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Let T be any normed linear space [l, p. S3].1 Then an inner prod­
uct is defined in T if to each pair of elements x and y there is associ­
ated a real number (x, y) in such a way that (#, y) » (y, x), \\x\\2 = (#, #), 
(x, y+z) = (#,y) + (x, 2), and (/#,y) = /(#, y) for all real numbers /and 
elements x and y. An inner product can be defined in T if and only if 
any two-dimensional subspace is equivalent to Cartesian space [5]. 
A complete separable normed linear space which has an inner product 
and is not finite-dimensional is equivalent to (real) Hubert space,2 

while every finite-dimensional subspace is equivalent to Euclidean 
space of that dimension. Any complete normed linear space T 
which has an inner product is characterized by its (finite or trans-
finite) cardinal "dimension-number" n. It is equivalent to the space 
of all sets x = (xi, #2, • • • ) of n real numbers satisfying ]T)< a? < + 00, 
where \\x\\ — (X^*?)1'2 [7, Theorem 32]. Various necessary and suffi­
cient conditions for the existence of an inner product in normed linear 
spaces of two or more dimensions are known. Two such conditions 
are that | |x+y| | 2+| |^-y | | 2 = 2[||x||2+j|y||2] for all x and y, and that 
limn^oo||^+wy||—||«x+y|| = 0 whenever \\x\\ =||y|| ([5] and [4, Theo­
rem 6.3]). A characterization of inner product spaces of three or more 
dimensions is that there exist a projection of unit norm on each two-
dimensional subspace [6, Theorem 3]. Other characterizations valid 
for three or more dimensions will be given here, expressed by means 
of orthogonality, hyperplanes, and linear functionals. 

A hyperplane of a normed linear space is any closed maximal linear 
subset M, or any translation x+M of M. A hyperplane is a support­
ing hyperplane of a convex body S if its distance from S is zero and it 
does not contain an interior point of 5; it is tangent to 5 at x if it is 
the only supporting hyperplane of S containing x [8, pp. 70-74]. It 
will be said that an element #0 of T is orthogonal to y (xoJ~y) if and 
only if ||#o+&y|| è||#o|| for all k, which is equivalent to requiring the 
existence of a nonzero linear functional ƒ such that ƒ (xo) — Il/Il ll*o|| anc* 
f(y) =0, or that xo+y belong to a supporting hyperplane of the sphere 
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1 Numbers in brackets refer to the references at the end of the paper. 
2 "Equivalent" meaning isometric under a linear transformation [l, p. 180]. The 

equivalence to (real) Hubert space follows by reasoning similar to that of [10, pp. 
3-16]. 
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IMI =ll*o|| at the point xQ [4, Theorem 2.1 and §5]. In a space with an 
inner product, xLy if and only if (x, y) = 0 . 

Orthogonality is said to be additive on the right if and only if zJLx 
and z±.y imply zJLx+y. Clearly xJLx implies x = 0, while x±.y implies 
ax±by for any numbers a and b. Every element is orthogonal to at 
least one hyperplane through the origin, this hyperplane being unique 
for any given element if and only if: (1) For any x (5^0) and y there 
is a unique number a with x±ax+y; (2) The unit sphere ||x|| g 1 of T 
has a tangent hyperplane at each point; (3) The norm is Gateaux 
differentiate ; or (4) Orthogonality is additive on the right [4, Theo­
rems 4.2, 5.1]. 

Orthogonality is said to be additive on the left if and only if x±~z 
and y±.z imply x+y±.z. Orthogonality is not symmetric in general, 
and there does not necessarily exist a hyperplane orthogonal to a 
given element (Theorems 1 and 5). Additivity on the left does not 
imply strict convexity,8 nor conversely, but a normed linear space is 
strictly convex if and only if: (1) For any x (T^O) and y there is a 
unique number a with ax+yXx; or (2) No supporting hyperplane has 
more than one point of contact [4, Theorems 4.3, 5.2]. 

Birkhoff has shown that an inner product can be defined in a 
normed linear space of three or more dimensions if orthogonality is 
symmetric and unique.4 An equivalent condition is that N+(x; y) = 0 
whenever N+(y; x ) = 0 , where N+(x; y)—limh++o[\\x+hy\\—\\x\\]/h 
exists because of the convexity of the function ƒ(h) —\\x+hy\\ [4, 
Theorem 6.2]. I t is possible to show by a purely geometric argument 
that in a space of three or more dimensions orthogonality must be 
unique if it is symmetric, but this follows more easily from known 
facts about projections in normed linear spaces: 

THEOREM 1. Orthogonality is symmetric in a normed linear space T 
of three or more dimensions if and only if an inner product can be de­
fined in T. 

PROOF. Let x\ and x2 be any two elements of a three-dimensional 
subspace To of T. Then there is an element yGTo orthogonal to the 
linear hull H0 of x\ and x2 [4, Theorem 7.1]. If orthogonality is sym­
metric, then Ho-Ly. Hence if a projection of T0 on H0 is defined by 
z = P(z)+a,y, where P(z)GH0, then ||P(*)|| £ | |s | | for all z and | |P | | = 1. 
But it is known that an inner product can be defined in a normed 

3 A normed linear space is strictly convex if ||*+y|| HMI+IMI a n d ^ 0 imply 
x=*ty for some t. 

4 See [2]. With symmetry, uniqueness means the uniqueness for any x ( 5̂ 0) and 
y of the number a for which x±.ax-\-y. 
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linear space of three or more dimensions if there is a projection of 
norm one on any given closed linear subspace [6, Theorem 3]. Thus 
an inner product can be denned in any three-dimensional subspace 
of Tand hence in Titself [5]. 

For elements x and y of a normed linear space, x±.y if and only if 
there is a nonzero linear functional ƒ such that / ( x )= | | / | | \\x\\ and 
f(y) = 0, while ax+y±x if and only if | | èx+^ | | is minimum for k = a 
[4, Theorems 2.1, 2.3]. Also, the set H of all z satisfying f(z) = | | / | | 
is a supporting hyper plane of the unit sphere at x if ƒ(#) =||jf|| and 
11 x|| = 1 , while any supporting hyperplane can be denned by such an 
equation (see Mazur [8, p. 7 l ] ) . Also, H is said to be parallel to an 
element y if and only if f{y) = 0 (that is, the line {ky} does not inter­
sect H). Interpretations of Theorem 1 by means of linear functionals 
and hyperplanes therefore give the following necessary and sufficient 
conditions for the existence of an inner product in a normed linear 
space of three or more dimensions: 

(1) For any elements x and y, the existence of a nonzero linear func­
tional f with f (x) = ||/|| 11#|| andf(y) = 0 implies the existence of a nonzero 
linear functional g with g{y) =||g|| ||y|| and g(x) = 0. 

(2) For any elements x and y, \\kx + y\\ is minimum when 
k= —f(y)/f(x) if f is a linear functional with f(x) =\\f\\ \\x\\. 

(3) The existence of a supporting hyperplane of the unit sphere at x 
parallel to y (||x|| = ||y|| = 1) implies the existence of a supporting hyper­
plane at y parallel to x. 

There are infinitely many different normed linear spaces of two 
dimensions in which orthogonality is not symmetric [2, Theorem 4] . 
If an isomorphism ax+by<r*(a, b) is set up between the Cartesian 
plane and a two-dimensional normed linear space containing x and y 
(\\x\\ =\\y\\ = 1 ) a n d iï C is the "unit pseudo-circle" of all points (a, b) 
for which ||ax+è;y|| = 1 , then orthogonality is symmetric in T if and 
only if the line through the origin parallel to any supporting line of C 
at any point p cuts C in a point at which there is a supporting line 
parallel to the line from p to the origin. Let Br (r^l) be the 
normed linear space of pairs (#i, X2)=x of real numbers, where 
| |x| j r = (|xij r + | x 2 | r ) if xi and x2 are of the same sign, and \\x\\* 
^ ( l ^ h + j ^ l * ) otherwise, where s = r/(r — 1). I t can easily be veri­
fied that orthogonality is symmetric in Br for r ^ l , and that it is 
unique except in the limiting case r = l. Thus orthogonality can be 
symmetric and not unique in a two-dimensional space. 

THEOREM 2. An inner product can be defined in a normed linear 
space of three or more dimensions if and only if orthogonality is additive 
on the left. 
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PROOF. Let T be a normed linear space of three or more dimensions, 
and Xi and x% be any two elements. Then there are hyperplanes H\ 
and H* with xi±Hi and x%l.H%. Let M—H\C\Hi. If orthogonality is 
additive on the left, then axi+bx2JLM for all a and b, and any ele­
ment z has a unique representation in the form z~P(z)+y, where 
y&M and P(z) = axi+bx2. Also, ||*|| £||P(*)|| for all z, and ||P|| - 1 . 
Since there is a projection of norm one on any given two-dimensional 
linear subspace of T, it follows as for Theorem 1 that an inner product 
can be defined in T [6, Theorem 3]. 

The conclusion of the above theorem is not valid without the as­
sumption that the space be of more than two dimensions, since it is 
clear that for a two-dimensional normed linear space orthogonality is 
additive on the left if and only if for any x (?*0) there is a unique 
nonzero element orthogonal to x. It therefore follows that orthogonal­
ity is additive on the left in a two-dimensional normed linear space if 
and only if the space is strictly convex [4, Theorem 4.3]. 

If L is a closed linear set in a Banach space 3 , then the normal pro­
jection of x on L is said to be the element u for which x—u±L, or for 
which ||a;—u\\ is the distance from x to L. If L is finite-dimensional, 
or if the unit sphere of B is weakly compact, then normal projection 
is defined for all x and L [4, Theorem 7.2]. It was shown by Fortet 
[3, p. 45] that if orthogonality is symmetric in a uniformly convex 
Banach space, then normal projection is a continuous linear operation 
and the set H of points y with ylx is linear and closed. However, it 
follows from the above theorems that H is linear for all x only if an 
inner product can be defined in the space R and that the existence of an 
inner product follows from symmetry of orthogonality. Also, xJLL if 
and only if there is a linear functional ƒ with/(x) =||/ | | ||a;|| and f(L) = 0 
[4, Theorem 2.1]. The following characterizations of inner product 
spaces of three or more dimensions are therefore direct consequences 
of Theorem 2. 

(4) The existence of a linear functional F with F(x+y) = || P|| ||#+y|| 
and F(z) = 0 whenever x, y, and z are such that there are linear func-
tionalsf and g with f(x) =||/ | | ||x||, g(y) =||g|| IHI. andf(z) =g(z) =0. 

(5) That normal projection be a linear operation. 
If a complete normed linear space has an inner product, then any 

linear functional ƒ and g can be written in the form ƒ(u) » (#, u) and 
g(u)~(y> u), for some elements x and y [7, Theorem 11]. Then F 
of (4) can be taken as f+g. For any linear functional G~Af+Bgy 

there are then numbers a and b such that G(ax+by) —WOW \\ax+by\\. 
This condition is also sufficient for an inner product: 
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THEOREM 3. An inner product can be defined in a normed linear space 
T of three or more dimensions if and only ifit follows from j\x) = ||/|| ||#|| 
and g(y) — \\g\\ \\y\\ for linear fundtionals ƒ and g and elements x and 
y of T that there are numbers a and b such thatf(ax-\-by)+g(ax+by) 
= \\f+g\\ ||ax+fry|| and ax+by^O. 

PROOF. First note that if for some x there are two nonzero linear 
functional F and G with F(x) = \\F\\ \\X\\ and G(x) = ||G|J |M|, then the 
assumption of the theorem would imply that | A ( ^ ) | = | ] A | | ||X|| if 
A = | | G | | . F - - | | F | | G . But this is clearly impossible unless As=0, or 
||G||.F=||.F||G. Thus two independent linear functional cannot take 
on their maximum in the unit sphere ||ar|| :g 1 at the same point, which 
is known to imply that the unit sphere has a tangent hyperplane at 
each point [4, Theorem 5.1 ]. Now suppose that x ± s and y ±z, and let 
To be the linear hull of x, y, and z. There are then two linear func-
tionals ƒ and g w i t h / ( * ) - | | / | | ||*||, g(y)-|l*ll | H | , and ƒ ( * ) « « ( * ) - 0 
[4, Theorem 2.1]. If x and y are not linearly independent, then 
x+y A-z. Let x and y be linearly independent and suppose that for 
u = x+y there are no numbers A and B satisfying |-4/(w)+i3g(w)[ 
= |M/+£g|l Ml- Let Cbe the curve of all elements ax+by with 
||ax+&yl| = 1 . Then there are elements xf and y1 on either side of 
( x + y ) / | | x + y | | and in C for which there are linear functional 
f'=Atf+Big and g'-AJ+Btg with / ' ( a 'HLf ' l l 11*11 and g'(y') 
HU1I ll^'ll» but such that none of the linear Junctionals Af'+Bg' 
satisfy \Af'[rx' + {l-r)y']+Bg'[rx' + {l-r)y]\ -\\Af'+Bg'\\ \\rx' + 
(1— r)y'\\ for any r with 0 < r < l . For each such r, there is a number 
ar for which [rx' + (l— r)y'+arz]/\\rx' + (l — r )y '+a r z | | =v ±z [4, 
Theorem 2.3]. If h is a linear functional defined in To for which 
ft(z;)=||&|| ||v|| and h(z)=Q, and if Ar and Br are such that Arf'(zo) 
+Brg (zo) = 0 for some z0ÇzT0 for which & = 0 but not both ƒ ' and g' 
are zero, then h and Arf'+Brg' are both zero at z0 and z and hence 
are multiples of each other on To. Then if ar and br are chosen by the 
assumptions of the theorem so that ||artf'+&ry'|| ==1 and \Arf'(arx' 
+bry')+Brg'(arx'+bry')\ =||i4nf ,+23 rg

, | | , it follows that h is a mul­
tiple of Arf+Brg' and that h(arx'+bry')\ = ||*|| ||<we'+6,y'||. Thus 
the unit sphere 5 contains the straight lines lr between a1x

,-\-bry
f and 

v, since the unit sphere is convex and the tangent hyperplane defined 
by h(x) =\\h\\ contains arx' + bry' and v. This tangent hyperplane a t v 
then contains this line, but does not contain a point of C between x' 
and y'. But there are also tangent hyperplanes a t xr and y' parallel to z, 
while arx

f+bry' is by assumption not of the form [rx'+(1 —r)y']/Hr#' 
+ (1— r)y'|| for any r satisfying 0 < r < l . This implies that the tan-
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gent hyperplane a t v contains either x' or y1 and is coincident 
with the tangent hyperplane at x' or y', respectively. Letting r 
vary from 0 to 1, it now follows from the convexity of S that 
the tangent hyperplanes at x' and at y' have a common point 
of contact and must therefore coincide, since 5 has a tangent 
hyperplane a t each point. This tangent hyperplane then contains 
the line from x' to y', and f'(x+y) HI/11 Ik+HI» contrary to as­
sumption. Hence there are numbers A and B with \Af(x+y) 
+Bg(x+y)\ =\\Af+Bg\\ \\x+y\\. Since Af(z)+Bg(z) = 0, this implies 
that x+y J- z and that orthogonality is additive on the left. I t now 
follows from Theorem 2 that an inner product can be defined in T. 

For any element x of a normed linear space there is always a 
hyperplane H through the origin with x ± H. However, for no hyper­
plane H of the space5 C of continuous functions is there an element 
f EC withH±f. This follows from the fact that g ±f if and only if 
minj. g / ^ 0 ^ m a x , i gf, where A is the set of all t with \g(t)\ = \\g\\ 
[4, §4]. If T is one of the spaces5 (s), (w), (c), or /(*>(£ ̂ 1 ) , then 
clearly H J_ x for an infinite number of different hyperplanes H and 
elements x. If a normed linear space is strictly convex, then for no 
element x is there more than one hyperplane H with H ± x, while no 
hyperplane is orthogonal to more than one element if the norm of T 
is differentiate [4, Theorems 4.2, 4.3]. This difference is the reason 
for the lack of similarity between the proofs of the following theorems. 

THEOREM 4. An inner product can be defined in a normed linear space 
of three or more dimensions if and only if each hyperplane through the 
origin is orthogonal to at least one element. 

PROOF. Let xi and #2 be any two elements of a normed linear space 
T of three or more dimensions, and let Po be the linear hull of x\ and 
x2. By well-ordering the set of all linear subspaces M of T for which 
Po ± M, it follows that there is a linear subspace M of T such that 
Po JLH and 3? is not contained properly in any other such linear sub-
space. Then it is clear that M is closed. Hence if the linear hull H 
of Po and "M were not Ty there would be a hyperplane through the 
origin which contains P 0 and 3?. If every hyperplane through the 
origin is orthogonal to some element, then there would be an element 
x such that H Lx. But if y = xp+xm+kx, where x p E P 0 and xmÇ~M, 
then JÎ H è| |#p+*m|| É= |WI> since (xp+xm) 1.x and xp±xm. Thus P0 

would be orthogonal to the linear hull of M and x. Hence the linear 
hull of Po and 37 must be T. A projection P{z) of T on P 0 can now be 
defined by z = P(z)+zmi where P ( J S ) £ P O and swG37. Since | |P | | = 1 , 

5 The notation is that of Banach [l, pp. 10-12]. 
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it follows that there is a projection of unit norm on any given two-
dimensional linear subspace of T and hence (as in the proof of Theo­
rem 1) that an inner product can be denned in T. 

THEOREM 5. An inner product can be defined in a normed linear 
space T of three or more dimensions if and only if f or any x £ P there 
is a hyper plane H through the origin with H 1.x. 

PROOF. Suppose x, y, and z are any three elements of T with x _L z 
and y J_ z. If T is strictly convex, then for any u and v of T there is a 
unique a such that au+v ±u [4, Theorem 4.3], Hence if H is a 
hyperplane through the origin with H ±z, and if T is strictly convex, 
then xÇJEL and yÇLH. Thus x+yG-ff and x+y ± s , orthogonality is 
additive on the left, and an inner product can be defined in T. Now 
suppose T is not strictly convex. Then there are elements x and y 
and a linear functional ƒ with f(x) =f(y) = | | / | | and \\x\\ =\\y\\ = 1 [9, 
Theorem 6]. Let z be any other element of unit norm not in the linear 
set generated by x and y and let So be the unit sphere of the space To 
generated by x, y, and z. Let Po be the set of all points w £ S 0 for 
which ll&H = 1 and f{u) = | | / | | . Then P 0 contains the line from x to y, 
and is itself either a straight line segment or a section of a plane. 
Let Lo be the hyperplane of To with P0 ± L0, where L0 contains all 
points at which ƒ is zero. Then for any v and each number a there is a 
hyperplane Ha of T0 with Ha A.v-\-ax. As a—»+0 (or as a—» —0), the 
planes Ha will have at least one limit H+ (or HJ) in the sense that 
there exist sequences {a*} and {bi}, with a»—»+0 and &»•—» — 0, 
lim0,.,+op(w, H a i ) = 0 and lim6.^_0p(w, Hb4)=0, if w is any fixed ele­
ment of H+ or J7_, respectively. Since at each point of unit norm in 
Ha there is a supporting plane of So parallel to v+ax> it follows that 
if fl£Lo then neither H+ nor i7_ crosses P 0 , and Po consists of those 
and only those points of the surface of So in a region containing x and 
bounded by H+, iJ_, and the two supporting lines of Po parallel to v. 
But this is possible for arbitrary ^G-^o only if Po is a point. 

Theorems 3-5 can be given direct interpretations by means of sup­
porting hyperplanes of the unit sphere 5, as was done for Theorem 1 
to get (3). The first of these interpretations can be changed somewhat 
to give the following nontrivial consequence of Theorem 3. 

THEOREM 6. An inner product can be defined in a Banach space if 
every supporting hyperplane of the unit sphere S has a point of contact 
and the existence of supporting hyperplanes H\ and H2 at points x and 
y of S imply that any supporting hyperplane Hz of S satisfying H\C\H<i 
C\Hz = 0 have a point of contact which is in the linear hull of x and y. 
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PROOF. First suppose that there is an element x and nonzero linear 
functional fi and f2 such that ||x|| = 1 , fi(x) =||jfi||, and ƒ*(#) «ll /JI ' 
Then x is in both of the supporting hyperplanes Hi and H% of 5, 
where Hi and H% are defined by fi(z) =| | / i | | and f2(z) =||/2||. If L is 
the set of points a t which jfi=/2 = 0, then Hir^H2-x+L. If fi and f2 

are linearly independent, then the linear hull of x and L is not the 
whole space and there is a nonzero linear functional/8 which is zero on 
x and L. Let Hz be defined by zÇJîz if and only if fz{z) H W I - Then 
clearly HiC\H2r\Hz=*§. But the second hypothesis of the theorem 
would imply that xÇzHZl or fzix) = \\fz\\, which contradicts f%(x) = 0. 
Therefore / i and f2 are linearly dependent. 

Now suppose that \\x\\ - | | y | | = 1 , fi(x) = | | /i | | , and f2(y) =| | /2 | | . If 
/ 8 = / i + / 2 , and flk, H2, Hz are defined by f{(z) —1|/<||(* — 1 , 2, 3), then 
xÇzHi and yÇîH2f If HiC^H^Hz**®, then there exists an element w 
such t h a t / i ( w ) « | | / i | | , / i ( w ) - | | / i | | , and / i (w)+ / 1 (w)« | | / 1 +/ , | | . Thus 
| | / i+/2| | —ll/ill+ll/îH. Since every linear functional in T takes on its 
maximum in the unit sphere, Hz contains a point z of norm 1. Then 
/ i W + / 2 W = | | / i + / 2 | | = | | / i | | + | | / 2 | | . 4 Therefore / i ( a ) - | | / i | | and ƒ,(«) 
= ||/2||. Hence/x a n d / 2 must be linearly dependent, and fi(x)+f2(x) 
= | | / i+/ 2 | | . If HiC\H2r\Hz~Qi then Hz has a point of contact ax 
+by (\\ax+by\\=l) a n d / 8 ( a x + i y ) =||/3 | | ||aa;+&y||. Thus it follows 
from Theorem 3 that an inner product can be defined. 
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