 
given order statistics. To state the matter another way, this means 
that the use of these two order statistics for estimating the popula­
tion mean "utilized about 8 1 % of the information contained in 
the sample." Among other results, Mosteller has shown that 
by using the average of 10 properly spaced order statistics one can 
obtain an estimate of the mean with an efficiency of more than .97. 
He considered the cases of 2, 3, 4, • • - , 10 symmetrically spaced 
order statistics in the estimation of the mean of a normal population. 
He also considered order statistics in the estimation of the variance 
a2 of a normal population. The use of the range for this purpose in 
small samples was investigated by Davies and Pearson [8]. They 
found that for samples of size 10 or less, the range (multiplied by a 
suitable factor) is almost as accurate for estimating a as the eus-
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tomary method based on the sum of squares of deviations of sample 
values from their mean. 

The use of order statistics promises to furnish a simple and effec­
tive practical method for estimating parameters of the normal and 
other populations having continuous pdfs for both large and small 
samples—especially in situations where large samples are easily avail­
able. The development of this field will depend on a vast amount of 
computation, but the reward will be extremely simple statistical 
methods useful for both large and small samples under certain prac­
tical conditions. 

(d) Application of order statistics to breaking strength of thread 
bundles. An interesting application of the joint distribution theory of a 
set of one-dimensional order statistics has been made by Daniels [7] 
to the statistical theory of breaking strength of bundles of threads, 
which illustrates a type of application of order statistics which may 
be important in the critical study of other physical phenomena of a 
similar nature. 

Suppose the breaking strength of a population of thread lengths has 
a continuous cdf F(x). Let the ordered breaking strengths (from least 
to greatest) of a sample be -X*(D, X(2>, • • • , -X*(W). Now suppose 
these threads are made into a bundle of n parallel threads and let a 
load S be applied and consider the probability that S will break the 
bundle. I t is evident that the bundle will break if the following condi­
tions are satisfied : 

0 < X (1 ) < S/n, 

X<i-D < X{i) < S/(n + 1 - i) (i = 2, 3, • • • , n). 

If we denote by B the region in sample space for which these in­
equalities hold then the probability that 5 will break the bundle is 

(37) pn(S) = n\ \ dF(x(1))dF(x(2)) • • • dF(x(n)). 

But, setting pi = F(xa)) (i = l , 2, • • • , w), this is equivalent to the 
following integration 

I I I dpndp^t ---dpi 
0 J pi J P2 J Pn_i 

where bi = F(S/i), i = l, 2, • • • , n, which yields 

(39) pn(S) - E 
nljbi - b2)

n(b2 — bz)
r* » * • (bn-i — bnY^fà 

rilr2l • • • rn\ 
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where X) r denotes summation over all values of n , r2, • • • , rn (posi­
tive integers or zero) for which 

5 > , £ * (i = 1, 2, • • • , n - 1) 
3 = 1 

and ]Cîr< = w* 
For a specified sample of size n, let 5* be the largest value of 5 for 

which the inequalities (36) are not all true. Then S* is a random vari­
able representing the breaking load of the bundle of n threads for this 
sample. Daniels has shown that if, in addition to the continuity of 
F(x), we assume that L i m ^ * x[l—F(x)]=0 and x[l — F(x)] has a 
maximum for x=x*, then 

(40) Lim Pr -! ~ —f1- ^ «> = I r - ' 1 "*. 
\x*(nF(x*)[l - F(x*)]yi> ƒ (27r)1/2J^00 

In other words, 5* is approximately normally distributed in large 
samples with mean nx* [1-F(**)]and variance nx**F(x*) [l — F(x*) ]* 

7. Confidence bands for the cdf F(x). A fundamental problem in 
nonparametric statistical inference is that of finding confidence bands 
for a continuous cdf F(x) from a sample of size n. The natural ap­
proach to this problem is to make use of the sample cdf Fn(x) in 
determining these confidence bands. Fn(x) is a function of order sta­
tistics defined as follows : 

Fn(x) = 0, X < ï ( i ) , 

(41) Fn(x) = i/n, X«) ^ < Xii+1), 

Fn(x) = 1, X ^ * < » ) . 

The sample cdf -Fn(#) has been referred to by Cramer [5] as the 
statistical image of the population cdf F(x). 

Consider the transformation T(» ~F(X(i)), T(2)=F(X(2))> • • • , 
T(n) = F(X(n)). I t is clear that T(D, * • • , T(n) are order statistics in a 
sample of size n from a population having probability element dt on 
the interval (0, 1). The cdf of T is t. Denoting the sample cdf by 
Gn(t), it is seen that Sup(<) [t — Gn(/)] = Sup(ao [F(x) — Fn(x)]. 

By working with the simplified random variable T and using the 
fact just stated, Kolmogoroff [30] showed in 1933 tha t 

(42) Lim Pr {sup [F(x) - Fn(x)]nli2 £ X} = *(X) 
*»->oo (x) 

where 
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(43) $(X) = E (~ l)ke~uh\ 

Thus, for a given confidence coefficient a, approximate confidence 
bands for F(x) are furnished by the two functions Fn(x) ±X«/#1/2, 
where X« is determined so that $(X) = a. Thus, we can say that for 
large w, the probability is approximately a that the curve y = F(x) 
will be contained in the band bounded by the four graphs: y = Fn(x) 
±Xa/w

1/2, y = 0 and y = l. Kolmogoroff tabulated values of X« for 
a = .95, .98, .99, .995, and .999. 

A result closely related to Kolmogoroff's and obtained by Smirnoff 
[66] relates to the difference between two sample cdfs. Suppose 
Fm(x) and Fn(x) are sample cdfs for samples of sizes m and n respec­
tively from a population having a continuous cdf F(x), and the ratio 
m/n remains between two fixed positive numbers a\ and a$. Then 
Smirnoff showed that 

(44) Lim Pr <sup | X > = $(X). 
I (*) (l/m + l/n)1'2 j 

Wald and Wolfowitz [76] have considered the problem of setting 
up exact confidence bands for F(x). They have shown, for confidence 
coefficient a and constant da, how to construct confidence bands for 
F{x) of the form Fn(x)±da. Thus, the probability is a that the 
region or band bounded by the graphs of y = Fn(x)±da, y = 0, and 
y = 1 contains the curve y = F(x). There are many ways of determin­
ing the da, but their evaluation is rather laborious. It would be very 
desirable to have an investigation of sets of values of the da which 
would produce "best" confidence bands, perhaps of smallest average 
vertical width weighted in some sense, and to have suitable tabula­
tions to facilitate their application. 

8. Sampling distributions of coverages for the case of two or more 
dimensions. In §3 we discussed the sampling distribution of the set 
of elementary coverages produced by the order statistics in a sample 
of size n from a population having a one-dimensional continuous 
cdf F(x). We recall that these elementary coverages have the ex­
tremely simple probability element (6), which does not depend on the 
population cdf F(x), from which one can readily determine the dis­
tribution of two or more sums of elementary coverages. We shall now 
deal with the problem of coverages for the case of two or more di­
mensions. 

For the sake of simplicity, we shall deal with the case of two 
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dimensions. Extension of the results to more than two dimensions is 
straightforward. Thus, suppose we have a sample 0n of size n, say 
(Xu Yi), (X2, F2), • • • , (Xn, Yn), from a population having a con­
tinuous cdf F(x, y). This sample can be represented as n points in the 
#;y-plane. The basic question is this: What kinds of two-dimensional 
intervals or regions S determined by the sample On are there, if any, 
which have distribution-free coverages'? 

We shall discuss several methods of constructing such regions. 
(a) For regions determined by one-dimensional order statistics. I t is 

obvious from the one-dimensional case that the slices produced by the 
n lines parallel to the y axis passing through the n sample points are 
regions having distribution-free coverages. In fact, the coverages 
(two-dimensional) for these regions have the probability element 
given by (6). This is evident from the fact that this particular slicing 
operation is equivalent to considering only the X's of the sample in 
precisely the same manner as we did in arriving at (6), Entirely similar 
results hold, of course, if the slicing is carried out with the n lines 
through the sample points parallel to the x-axis. In this case we would 
be considering only the Y's of the sample. 

The preceding considerations suggest a more general method of 
slicing the xy-plane into n + 1 regions or sets. Suppose h(x, y) is a 
function such that if X and Y are random variables with continuous 
cdf F(x, y), the cdf of h{X, Y) ( = Z , say) is continuous. For the n 
sample points there will be n values of Z, namely Zi — h(Xi, Yi). 
Suppose Z(i) (i = 1, 2, • • • , n) are the ordered values of the Z,. Now 
there will be ft+ 1 regions or sets of points in the #;y-plane, Su S%, • • •, 
5n+i, where Si is the set of points for which h(x, y) <Z(D, S2 the set 
for which Z(i> <h(x, y) <Z(2> and so on. Let C\, C2, • • • , C„+i be the 
coverages associated with 5i, 52 , • • • , Sw+i, respectively. Then these 
coverages are distribution-free and any n of them have probability 
element (6). This follows at once from the fact that under the condi­
tions stated, Z = h(X, Y) is a random variable having a continuous 
cdf and that we are simply considering the elementary coverages de­
termined by the order statistics Za), Z (2), • • • , Z(w). 

But there are more general regions than these which are de­
termined by the sample and for which the coverages are distribu­
tion-free as we shall see in the following paragraphs. 

(b) For rectangular regions in case of independent random variables. 
In case X and Y are independent in the probability sense, that is, 
when F(x, y) = F\(x) - F2(y) (Fi(x) and F2(y) being continuous cdf's of 
X and Y respectively), one can construct rectangular regions having 
distribution-free coverages by setting up a product distribution in the 
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product space of X and F as follows : Suppose the sample 0n is ordered 
with respect to the X's. The order statistics -X*(D, XM, • • • , -X*(W> 
determine a set of one-dimensional elementary coverages having prob­
ability element (6). The sum U of any r (r^n) of these elementary 
coverages has probability element (7). Similarly, if the sample is 
ordered with respect to the F's, a set of one-dimensional elementary 
coverages is determined such that the sum V of any s (s^n) of them 
has probability element (7) with u replaced by v and r by s. Since U 
and V are functions of independently distributed random variables, 
they are themselves independently distributed. If Ix is the set of x 
intervals belonging to U and Iv is the set of y intervals belonging to 
V, then IxIy is a two-dimensional product set of rectangles, say 5. 
The sum of the two-dimensional coverages over 5 is simply the prod­
uct UV. Hence the probability element of the two-dimensional 
coverage UV= W, say, can be calculated from the joint distribution 
of V and V, 

T2(n+1) 
(45) ur~h8~H\ — u)n-~r(l~u)n~8dudv 

r(r)r(5)r(»-f+i)r(»-r+i) 
by integrating u and v over the region for which w<uv<w+dw and 
neglecting terms of order (dw)2 and higher. 

To take a case in which the two-dimensional region S is very 
simple, suppose U is taken as the sum of the elementary coverages 
for the intervals (0, -X"<D), (X(1), X^)t • • • , (X(r_i), X(r)), then 
U=Fi(X(r))- Similarly, let V=F2(Y(S)). Then the two-dimensional 
set 5 is the "corner" for which x <X(r), y < F<8), and the two-dimension­
al coverage over S is Fi(X(r)) • F$( F(«)). This two-dimensional coverage 
is the product of two independently distributed random variables U 
and V which have distributions independent of F\(x) and Fï(y). 
Consequently, the distribution of Fi(X(r)) • ^ F(s)) is independent of 

This product method of constructing two-dimensional regions hav­
ing distribution-free coverages can readily be extended to any num­
ber of dimensions. It was devised by the author [86] in connection 
with the problem of tolerance limits for two independent variables. 
To take a simple case, the rectangular region S for which 
X{\) <x <X(n) and F(i> <y < F(n) is such that coverage W over it has 
probability element 

(46) n\n - l)2wn~2[2(w - 1) - (w + 1) log w]dw. 

By integrating this expression from /3 to 1 and setting the result 
equal to a one has an equation involving the three variables a, ft 
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and n. By fixing two of them one may solve for the third. For in­
stance if a = 0.95 and # = 500 one finds /3 = 0.991. Thus, we may say 
that the probability is 0.95 that, in a sample of size 500, at least 
99.1% of the population will be included in the rectangle deter­
mined by the range of the X's and the range of the F's in the sample. 

By using the product method one can find the joint distribution 
of one or more X order statistics and one or more Y order statistics 
in a sample from a two-dimensional population in which the two 
random variables are independent, and similarly for higher dimen­
sions. But in the case of dependence this problem is extremely com­
plicated. Mood [37] has given some results on the joint distribution 
of the median of X's and the median of Y's in a sample from a popula­
tion in which x and y are not independent. He showed that the 
asymptotic joint distribution of the medians for the multivariate 
case is normal and determined the matrix of the variances and co-
variances for the two and three dimensional cases. 

(c) Wald's results for rectangular regions in case the random variables 
are not independent. The product method of constructing regions 
described above is severely restricted by the requirement of inde­
pendence, that is, that F(x, y) = Fx(x) • F2(y). The problem of con­
structing rectangular regions having distribution-free coverages for 
the case of samples from populations having any continuous cdf in 
two or more dimensions was solved by Wald [75 ] in his study of the 
problem of tolerance limits, when the random variables for the 
population are not assumed to be independent. 

Let us consider the two-dimensional case. We have n sample pairs 
represented as n points in the ^y-plane. Consider the X order sta­
tistics X(D, -XT<2), • • • , X(n).The lines x — X(ri) and x = X(8i) ( f iOi) 
cut the #3>-plane into three slices. There are Si — fi —1 sample points 
lying within the middle slice. Let the Y order statistics for the 
si—ri~l points of the middle slice be denoted by Y[ri+1), 
Y(ri+2)> • • • f Y(n-iy Consider the region S consisting of the 
portion of the middle slice which lies between the lines y = Y\rt) 
and y= Y\9%) (r2<s2). S is therefore a rectangle defined by X(ri) <x 
<Z(S1), and Y[r2)<y< Yfó. Within S there are s2—r2 —1 sample 
points. Wald's basic result is as follows: 

The region S has a distribution-free coverage W which has probability 
element 

r(» + 1) 
(47) w*2-r2-i(i _ w)n"82+r2dw. 

T(s2 - r2)T(n - s2 + n + 1) 
The proof of this statement depends on an ingenious application of 

conditional probability theory. 
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Wald extended this result so that the region 5 could consist of 
several rectangles rather than a single one. More specifically, sup­
pose k (<n) vertical lines x=Xtmi) (* = 1, 2, • • • , k) are drawn. The 
xy-plane will be cut into k + 1 slices. Within the left-most slice there 
will be m i - 1 sample points. Within the next slice there will be 
m2 —mi-1 sample points, and so on. Now suppose we draw a hori­
zontal line through each of the mi —1 sample points within the left­
most slice, each horizontal line being drawn completely across this 
slice but not extending into the other slices. We thus cut the first 
slice into ntj rectangular blocks. (Note that two of the blocks in this 
slice have two infinite boundaries each, while mi —2 of the blocks 
have one infinite boundary each.) We do a similar operation on each 
of the remaining slices. The total number of rectangular blocks into 
which the #;y-plane has been cut is n + 1. Let Rij be the jth block in 
the ith. slice, and let 5* be a set consisting of 5 of these rectangular 
blocks. Let W* be the sum of the coverages for these s blocks, that is, 
W*=SpdF(x,y). 

Wald's extended result is this: 
W* is a distribution-free coverage with probability element 

T(n + 1) 
T(s)T(n — s + 1) 

Actually, it can be shown that any n of the coverages for the n + 1 
blocks Rij have probability element (7). The extension of Wald's 
two-dimensional results to the ^-dimensional case is straightforward, 
and, in fact, has been carried out by Wald himself. 

(d) Tukey1 s generalization of Wald's results. Tukey [73 ] has gen­
eralized Wald's ideas to a stage which shows the full possibilities of 
the use of order statistics in cutting up the #;y-plane into regions 
having distribution-free coverages. Although Tukey has generalized 
Wald's results for any finite number of dimensions we shall again, 
for the sake of simplicity, confine ourselves to the two-dimensional 
case. 

Let (Xu Y\)i Ĉ *2, F2), • • • , (Xn, Yn) be a sample of size n from a 
population having cdf F(x, y), and consider the n points in the xy-
plane which represent the sample. Suppose, for each value of 
i {i = 1, 2, • • • , w), that hi(x, y) is a function such that hi(X, Y) is 
a random variable having a continuous cdf. Two or more of these 
functions may be identical. Thus, hi(x, y) may be used to order the 
sample points so that the values hi(Xj, Y3)=Zij (j = l, 2, • • • , n) 
will be represented as n points on some interval (a*, &*). The Z* order 
statistics will be Z»-(D, Z«2), • • • > Z»(n). The "curve" hi(x, y)—Zi(n) 
cuts the ary-plane into two regions or sets (we exclude boundaries; 
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the probability contained in them is zero since the cdfs of the 
hi(X, Y) are continuous) : 

Si: for which hi(x, y) > Zi (n ) , 

and 

Si : for which hi(x, y) < Zi (n ) . 

The "curve" h2(x> y) =Z2(n-i) cuts S{ into two sets 

S2: for which h2(xf y) > Z2(n-i), 

and 

Si : for which h2(x, y) < Z2(n__i). 

Similarly, we cut Si into two sets, 5 3 and Si, by the "curve" 
hz(x, y)=Zz(n-2), and so on. The xy-pl&ne therefore will be cut up 
into n+1 disjoint sets, Su 52 , • • • , Sn+i which are completely de­
fined as follows: 

{hi(x,y)>ZHn)} 

{hi(x, y)<Zi ( n ) , h2(x, ^)>Z2(n_i)} 

{hi(x, y)<Zi (n), h2(x, y)<Z2in-i), fa(xt y)>Z3in-2)} 

Sn: {h1(xfy)<Z1 (x, y)<Z^U2h hn(x, y)>Zn(1)} 

Sn+i: {hi(x, y)<Zi(n+1-.i), i = l , 2, • • • , n}. 

If Cu C2, - • • , Cn+x are the coverages (two-dimensional) for 
Su S2l - • • , Sn+u respectively, we have XXa C» = l . I t is to be 
noted that there are nf ways in which the xy-plane can be sliced up 
into n + l sets of type Si, 5 2 • • • , 5w+i, depending on the order in 
which the functions hi(x, y) are selected. Tukey's basic slicing prin­
ciple is as follows : 

For any given order in which the sets Su S2, • • • , Sn+i are de­
termined, the coverages G , C2, • • • , Cn+i associated with these sets are 
distribution-free and have probability element (6). 

This principle is more general than it may first appear, for we 
could have cut the #;y-plane into two sets by using a "cutting curve" 
determined by a general order statistic Zun), that is, hi(x, y) =Zi«1), 
at the first step. The rry-plane is thus cut into two sets containing 
h — l and n — h sample points respectively. Similarly, each of these 
sets can be cut into two sets by using a "cutting curve" determined 

(49) 

Su 

S2: 

S*: 
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by a general order statistic Z%{h), that is, A2(#, y) -Zim), and so on, 
until the rry-plane has been cut into n+1 disjoint sets. 

The possibilities of applying Tukey's slicing principle to statistical 
inference problems look promising but are still to be explored. One of 
the most immediate applications is that the method provides a more 
flexible "trimming" procedure for constructing tolerance regions than 
one can construct by Wald's method of combining rectangles dis­
cussed earlier. As an example, consider n sample points represented 
in the #;y-plane as shown in Fig. 1. 

FIG. 1 

Now suppose the lines (or line segments) Lu L2l • • • , i s , as shown 
in the figure, are drawn in that order. Lines Lx and L3 are vertical, 
I/2 and L4 horizontal, L5 and Ln are 45° with respect to the x axis and 
Le and L8 are 135°. Note that eight sample points have been used 
in constructing these eight lines, and that n — 8 points remain in the 
interior "residual" region Si . It follows from Tukey's results that the 
coverage W for S% is distribution-free and has probability element 

(50) 
r(n + 1) 

T(n - 7)r(8) 
wn 

8(1 — w)7dw. 

Thus, the probability that Ss, when used as a tolerance region, con­
tains at least 100/3% of the population is obtained by integrat­
ing (50) from j3 to 1. Note that by continuing the slicing of 5s in 
any manner in accordance with Tukey's principle one would finally 
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cut Ss into n — 7 regions, thus making a total (n — 7)+8 or w+1 
regions having distribution-free coverages with probability element 
(6). 

(e) Extensions of distribution theory of coverages and order statistics 
to the discrete case. It should be noted that all of the results concern­
ing coverages for any number of dimensions which have been dis­
cussed heretofore depend on the continuity of the population cdf. It 
is important to have analogous results for the case in which the cdf 
is not continuous. This importance stems from the fact that, because 
of limitations of making measurements, the observational data, 
more strictly idealized, must be considered as a sample from a discrete 
population, that is, one having a step-function cdf rather than a con­
tinuous one. In actual applications ties do occur among the values of 
a sample. 

Tukey, in some work not yet published, has shown how the prob­
ability theory of coverages and order statistics can be extended to the 
discrete case in any number of dimensions by substituting inequalities 
for equalities in the probability statements for the continuous case. 
Scheffé and Tukey [62] discussed the problem for the one-dimen­
sional case in 1945. 

9. Application of multi-dimensional coverages and order statistics 
to estimation problems. In §6c it was pointed out that some studies 
had been made of the problem of making "inefficient" estimates of 
the mean and variance of a normal population by means of order 
statistics. Analogous problems exist for the case of normal distribu­
tions of two or more variables. A few results have been obtained on 
these problems but much remains to be done. 

Let us consider the case of two dimensions. Suppose (Xi, Yi), 
{X%y F2), • • • , (Xw, Yn) is-a sample from a normal bivariate distribu­
tion having means mx and myi variances a*, o* and correlation coeffi­
cient p. Estimates of the mean and variance of x (or y) may be made 
from the X (or F) order statistics along lines described in §6c. But the 
problem of estimating p from order statistics is one which must be 
considered in terms of using both X and F order statistics. Mosteller 
[39] and Hotelling and Pabst [26] have made some contributions to 
this problem. Mosteller considered the numbers of sample points 
falling into four regions S1U 512, S21, and S22 of the ^-plane defined 
as follows. Draw the vertical lines x=X(m+1) and # = X(n_m) (2rn<n). 
There will be m sample points to the left of the first line and m to the 
right of the second. Draw any horizontal line y~y' such that m of 
these 2m points lie above this line and m below. Consider the four 
"corner" regions: 
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S%: x > Z(n-m), y > y', 

( . S2: X > X(n-m), y < yfy 

Sz: x < X(m+ih y > y, 

S4: x < X ( W + D , y < y . 

Let m* be the number of sample points falling in Si. Then considering 
only the numbers of sample points falling into these four regions, the 
maximum likelihood estimate of p, say R*t is given by solving the 
equation, 

m* np* 
(52) : m — np* 

where 

(53) p*= f f exp { [x*+y*-2pxy]idxdy 
K J * 27r(l-p2)1/2Jo Jk \ 2 ( l - p 2 ) L y H 'jf 

and k is given by 

(54) — = I e-^iHt. 

The variance of R* for large samples is 

^ 2 T = P*(m - np*) 

lump* 

and the efficiency of this method of estimating p is about 51.5% 
(the Pearson product-moment correlation being 100% efficient), 
in the case of samples from a normal population in which the 
true correlation p between X and Y is zero. Mosteller has given 
a graph to facilitate the solution of equation (52) for p in practical 
applications. 

Suppose the sample pairs are ordered with respect to the X's , 
tha t is, (JST(i), F ( a i )) , (Z ( 2 ) , 7(«2)), • • • , (X(n), F(«n)). Then the a's 
will be some permutation of the integers 1, 2, • • • , n. Let R' be the 
rank correlation coefficient in the sample between X's and F's, tha t is, 
defined as the ordinary Pearsonian correlation coefficient between 
the ranks 1, 2, • • • , n and ai} a2, • • • , an (see (75)). Pursuing a lead 
suggested by the work of Karl Pearson [52] on rank correlation, 
Hotelling and Pabst [26] have proposed an estimate R' of p defined by 

(56) R' = 2 sin HT'/Ó • 



34 S. S. WILKS IJanuary 

The variance of R' for the case of p = 0 is w2/9n, and the efficiency of 
p ' is 91.2%. 

It would be desirable to have further studies of the problem of 
estimating p by other schemes depending on order statistics and 
simple functions of order statistics. There are probably other very 
simple "inefficient" methods of estimating p which would be useful 
in situations where large samples can be obtained with very little 
effort. This is true in such fields as psychological testing where large 
amounts of data are available on punch cards which have already 
been used for operational purposes. 

In normal multivariate statistical theory it would be desirable to 
have similar studies made of the problem of estimating correlation 
coefficients from samples in which only ranks are given for sample 
values of some of the variables. 

10. Order statistics in the testing of statistical hypotheses—the 
method of randomization. The use of order statistics in the construc­
tion of tests for nonparametric statistical hypotheses (valid for 
populations having any continuous cdf) have been receiving an in­
creasing amount of attention during recent years. A considerable 
number of results have already been obtained and many more can 
be expected within the next few years. The main value of non­
parametric tests of statistical hypotheses lies in the fact that they 
are free from the frequently uncomfortable assumption that a popula­
tion distribution is normal or has some other specific functional form. 

One of the simplest and most elegant results in nonparametric 
statistical inference is the confidence interval theory of the median 
and other quantiles of a continuous cdf based on order statistics, as 
discussed in §4(a). Confidence band theory for a continuous cdf 
F(x) provided by KolmogorofFs theorem (for large n) and by the 
Wald-Wolfowitz method (for small n)> discussed in §7, furnishes a 
satisfactory solution to the problem of testing the hypothesis that a 
sample is from a population with a specified continuous cdf Fo(x). 

Beyond these results, there is yet to be developed a satisfactory 
general theory of nonparametric statistical inference, particularly 
test theory. The only nonparametric tests which have thus far been 
developed are rather special cases in which intuition and experience 
with the well-established parametric test theory have served as 
guides. What is needed is a general theory of constructing non­
parametric tests and a satisfactory method of characterizing the 
power of these tests. Wolfowitz [88] has made a step in this direction 
by proposing an extension of the likelihood ratio method, used in 
deriving parametric statistical tests. He has illustrated this method 
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with several examples, but more remains to be aone before the 
method can be considered generally useful. 

If there is a single property of order statistics which has played 
the greatest role in the development of nonparametric tests thus far 
it may be stated as follows : 

Suppose Xi> Xsy • • • , Xn is a sample from a population having a 
continuous cdf F(x). Consider the region S{ai) in the sample space Rn 

for which the inequality 

(57) Xai < X«2 < • • - < Xan 

holds, where au «2, • • • , an is any one of the n\ permutations of the 
integers 1, 2, 3, • • • , n. Then the amount of probability contained in 
5ja»} is 1/nl. 

The truth of this statement is clear from the fact that 

Pr (Xai <Xa%< < Xan) 

(58) = Pr ( ƒ UldF(x) < ƒ ' dF(x) < < ƒ "" dF(x)\ 

= Pr (Pal < Pa2< < Pan) 

where Pav PaV • • • , P«n are defined in §3, and have probability 
element (5). Integrating (5) over the region for which 0<pai<pa2 

< • • ' <P«n<l gives the desired result 1/nl. 
A method of devising nonparametric tests of statistical hypotheses 

on the basis of order relations among the values of a sample known 
as the method of randomization has been suggested by Fisher [12, 13]. 
The general idea here is to construct a rejection region W in sample 
space Rn by taking enough regions in the set {S[ai)} (each of which 
has probability l/nl) so that the probability contained in W will be a 
specified amount €. This method has been used in a number of special 
problems, the method of selecting regions from {S{ai)} being more or 
less intuitive in each case. We should note, however, that the 
randomization method cannot be used to test the hypothesis that 
i^a:) has a specified form F0(x), against the class of alternatives 
consisting of all continuous cdf's different from FQ(X). For, suppose we 
construct a rejection region Wfor Ho in sample space Rn by taking the 
sum of enough of the regions in the set {S[ai\ \ to make the probabil­
ity contained in PT equal to € (or approximately so if € is not a multiple 
of 1/nl) when F(x) s F0(x). Such a region will contain exactly the same 
probability e for any other continuous cdf F(x), and the test would 
have no power for testing the hypothesis that F(x)^F0(x) over any 
of the alternatives F(X)T^F0(X). In other words, the probability of 
the rejection of an alternative cdf will always be e no matter which 
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alternative it is. The method of randomization for constructing sta­
tistical tests therefore must be applied to situations in which it is 
desired to test whether certain subsets of values in a sample come 
from populations having continuous cdfs differing in some respect. 

The construction of rejection regions for nonparametric tests by the 
method of randomization has not yet been placed on a satisfactory 
general foundation as has been done in the case of parametric tests. 
The best way to discuss the method is perhaps to consider some 
examples. These examples will show how intuition plays an important 
role in each case and will emphasize the need of a general theory. 

Before considering applications of the method of randomization to 
the construction of nonparametric statistical tests, it should be em­
phasized that the method of randomization has other interesting 
applications. It furnishes a way of dealing with any problem of de­
termining probabilities of specified order relations among values in 
two or more samples which have been drawn from the same popula­
tion having a continuous cdf. 

For example we may ask what is the probability that a pair of 
samples 0m (first sample) and On (second sample) from a population 
with continuous cdf F(x) will be such that all the values of 0n will fall 
within the range established by 0m? What is the probability that 
the pair of samples will be such that the largest value in On will ex­
ceed the largest value in 0m? Suppose the values in 0n are drawn one 
by one until a value exceeds the largest value in 0m. For pairs of 
samples drawn in this way what is the probability function of n, the 
size of the second sample which must be drawn to satisfy the condi­
tions of the problem? There are many problems of this type which can 
be dealt with by the randomization method. They all reduce to com­
binatorial analysis of the set of equally probable permutations of the 
m+n values of the two samples, enumerating the subset which 
satisfies the conditions of the problem. Similarly, one could deal with 
order relations problems for three or more samples. Also, one can raise 
analogous questions for the case of two or more samples from popula­
tions having continuous cdfs of two or more dimensions. 

11. Examples of nonparametric statistical tests for one dimension 
based on the method of randomization. 

(a) Two-sample tests. First, let us consider the two-sample problem 
treated originally in a very specific example by Fisher [13] and more 
generally treated by Pitman [55]. Let X19 Xv • • • , Xm and Xm+u 
Zm+2, • • • , Xm+n be two independent samples Om and On of sizes m 
and n from populations having continuous cdfs F(x) and G(x) re­
spectively. Let the values in Om and 0» be pooled together into a 
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single sample Zi, Z2, • • • , Zm+n of size m+n and let the order 
statistics in the pooled sample be denoted by Z(i>, Z<2>, • • • , 
Z(m+n)* If F(x)^G(x) then the probabilities associated with all permu­
tations of the sample values are all equal to l/(m+n) !. Let a separa­
tion be a division of the pooled sample into two sets, consisting of m 
values and n values respectively. There are Cm+n,n possible separations. 
For any particular separation let Zi, Z2, • • • , Zm and Z', Zl, • • •, 
Zn

f be the two sets of values. Let Z and Z' be the means of the sets. 
Let 5 = ] [ > x (Zi-Zy and S' = £"«1 (Z/ - Z ' ) 2 . Pitman proposed 

mn(Z - Z')2 

(59) F = 
(m + n)(S + 6") + mn{Z - Z')2 

as a criterion for testing the difference between the two means ~Z 
and Z', large values of V being significant. He determined the first 
three moments of the distribution of V over the set of all separations 
(equally weighted) and for large m and n he showed the probability 
element of the cdf of V to be approximately 

T((m + n+ l)/2) 
(60) — — — trl'*(l - v) (™+n)i2-idv. 

r ( l /2 ) r ( (m + n)/2) 
I t is to be noted that the equal weighting of the separations comes from 
the fact that when F(x)=G(x) (that is, when the null hypothesis is 
true) the (m+n)l regions {5{aij} corresponding to the (m+n)\ 
permutations of the type Zai<Za2< • • • <Zam+n all have probabil­
ities equal to l/(rn+n)\. 

In this example it is to be noted that a rejection region W in the 
sample space Rn is constructed by taking those regions from the set 
{S(a<}} for which V has its largest values, and enough of them to 
produce a total probability as close as possible to e, the significance 
level. More precisely if ve is the critical value of V a t significance level 
e, then W is the region in sample space constructed of sets from 
{S{a<}} for which V^v€, where v6 is the smallest number for which 
Pr (F^z ; £ )ge , when F(x)=G(x). 

If we are to subject the test criterion V and the rejection region 
W t o a more penetrating analysis we must ask for what class Q of 
pairs of continuous cdf s {F(x), G{x)}, including the null hypothesis 
F(x) z=G(x)f is the test (consisting of V and the rejection region W) 
"satisfactory"? This question has not been considered. Some might 
consider as a minimum requirement for the test to be satisfactory that 
it be unbiasedy that is, that the probability (approximately equal to e) 
associated with the rejection region Wbe smaller when F(x)^G(x) 
than for any other pair of cdfs in Q. Actually, the question of 



38 S. S. WILKS [January 

whether a test is satisfactory or not has to be determined from a con­
sideration of the whole power function of the test, that is, the prob­
ability contained in W expressed as a function of the pair {F(x), G(x)}. 
If W and W are two regions such that the power functions are equal 
when F(x) =G(#) and the power function of W is greater than that 
for W iox all pairs F(x), G(x) which are different, then the test based 
on W' is "better" than that based on W. 

The Pitman test is unbiased if G(x) =F(x+rn), that is, if tt con­
sists of all pairs of continuous cdfs of the form {F(x), F(x+m) }. In 
other words, the test would be satisfactory as a slippage or location 
test. 

A second rather simple and elegant test for the problem of two 
samples has been proposed by Wald and Wolfowitz [77]. To describe 
their results we again consider two samples, 0m and On of m and n 
values from populations having continuous cdfs F(x) and G{x) re­
spectively. There is no loss of generality in assuming m^n. As be­
fore, let the pooled sample be Zx, Z2, • • • , Zm+n and the ordered 
values of the Z's be Z(D, Z<2), • • • , Z(m+n). This sequence of order 
statistics will be a mixture of X's from the two samples. We shall 
define a run of length r from Om in this sequence as an uninterrupted 
subsequence of X's from Omy with a similar definition of a run of length 
s from 0n- The sequence of order statistics will then consist of a cer­
tain number of runs of X's from 0m and a certain number from 0 n . 
Let U be the total number of runs. Wald and Wolfowitz proposed 
C/as the criterion for testing the hypothesis F(x) = G(#), where small 
values of U are significant. This is an intuitively reasonable test since 
small values of U correspond to bunching or poor mixing of values 
from the two samples, and hence furnish an observational basis for 
doubt of the hypothesis that F(x)=G(x). More precisely, the rejec­
tion region W in the sample space Rn consists of all regions from 
{S{a<}} for which U^u€, where u€ is the smallest integer for which 
Pr(U^u€)^€ when F(x)^G(x). The problem of determining ue is 
solved, of course, if the exact distribution of U is found when F(x) 
= G(x). This reduces to a completely combinatorial problem. The 
result obtained by Wald and Wolfowitz is 

+ C 

(* = 2, 3, • • • , M + 1). 

Pr {U = 2*) = 

(61) 

Pr (U - 2k - 1) = 
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Swed and Eisenhart [69] have tabulated Pr(U^u') for rn£nS20, 
and for all values of u' in each case. They have also tabulated the 
smallest integer u€ for which Pr(U^u€)^e for € = .005, .01, .025, 
.05, and the largest integer u€ for which Pr(USu<)£e for € = .95, 
.975, .99 and .995. 

An important property of the U test established by Wald and 
Wolfowitz for certain regularity conditions on F(x) and G(x) is that 
the test is consistent for all pairs of cdfs {F(x), G(x)} m the limit as 
m and n—»oo so that m/n = ry^0. This means that the probability of 
a sample point falling in the rejection region W in sample space 
when F(x)f^G(x) approaches 1 as m and n-+<*> in a constant ratio 
m/n^r^O. 

The results of Wald and Wolfowitz can be readily extended to the 
case of three or more samples. Such an extension would reduce to the 
theory of runs for three or more kinds of elements as developed by 
Mood [36]. 

Other simple tests of the two-sample problem using order statistics 
have been devised by Thompson [71 ], Dixon [9], and Mathisen [32]. 
The tests proposed by Thompson and Mathisen are not consistent for 
hypotheses involving all pairs of continuous cdfs {F(x), G(X)}> al­
though it can be conjectured that they are consistent for the im­
portant case of a slippage test of unimodal cdfs, that is, for all pairs 
{F(x), F(x+m)}, when F'(x) exists and has only one maximum. 

(b) Tests of independence or "randomness" in ordered sequences; 
run tests. It was pointed out earlier that no satisfactory statistical test 
based on order relations among the values in a sample could be de­
vised for testing the hypothesis that F(x) has a specified form F0(x). 
This does not mean that there are not important hypotheses which 
can be tested by using order relations among the values in a single 
sample. 

One of the most important problems in this category is the ques­
tion of whether F(x) is changing from drawing to drawing, or whether 
the sample values, X%, ̂ 2» • • • > Xn, in the ordered sequence as 
drawn are "random." In this case we would consider the class 0 
of all w-dimensional continuous cdfs F(xi, X%f * * * 1 XJI ), or some sub­
set of Q, and the null hypothesis would state that 

(62) F(xh * , , - • - , Xn) m F(*i) •*(*«) H*n). 

This hypothesis of independence or "randomness" is basic to the whole 
theory of random sampling. The practical importance of this problem 
as one to be investigated before applying random sampling theory 
has been strongly emphasized by Shewhart [63] on the basis of his 
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experience with sampling in industry. In dealing with this problem 
various tests of independence based on order statistics have been 
proposed. Several of them, now referred to as run tests and based on 
intuition have been studied. We shall briefly describe two of these 
tests: (i) runs above and below the median, and (ii) runs up and down. 

First let us examine (i). Consider a sample of values Xu Xv • • • , 
X2n+i drawn in the order indicated. Note that these are not order sta­
tistics. In this sequence let each X less than the median, X(W+i>, be 
denoted by a, and let each X greater than X(n+i) be denoted by 6. 
Then deleting the median from Xu X2, • • • , X2w+i we have In X's 
left which are now replaced by some arrangement of n a1 s and n fc's. 
There will be ru runs of a's of length i, and r2» runs of &'s of length i, 
i = lf 2, • • • , n. Under the hypothesis of independence, the proba­
bility theory of ru and r2* reduces to a consideration of the set of 
(2n)l permutations of the n a's and n b's, all of which have equal 
probability l/(2n) !. The median is ignored as far as determining runs 
is concerned. In case of a sample of 2n values one can select any num­
ber between X(W> and X(n+1) as the value to separate X's into a's 
and &'s, and the run theory is the same as that for the case just con­
sidered. Thus, the problem of finding the distribution function of the 
ru and r2» is completely combinatorial, and has been solved by Mood 
[36], He has also solved the analogous distribution problem for more 
than two kinds of elements, such as would arise if one used several 
arbitrary order statistics to cut up the set of sample values into more 
than two sets of elements. 

Mosteller [38], using Mood's basic distribution theory of runs, 
has considered the length L of the longest run of a's as a criterion for 
testing randomness, large values of L being significant. The critical 
value of L for probability level e is the smallest integer le such that 
P r ( L à O = € . A similar criterion exists for the 6's. He also con­
sidered a criterion V defined as the length of the longest run of a's 
or 6's. He tabulated critical values of /<= and // for In = 10, 20, 30, 40, 
50 and for e = .01 and .05. 

It should be noted that the Wald-Wolfowitz U test may also be 
considered as a test of type (i) for testing the hypothesis of inde­
pendence. In this case U would be the total number of runs of a's and 
6's. 

Now let us consider a run test of type (ii) treated by Wolfowitz 
and Levene [89] and by Olmstead [44]. In this case let the sample 
values be Xt, X2, • • • , Xn in the order drawn. We now set up a 
sequence of n — 1 + 's and — 's defined as follows : If Xi < Xi+1 we write 
down a +» if Xi>Xi+i we write down a —, i = l, 2, • • • , w —1. We 
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now consider runs of + ' s and —'s. The test criterion L" used in this 
test is the length of the longest run of + ' s or — 's, large values of L" 
being significant. The probability theory of L" is much more compli­
cated than that of L or I ' , and was worked out by Levene and 
Wolfowitz. Olmstead [44], making use of a recursion relation, has 
been able to tabulate the exact probability function of L" for sample 
sizes ranging from 2 to 14 and has been able to find the approximate 
distribution for larger values of n. A criterion for testing independence 
in an ordered sequence proposed by Young [90 ] and based on the 
method of randomization is given by 

(63) c = i - £ (Xi - xi+1y/2 £ (x{ - x)\ 

Young found the first four moments of the distribution of C assuming 
independence as expressed by (62). 

Wald and Wolfowitz [79] have considered a criterion similar to 
that studied by Young. Their criterion is defined as 

(64) D = £ XiXi+1 + XxZn 

and was proposed as a test for randomness, the null hypothesis being 
given by (62). The method of randomization was used in dealing 
with the distribution of D, The mean and variance of D was found 
when the null hypothesis stated by (62) is true and it was shown that 
D is asymptotically normally distributed for large n in this case. 

It should be noted that these run tests have been devised from 
intuitive considerations for the purposes of detecting the presence of 
"causes" of slowly changing "secular changes" or slippage in the 
population cdf during the course of drawing a sample. The prob­
ability theory of all of these run tests is based on the assumption that 
the null hypothesis of independence expressed by (62) holds. It is 
likely that these run tests are satisfactory for alternatives to the 
hypothesis of random sampling in which the population cdf changes 
by slippage during the course of sampling, but this is yet to be 
explored. 

The problem of testing for independence or for "randomness" in 
successive drawings from a population, which is fundamental in the 
theory of random sampling, deserves more theoretical attention than 
it has received. Possibly a consideration of the problem from the 
point of view of Wald's theory of sequential analysis would be 
profitable. 
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(c) One-dimensional parametric tests involving order statistics. A 
number of authors have investigated parametric statistical tests 
based on order statistics for samples from a normal population. 
E. S. Pearson and Hartley [50] have studied the "Studentized" range 

0» - D1/2(*<n) - Xa)) (6S) * = ~rz ^T 
[ E (x/ - x')2] 

determined by two samples Xi9 X2, • • • , Xn and X{, XI, • • • , XJ, 
from a normal population having mean m and variance <r2, where X' 
is the mean of the second sample. They have tabulated the 1% and 
5 % points of the distribution of q for all values of n from 3 to 20, 
and form = 11, 12, • • - , 20, 24, 30, 40, 60, and 120. The 100a% point 
in this case is defined as the value of qa for which P r |g | ><?«)= a 
when both samples are from the same normal population. 

Daly [ó] has considered the quantity 

X - m 
(66) G = 

X ( n ) — X(i) 

as an alternative to the Student /-test for testing the hypothesis 
that the population mean m in a normal population has a specified 
value mo. He has found that for sample sizes less than 10, a test based 
on G is almost as powerful as the Student /-test. Walsh [82] has con­
sidered an even simpler alternative to the /-test for small samples 
from a normal population, namely. 

(67) H - (x^ + x^y2-m. 
X(n) — X(i) 

This test is almost as powerful as the Student /-test for values of n 
less than 10. 

Walsh, in a paper not yet published, has devised very simple tests 
based on order statistics for testing the hypothesis that the median 
of a continuous cdf has a specified value. In the case of a normal 
population he has found the power efficiency of his tests to be at least 
90%, when compared with the Student /-test, for samples of less 
than 15. The power efficiency of E% as used by Walsh means 
that the power function of the test for a sample of size n is approxi­
mately the same as that of a Student /-test for a sample of size 
En/100. 

(d) A nalysis of variance tests by the method of randomization. Among 
other one-dimensional nonparametric tests should be mentioned 
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analysis of variance tests. In 1937 Friedman [ ló] devised an analysis 
of variance test based on ranks. In his test rs "observations" Xjj 
(i = l, 2, • • • , r; 7 = 1, 2, • • • , s) are arranged in r rows and s 
columns. The sample values within each row are ordered and only the 
ranks (1, 2, • • - , s) of the ordered values in each row are used in the 
test. The hypothesis tested (null hypothesis) is that there are no 
column "effects," that is, that the sample values within each row are 
from a single population with some continuous cdf. This means that 
all possible permutations of ranks within a row are equally probable. 
If <Xij is the rank associated with the ith row and jth column, where 
ociu ot%2y • • • , <Xit (i = 1, 2, • • • , r) is some permutation of the integers 
1, 2, • • • , s, the test criterion proposed by Friedman is 

(68) xl = , " t i t «,,Y- 3r(s + 1). 
rs(s + 1) j=i \ i=i / 

If there are no column "effects," the quantity x? is, for large r, ap­
proximately distributed according to the chi-square law with 5 — 1 
degrees of freedom, that is, with probability element 

fAl>\ (Xr/2) -x2
r/2 2 

(69) e d(xr). 
2T((s-l)/2) 

The test is a randomization test in which the null hypothesis is that 
the 5 values Xi3- (j = l, 2, • • • , s) in the ith row (i = l, 2, • • • , r) is 
a sample from a population having some continuous cdf. We therefore 
have a sample of size s from each of r populations. Kendall and Smith 
[29] and also Wallis [80 ] have studied the same problem but used a 
criterion rfi related to Xr by the expression Xr =r(s — l)r)f. 

In 1937 Pitman [57] investigated the standard analysis of vari­
ance test for testing column "effects" in a layout of r rows and 5 
columns under the assumption that the observations in each row con­
stitute a sample of size 5 from a population having a continuous cdf, 
the cdf s for the rows being identically the same except for slippage. 
Let Xij be the observation for the ith row and jth column. Consider 
the ratio 

T(x.,— xy 
(70) W = — 

where ]C*»i denotes summation from i = 1 to r and j = 1 to s, Xi.f X.j 
are the averages of the X's in the ith row and jth columns respec-
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tively, and X is the average of all rs X's. Pitman, using the method of 
randomization, determined the first four moments of the distribution 
of W under the set of all permutations of the X's within rows, and he 
presented some evidence to the effect that the distribution of IF could 
be reasonably well fitted by the beta distribution 

T(r(s - l) /2) 
(71) Li '-LJ. W<«-«>/»(l ~ W ) H ) ( H ) / M f t 

r((5 - i ) /2)r ( ( r - i)(5 - i)/2) 

which is the same distribution as that obtained under the usual as­
sumption of normality of the analysis of variance test. In 1938 Welch 
[84] made a study of the standard correlation ratio test for homo­
geneity from the point of view of the method of randomization. This 
problem is very similar to the analysis of variance problem treated 
by Pitman. Welch [83] also carried out an investigation of the 
analysis of variance test for randomized blocks and Latin squares 
from the point of view of the method of randomization. 

All of these analysis of variance tests are essentially extensions of 
the usual analysis of variance test to the case of more general popula­
tions. One type of nonparametric test which needs consideration is a 
fe-sample slippage or location test for testing the hypothesis that a 
sample which has the largest "observed slippage" to the right, let us 
say, as measured in some sense by order statistics, does, in fact, come 
from a population centered farther to the right than the populations 
from which the other samples come. Here it would be assumed 
that the cdfs of the k populations are of the form F(x+nii) 
(i = l , 2, • • • , k), and the null-hypothesis would be that the rrii are 
all equal. Mosteller [40] has proposed one simple test for this situa­
tion in the case of k samples, each of size n. To define his test we select 
from among the k samples that sample having the largest X. Let r be 
the number of X's in this sample which exceed the largest X in any 
of the remaining samples; r is the test criterion. The problem of de­
termining the probability function of r under the null hypothesis 
(that is, when all m< are equal) is an application of the method of 
randomization—it is completely combinatorial, and the probability 
that r = r' under these conditions is 

(72) P r f r - ^ . - l J i > 
(kn)\(n — r)\ 

which is approximately kl~r' for large n. The important feature of 
this test is that one allows himself to select the sample with the 
largest "observed slippage" and then to ask whether there are enough 
values in it exceeding the largest value in the remaining samples to 



1948] ORDER STATISTICS 45 

be "significant." A full analysis of this test—like other randomiza­
tion tests—requires a study of its power function for all sets of cdf 's of 
the form {F(x+rni), F(x+m^, • • • , F(x+mk)}. Mosteller has ob­
tained a few inequalities on the power of the test. 

12. Nonparametric tests for two or more dimensions based on the 
method of randomization. The principle of randomization can be 
extended to populations involving two or more variables. We shall 
not at tempt to discuss the general problem here. Several examples of 
tests for the two-dimensional case will indicate the nature of such 
tests. 

(a) Tests of independence based on correlation coefficients. Pitman 
[56], by using the principle of randomization, for two dimensions, 
developed a test for the independence of the two variables in a 
bivariate population having a continuous cdf F(x, y). In this case the 
sample On is (Xu Fx), (X2, F2), • • • , (Xni Fn) . The hypothesis of 
independence is that F(x, y) = Fi(x) • F%(y). If the hypothesis is true, 
one essentially has two samples: namely, Xu X%, • • • , Xn and 
Y%9 F2, • • • , Yn, in which the pairing of values has occurred "at 
random." In the X sample space there are nl regions of the type 
Xai<Xa2< • • • <Xan where au a2, • • • , an is a permutation of the 
integers 1,2, • • • ,n, and similarly for the F sample space. Therefore in 
the product space of the two samples there are (nl)2 product regions 
in each of which an X inequality Xai<Xa%< • • • <Xan and a F 
inequality Yp1<Ypi< • • • < Ypn hold simultaneously. The prob­
ability contained in each of these product regions is (1/nl)2 when the 
hypothesis of independence is true. This means that the probability 
associated with any particular matching (Xal, F^) , (Xav F/32), • • • , 
(Xan, Ypn) is l/(w!)2. Pitman has considered the distribution of the 
ordinary correlation coefficient 

£ (Xai ~ X)(Yfii - F) 

(73) R = 

( n n \ l / 2 

Z(*«.--*)2-Z(^,.-7)2) 
i^l »*-l / 

over the (nl)2 matchings of X's and F's, where X and Y are the 
means of the X ' s and F's respectively. He obtained the first four 
moments of R and for large n fitted a beta distribution to that of R, 
obtaining as the pdf of the fitted distribution 

T(n/2 - 1/2) 
(74) — , (1 - t2)*i2-2dt, 

) r ( l / 2 ) r ( » / 2 - 1) 
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for the interval ( — 1 , + 1 ) . 
In 1936, Hotelling and Pabst [26], using the method of randomiza­

tion, investigated the rank correlation coefficient as a criterion for 
testing independence of X and F, defined by 

E (a4 - (n + l)/2)(ft - (» + l)/2) 
(75) JR' = —î= î — 

( £ («< " (» + l)/2)2' 2 (fo - (» + 1)/2)2Y/2 

\ i = i »*=i / 

which has the same approximate distribution as i?', namely (74). 
Each of the quantities nl,2R and nll2R' is asymptotically normally 
distributed with zero mean and unit variance for large n. Olds [43 ] 
has tabulated the distribution of a quantity S related to R' by the 
relation Rr = 1 — 6S/(n3 — n) for values of n from 2 to 10. 

(b) A "corner" test of association. Olmstead and Tukey [45 ] have 
recently devised a simple test for the independence of two random 
variables on the basis of a sample of size 2w + l . Their test is as fol­
lows: consider the sample (Xi, Fi), (X2, F2), • • • , (X2w+i, F2n+i) 
as represented by 2n + l points in the #;y-plane. Then draw the 
horizontal line y= F(w+i) and the vertical line #=X(W+i). Designate 
the quadrants as + , — , + , —, beginning in the upper right-hand 
quadrant and moving counterclockwise. Now begin with the sample 
point farthest to the right and move toward the left as long as sample 
points are on the same side of the horizontal median line as the 
original one encountered. Let this number of points be P i , attaching 
a + or — sign depending on whether the points are in a + or — 
quadrant. Do a similar counting operation moving from the top 
sample point downward, a similar one moving from the left-most to 
the right and a similar one moving from the bottom sample point up­
ward. Let the numbers of points be P 2 , Pz and P4 , respectively, with 
attached + or — signs depending on whether the points in each case 
fall in a + or — quadrant. Let 5 be the algebraic sum of the four 
P ' s with their signs attached. Then if X and F are independent, 5 
is a function of only the order relations among the X's and F's and 
the problem of determining the distribution function of S is therefore 
combinatorial. Olmstead and Tukey have shown that , for large w, 

, . , 9t» + 9 * t + 168fc + 208 
(76) L i m P r 5 i t 

1 ' 216(2)* 
They have also tabulated exact values of Pr ( | S\ ^k) for 2w = 2, 4, 6, 
8, 10, 14, and for & = 1, 2, 3, • • • , 30. An important feature of this 
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test is that P r ( | S | èfe) approaches its limiting form very rapidly. 
This test has also been extended to the case of more than two 

dimensions. 
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