INNER PRODUCTS IN NORMED LINEAR SPACES
ROBERT C. JAMES

Let T be any normed linear space [1, p. 53].! Then an inner prod-
uct is defined in T if to each pair of elements x and ¥ there is associ-
ated areal number (x, ¥) in such a way that (x, y) = (y, x), Hx““’ = (x, x),
(x, y+2) =(x,5)+ (x, 2), and (¢x, y) =¢(x, v) for all real numbers ¢ and
elements x and y. An inner product can be defined in T if and only if
any two-dimensional subspace is equivalent to Cartesian space [5].
A complete separable normed linear space which has an inner product
and is not finite-dimensional is equivalent to (real) Hilbert space,?
while every finite-dimensional subspace is equivalent to Euclidean
space of that dimension. Any complete normed linear space T
which has an inner product is characterized by its (finite or trans-
finite) cardinal “dimension-number” . It is equivalent to the space
of all sets x = (x1, %z, - - - ) of # real numbers satisfying 3 (2} <+ =,
where ||x|| = (O ;4)Y/2 [7, Theorem 32]. Various necessary and suffi-
cient conditions for the existence of an inner product in normed linear
spaces of two or more dimensions are known. Two such conditions
are that ||x+y||2+||lx —||2=2||«l|2+||#]|2] for all x and 9, and that
limp.ef|x+ny]| —||#x+5]| =0 whenever ||x|| =||y|| ([5] and [4, Theo-
rem 6.3]). A characterization of inner product spaces of three or more
dimensions is that there exist a projection of unit norm on each two-
dimensional subspace [6, Theorem 3]. Other characterizations valid
for three or more dimensions will be given here, expressed by means
of orthogonality, hyperplanes, and linear functionals.

A hyperplane of a normed linear space is any closed maximal linear
subset M, or any translation x4+ M of M. A hyperplane is a support-
ing hyperplane of a convex body S if its distance from S is zero and it
does not contain an interior point of .S; it is tangent to S at x if it is
the only supporting hyperplane of S containing x [8, pp. 70-74]. It
will be said that an element x, of T is orthogonal to ¥ (xoLly) if and
only if ||xo+ky|} Z||xo|| for all &, which is equivalent to requiring the
existence of a nonzero linear functional f such that f(xo) =||f|| ||%e|| and
f(y) =0, or that xo+y belong to a supporting hyperplane of the sphere

Presented to the Society, November 2, 1946; received by the editors December 31,
1946.

1 Numbers in brackets refer to the references at the end of the paper.
2 “Equivalent” meaning isometric under a linear transformation [1, p. 180]. The

equi\ialence to (real) Hilbert space follows by reasoning similar to that of [10, pp.
3-16].
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||«|| =||xol| at the point xo [4, Theorem 2.1 and §5]. In a space with an
inner product, x Ly if and only if (x, y) =0.

Orthogonality is said to be additive on the right if and only if z 1%
and zLy imply 21 x4y. Clearly x Lx implies x =0, while x Ly implies
ax1 by for any numbers a and b. Every element is orthogonal to at
least one hyperplane through the origin, this hyperplane being unique
for any given element if and only if: (1) For any x (#0) and y there
is a unique number a with x Lax-+y; (2) The unit sphere ”x” S1of T
has a tangent hyperplane at each point; (3) The norm is Gateaux
differentiable; or (4) Orthogonality is additive on the right [4, Theo-
rems 4.2, 5.1].

Orthogonality is said to be additive on the left if and only if x.Lz
and y1z imply x+4y.Lz. Orthogonality is not symmetric in general,
and there does not necessarily exist a hyperplane orthogonal to a
given element (Theorems 1 and 5). Additivity on the left does not
imply strict convexity,? nor conversely, but a normed linear space is
strictly convex if and only if: (1) For any x (#0) and y there is a
unique number @ with ax+y_Lx; or (2) No supporting hyperplane has
more than one point of contact [4, Theorems 4.3, 5.2].

Birkhoff has shown that an inner product can be defined in a
normed linear space of three or more dimensions if orthogonality is
symmetric and unique.* An equivalent condition is that N.(x; ¥) =0
whenever N,(y; x) =0, where Ny(x; %) =lima.rof||x+ny|| —||x||]1/7
exists because of the convexity of the function f(k)=||x+hy| [4,
Theorem 6.2]. It is possible to show by a purely geometric argument
that in a space of three or more dimensions orthogonality must be
unique if it is symmetric, but this follows more easily from known
facts about projections in normed linear spaces:

THEOREM 1. Orthogonality is symmeiric in a normed linear space T
of three or more dimensions if and only if an inner product can be de-
fined in T.

ProOF. Let x; and x; be any two elements of a three-dimensional
subspace Ty of T. Then there is an element y& T, orthogonal to the
linear hull H, of x; and %, [4, Theorem 7.1]. If orthogonality is sym-
metric, then HyLy. Hence if a projection of T on H, is defined by
2=P(2)+a.y, where P(z) € Ho, then || P(2)|| <||#|| for all zand || P|| =1.
But it is known that an inner product can be defined in a normed

3 A normed linear space is strictly convex if ||x+3| =||«]|+||3]| and 50 imply
x =ty for some &.

¢ See [2]. With symmetry, uniqueness means the uniqueness for any % (0) and
y of the number a for which x Lax-+y.
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linear space of three or more dimensions if there is a projection of
norm one on any given closed linear subspace [6, Theorem 3]. Thus
an inner product can be defined in any three-dimensional subspace
of T and hence in T itself [5].

For elements x and y of a normed linear space, x Ly if and only if
there is a nonzero linear functional f such that f(x)=||f|| ||| and
f(») =0, while ax+y Lx if and only if ||kx+y|| is minimum for k=a
[4, Theorems 2.1, 2.3]. Also, the set H of all z satisfying f(z) =||f]|
is a supporting hyperplane of the unit sphere at x if f(x) =|| f” and
||| =1, while any supporting hyperplane can be defined by such an
equation (see Mazur [8, p. 71]). Also, H is said to be parallel to an
element y if and only if f(y) =0 (that is, the line {ky} does not inter-
sect H). Interpretations of Theorem 1 by means of linear functionals
and hyperplanes therefore give the following necessary and sufficient
conditions for the existence of an inner product in a normed linear
space of three or more dimensions:

(1) For any elements x and v, the existence of a nonzero linear func-
tional f with f(x) = |f|| ||x|| and f(y) =0 implies the existence of a nonzero
linear functional g with g(v) =||g|| ||3|| and g(x) =0.

(2) For any elements x and vy, ||kx + y|| s minimum when
k= —f(9)/f() if f is a linear functional with f(x)=||f|l||=|.

(3) The existence of a supporting hyperplane of the unit sphere at x
parallel to y (Hx” = ||y[| =1) implies the existence of a supporting hyper-
plane at y parallel to x.

There are infinitely many different normed linear spaces of two
dimensions in which orthogonality is not symmetric [2, Theorem 4].
If an isomorphism ax+by«>(a, b) is set up between the Cartesian
plane and a two-dimensional normed linear space containing x and y
(|#]l =||»]| =1) and if C is the “unit pseudo-circle” of all points (a, b)
for which |lax+b8y|| =1, then orthogonality is symmetric in T if and
only if the line through the origin parallel to any supporting line of C
at any point p cuts C in a point at which there is a supporting line
parallel to the line from p to the origin. Let B, (r=1) be the
normed linear space of pairs (x1, %3) =x of real numbers, where
”x”'=(|x1 '+|xz|') if x; and x, are of the same sign, and ”x”’
= (| 21| *+ | x5|*) otherwise, where s=r/(r—1). It can easily be veri-
fied that orthogonality is symmetric in B, for r=1, and that it is
unique except in the limiting case #=1. Thus orthogonality can be
symmetric and not unique in a two-dimensional space.

THEOREM 2. An inner product can be defined in a normed linear

space of three or more dimensions if and only if orthogonality is additive
on the left.
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Proor. Let T be a normed linear space of three or more dimensions,
and x; and x; be any two elements. Then there are hyperplanes H;
and H, with x L H; and x3 L Hy. Let M =HyN\H,. If orthogonality is
additive on the left, then ax+bx; LM for all ¢ and b, and any ele-
ment 2 has a unique representation in the form z=P(z)+y, where
yEM and P(z) =ax:+bx,. Also, ||| Z||P(3)|| for all 2, and || P|| =1.
Since there is a projection of norm one on any given two-dimensional
linear subspace of T, it follows as for Theorem 1 that an inner product
can be defined in T [6, Theorem 3].

The conclusion of the above theorem is not valid without the as-
sumption that the space be of more than two dimensions, since it is
clear that for a two-dimensional normed linear space orthogonality is
additive on the left if and only if for any x (30) there is a unique
nonzero element orthogonal to x. It therefore follows that orthogonal-
ity is additive on the left in a two-dimensional normed linear space if
and only if the space is strictly convex [4, Theorem 4.3].

If L is a closed linear set in a Banach space B, then the normal pro-
jection of x on L is said to be the element # for which x—% .1 L, or for
which ||x—u|| is the distance from x to L. If L is finite-dimensional,
or if the unit sphere of B is weakly compact, then normal projection
is defined for all x and L [4, Theorem 7.2]. It was shown by Fortet
[3, p. 45] that if orthogonality is symmetric in a uniformly convex
Banach space, then normal projection is a continuous linear operation
and the set H of points y with yLx is linear and closed. However, it
follows from the above theorems that H is linear for all x only if an
inner product can be defined in the space R and that the existence of an
inner product follows from symmetry of orthogonality. Also, x L L if
and only if there is a linear functional f with f(x) =||f|| ||x|| and f(Z) =0
[4, Theorem 2.1]. The following characterizations of inner product
spaces of three or more dimensions are therefore direct consequences
of Theorem 2.

(4) The existence of a linear functional F with F(x—+y) =|| F|| ||x+v]|
and F(z) =0 whenever x, ¥, and z are such that there are linear func-
tionals f and g with f(x) =|/f|| ||xl|, 2(3) =1lell I3ll, and f(3) = g(2) =o0.

(5) That normal projection be a linear operation.

If a complete normed linear space has an inner product, then any
linear functionals f and g can be written in the form f(u) = (x, %) and
g(u) = (y, u), for some elements x and y [7, Theorem 11]. Then F
of (4) can be taken as f+g. For any linear functional G=A4f+ Bg,
there are then numbers a and b such that G(ax+by) =||Gl| ||ax+8y]|.
This condition is also sufficient for an inner product:
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THEOREM 3. An inner product can be defined in a normed linear space
T of three or more dimensions if and only if it follows from f(x) =||fl| || ||
and g(v) =||gll |[3|| for tinear fundtionals f and g and elements = and
v of T that there are numbers a and b such that f(ax-+by)+g(ax+by)
=||f+¢| [|ex+8y|| and ax~+bys<0.

Proor. First note that if for some x there are two nonzero linear
functionals F and G with F(x) =|| F|| ||#|| and G(x) =||G|| |||/, then the
assumption of the theorem would imply that |h(x)| =||#]| ||l if
h=||G||F—|| F||G. But this is clearly impossible unless %#=0, or
|Gl| F=|| F||G. Thus two independent linear functionals cannot take
on their maximum in the unit sphere ||x|| <1 at the same point, which
is known to imply that the unit sphere has a tangent hyperplane at
each point [4, Theorem 5.1]. Now suppose that x Lzand y Lz, and let
T, be the linear hull of x, y, and 2. There are then two linear func-
tionals f and g with f(x) =||f|| ||«ll, () =|le|| ||5]], and f(2) =g(z) =0
[4, Theorem 2.1]. If x and y are not linearly independent, then
x4y Llz. Let « and ¥ be linearly independent and suppose that for
u=x-+y there are no numbers 4 and B satisfying | 4f(%) -I—Bg(u)l
=||Af+Bg|| ||4||- Let C be the curve of all elements ax-+by with

ax+by|| =1. Then there are elements x’ and 9’ on either side of
(x+9)/||x+5|| and in C for which there are linear functionals
f'=Aif+Big and g’ =Af+Byg with f/(x")=|7| ||«]] and g'(»")
=||g’|l |l»"]l, but such that none of the linear functionals Af’+Bg’
satisfy | Af' [rx'4+(1—r)y']14+Bg [ra'+ (1 =1)y']| =]l 45"+ Be'|| [lr='+
(1—7)y/|| for any r with 0<7<1. For each such #, there is a number
a, for which [rx'+1—1y"+as]/||rx’+1A—1)y'+ad|=v Lz [4,
Theorem 2.3]. If % is a linear functional defined in T, for which
h(w) =||4|| ||o|| and &(z) =0, and if 4, and B, are such that A,f'(s0)
=+ B.g’'(20) =0 for some 20& T for which 2=0 but not both f’ and g’
are zero, then % and 4.,f'+4B,g’ are both zero at 2, and z and hence
are multiples of each other on T. Then if @, and b, are chosen by the
assumptions of the theorem so that Ila,x’ +b,y'|| =1 and [A,f’ (arx’
+b,9")+B.g' (@’ +by") | =||A.f"+B.g'|], it follows that & is a mul-
tiple of A,f'+B,g’ and that h(ax’'+b")| =||h|| ||ax’+b:'||. Thus
the unit sphere S contains the straight lines I, between a,x’+5b,y’ and
9, since the unit sphere is convex and the tangent hyperplane defined
by k(x) =”h|| contains a,x’+b,9’ and 9. This tangent hyperplane at v
then contains this line, but does not contain a point of C between x'
and y’. But there are also tangent hyperplanesatx’ and y' parallel to 3,
while a,x'+b,y’ is by assumption not of the form [rx'+(1—7)y']/ ”rx'
+(1—7)y'|| for any 7 satisfying 0<r <1. This implies that the tan-
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gent hyperplane at v contains either x’ or 3’ and is coincident
with the tangent hyperplane at x’ or ', respectively. Letting r
vary from 0 to 1, it now follows from the convexity of S that
the tangent hyperplanes at x’ and at ' have a common point
of contact and must therefore coincide, since S has a tangent
hyperplane at each point. This tangent hyperplane then contains
the line from x’ to 9/, and f'(x+) =||f|| ||x+3||, contrary to as-
sumption. Hence there are numbers 4 and B with IA flx+y)
+Bg(x+)| =||Af+Bg| ||[x+|. Since Af(z)+Bg(z) =0, this implies
that x4y L z and that orthogonality is additive on the left. It now
follows from Theorem 2 that an inner product can be defined in T.

For any element x of a normed linear space there is always a
hyperplane H through the origin with ¥ L H. However, for no hyper-
plane H of the space® C of continuous functions is there an element
FEC with H L f. This follows from the fact that g L f if and only if
ming gf<0=<max, gf, where 4 is the set of all ¢ with ]g(t)l =||gll
[4, §4]. If T is one of the spaces® (s), (m), (c), or IP(p=1), then
clearly H 1 x for an infinite number of different hyperplanes H and
elements x. If a normed linear space is strictly convex, then for no
element x is there more than one hyperplane H with H L x, while no
hyperplane is orthogonal to more than one element if the norm of T
is differentiable [4, Theorems 4.2, 4.3]. This difference is the reason
for the lack of similarity between the proofs of the following theorems.

THEOREM 4. An inner product can be defined in a normed linear space
of three or more dimensions if and only if each hyperplane through the
origin is orthogonal to at least one element.

PrOOF. Let x; and x, be any two elements of a normed linear space
T of three or more dimensions, and let P, be the linear hull of x; and
x2. By well-ordering the set of all linear subspaces M of T for which
P, L M, it follows that there is a linear subspace M of T such that
Py L M and T is not contained properly in any other such linear sub-
space. Then it is clear that M is closed. Hence if the linear hull H
of Py and M were not T, there would be a hyperplane through the
origin which contains Py and M. If every hyperplane through the
origin is orthogonal to some element, then there would be an element
x such that H 1 x. But if y=x,4x.+kx, where x,EPy and x,EM,
then ||3]| Z || +%n|| Z||%,||, since (%p+xm) Lx and x, L . Thus Py
would be orthogonal to the linear hull of M and x. Hence the linear
hull of Py and M must be T. A projection P(2) of T on P, can now be
defined by z=P(2) +2m, where P(z) EP, and 2,EM. Since ||P| =1,

5 The notation is that of Banach [1, pp. 10-12].
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it follows that there is a projection of unit norm on any given two-
dimensional linear subspace of T and hence (as in the proof of Theo-
rem 1) that an inner product can be defined in T.

THEOREM 5. An tnner product can be defined in a normed linear
space T of three or more dimensions if and only if for any xET there
s a hyperplane H through the origin with H 1 x.

Proor. Suppose x, ¥, and z are any three elements of T withx Lz
and y L z. If T is strictly convex, then for any # and v of T there is a
unique @ such that au-+v L« [4, Theorem 4.3]. Hence if H is a
hyperplane through the origin with H L 2, and if T is strictly convex,
then x&EH and y&H. Thus x+yEH and x+y L 2, orthogonality is
additive on the left, and an inner product can be defined in T. Now
suppose T is not strictly convex. Then there are elements x and
and a linear functional f with f(x) =f(y) =||7|| and [|«|| =||s]| =1 [o,
Theorem 6]. Let z be any other element of unit norm not in the linear
set generated by x and y and let Sy be the unit sphere of the space T
generated by x, y, and 2. Let P, be the set of all points ¥ &.S, for
which ||4|| =1 and f(x) =||f||. Then P, contains the line from x to y,
and is itself either a straight line segment or a section of a plane.
Let Lo be the hyperplane of T, with Py L L,, where L, contains all
points at which f is zero. Then for any v and each number a there is a
hyperplane H, of Ty with H, L v+ax. As a—+0 (or as a——0), the
planes H, will have at least one limit H, (or H_.) in the sense that
there exist sequences {a;} and {b:}, with ¢,—~+0 and b,——0,
limg,.yop(w, Ho,) =0 and lims,.—op(w, Hp,) =0, if w is any fixed ele-
ment of H, or H_, respectively. Since at each point of unit norm in
H, there is a supporting plane of .Sy parallel to v+ax, it follows that
if €L, then neither H, nor H_ crosses Py, and P, consists of those
and only those points of the surface of Sy in a region containing x and
bounded by H,, H_, and the two supporting lines of P, parallel to v.
But this is possible for arbitrary v& L, only if Py is a point.

Theorems 3-5 can be given direct interpretations by means of sup-
porting hyperplanes of the unit sphere .S, as was done for Theorem 1
to get (3). The first of these interpretations can be changed somewhat
to give the following nontrivial consequence of Theorem 3.

THEOREM 6. An inner product can be defined in a Banach space if
every supporting hyperplane of the unit sphere S has a point of contact
and the existence of supporting hyperplanes Hy and H, at poinis x and
y of S imply that any supporting hyperplane Hs of S satisfying HiNH,
NH;3;=0 have a point of contact which is in the linear hull of x and y.
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Proor. First suppose that there is an element x and nonzero linear
functionals fi and f; such that ||«|| =1, fi(x) =||fil|, and fa(x) =]|7].
Then x is in both of the supporting hyperplanes H; and H; of S,
where H; and H, are defined by fi(z) =||fi| and fa(e) =||fal|. If L is
the set of points at which fi=f,=0, then FyN\Hy=x+L. If f; and f;
are linearly independent, then the linear hull of ¥ and L is not the
whole space and there is a nonzero linear functional f; which is zero on
x and L. Let Hj be defined by &€ H; if and only if fi(2) =|| fs”. Then
clearly HiNH,NH;=0. But the second hypothesis of the theorem
would imply that xEH;, or fi(x) =|| fs[l, which contradicts fi(x) =0.
Therefore fi and f, are linearly dependent.

Now suppose that ||| =||3]| =1, fitx) =||All, and foly)=|fal|. If
fs=fi+fe, and Hy, H,, H; are defined by fi(z) =“f.~||(i=1, 2, 3), then
xEH, and yEH,, If HiNH,NH;#0, then there exists an element w
such that fi(w) =||fil|, f2(w) =||fell, and fu(w)+fa(w) =||fi+7||. Thus
llfit+fall = |lAill +Ifll. Since every linear functional in T takes on its
maximum in the unit sphere, H; contains a point 2 of norm 1. Then
7@ +fae) =[li+fl =[lAll Il Therefore fi(s) =|lAl] and fa()
= f2”. Hence fi and f» must be linearly dependent, and fi(x) +fa(x)
=||fi+f|. If FiNHNH;=0, then H; has a point of contact ax
+by (|lax+by|| =1) and filax+by) =||fi|| |lax+8y||. Thus it follows
from Theorem 3 that an inner product can be defined.
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